MATHEMATICS REVISION NOTES:

1 Circles and Spheres

Circumference of a circle of radius R

$$
C=2 \pi R
$$

Area of a circle of radius R

$$
A=\pi R^{2}
$$

Surface Area of a sphere of radius R

$$
A=4 \pi R^{2}
$$

Volume of a sphere of radius R

$$
V=\frac{4}{3} \pi R^{3}
$$

2 Trigonometry

$$
\begin{gathered}
\sin \theta=2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \\
\cos \theta=\cos ^{2}\left(\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\theta}{2}\right)=2 \cos ^{2}\left(\frac{\theta}{2}\right)-1=1-2 \sin ^{2}\left(\frac{\theta}{2}\right) \\
\frac{d}{d \theta} \tan \theta=\sec ^{2} \theta=\frac{1}{\cos ^{2} \theta} \\
\frac{d}{d \theta} \cot \theta=-\csc ^{2} \theta=-\frac{1}{\sin ^{2} \theta}
\end{gathered}
$$

3 Integration

$$
\int_{0}^{a} x \sin x d x=\sin a-a \cos a
$$

4 Spherical Polar Coordinates

A point whose cartesian coordinates are (x, y, z) can be described in terms of spherical polar coordinates (r, θ, ϕ) where

$$
\begin{aligned}
x & =r \sin \theta \cos \phi \\
y & =r \sin \theta \sin \phi \\
z & =r \cos \theta,
\end{aligned}
$$

or inverting, we have

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\theta=\tan ^{-1}\left(\frac{\sqrt{x^{2}+y^{2}}}{z}\right) \\
\phi=\tan ^{-1}\left(\frac{y}{x}\right)
\end{gathered}
$$

5 Volume Integrals

In Cartesian Coordinates (x, y, z)

$$
d V=d x d y d z
$$

In spherical polar coordinates (r, θ, ϕ)

$$
d V=r^{2} d r \sin \theta d \theta d \phi
$$

6 Differential Equations

1.

$$
\frac{d y}{d x}=-a y
$$

Solution

$$
y=y(0) \exp (-a x)
$$

2.

$$
\frac{d y}{d x}=c \epsilon^{-b x}-a y
$$

Particular solution:
Search for a solution of the form

$$
y=A e^{-b x}
$$

Inserting this into the differential equation gives

$$
-b A e^{-b x}=c e^{-b x}-A a e^{-b x},
$$

and matching coefficients we get

$$
A=\frac{c}{(a-b)}
$$

To this we may add the general solution to

$$
\frac{d y}{d x}=-a y
$$

which is

$$
B e^{-a x},
$$

so that the general solution is

$$
y=\frac{c}{(a-b)} e^{-b x}+B e^{-a x} .
$$

If we have the initial condition that $y=0$ when $x=0$ we can determine the arbitrary constant B and arrive at the solution

$$
y=\frac{c}{(a-b)}\left(e^{-b x}-e^{-a x}\right) .
$$

3.

$$
\frac{d y}{d x}=b-a y
$$

We may rewrite this as

$$
\frac{d y}{(b-a y)}=d x
$$

Integrating both sides gives

$$
-\frac{1}{a} \ln \left(\frac{b-a y}{B}\right)=x,
$$

where B is an arbitrary constant of integration. This can be rearranged to

$$
\ln \left(\frac{b-a y}{B}\right)=-a x
$$

Taking the exponential of both asides and rearranging terms we have

$$
y=\frac{B e^{-a x}+b}{a}
$$

If $y=0$ when $x=0$ then we can set $B=-b$
4.

$$
x \frac{d y}{d x}=-b y^{2}
$$

We rewrite this as

$$
\frac{d y}{-y^{2}}=b \frac{d x}{x}
$$

Integrating both sides and adding the constant of integration, we get

$$
\frac{1}{y}=b \ln (x)+C
$$

Taking the inverse

$$
y=\frac{1}{(C+b \ln (x))}
$$

C is determined from the boundary condition, $y=y_{0}$ when $x=x_{0}$ - we can write the solution as

$$
y=\frac{1}{1 / y_{0}-\ln \left(x_{0}\right)+b \ln (x)}
$$

This may be rewritten in a simpler form as

$$
y=\frac{y_{0}}{1+b y_{0} \ln \left(x / x_{0}\right)}
$$

7 Complex Numbers

$$
z=x+i y=|z| e^{i \delta}
$$

where

$$
\begin{gathered}
|z|=\sqrt{x^{2}+y^{2}}, \quad \tan \delta=\frac{y}{x} \\
w=\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}=|w| e^{-i \delta}
\end{gathered}
$$

where

$$
|w|=\frac{1}{\sqrt{x^{2}+y^{2}}}
$$

