
NOTES ON FOURIER TRANSFORMS:

1 Fourier Series

Consider a function f(x) defined on the domain −L/2 ≤ x ≤ L/2 .

According to Fourier’s theorem we may write this as

f(x) =
∞
∑

n=1

an sin
(

2nπx

L

)

+
∞
∑

n=0

bn cos
(

2nπx

L

)

The coefficents an and bn are given by

an =
1

2L

∫ L/2

−L/2
f(x) sin

(

2nπx

L

)

dx

b0 =
1

L

∫ L/2

−L/2
f(x) dx

bn =
1

L

∫ L/2

−L/2
f(x) cos

(

2nπx

L

)

dx, (n > 0)

This can be seen from the integrals

∫ L/2

−L/2
cos

(

2nπx

L

)

cos
(

2mπx

L

)

dx =
L

2
δmn

∫ L/2

−L/2
sin

(

2nπx

L

)

sin
(

2mπx

L

)

dx =
L

2
δmn

∫ L/2

−L/2
sin

(

2nπx

L

)

cos
(

2mπx

L

)

dx = 0

Introducing the complex coefficent

An = bn − i an

and recalling that

cos
(

2nπx

L

)

+ i sin
(

2nπx

L

)

= exp
(

i
2nπx

L

)

,
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we may rewrite this as

f(x) =
∞
∑

n=0

An exp
(

i
2nπx

L

)

,

where

An =
∫ L/2

−L/2
f(x) exp

(

−i
2nπx

L

)

dx

This can be seen from the integral

∫ L/2

−L/2
f(x) exp

(

i
2nπx

L

)

exp
(

−i
2mπx

L

)

dx = Lδmn

2 Fourier Transforms

Now we take L → ∞ so that f(x) is defined everywhere in x.

The intervals n
L

go to zero, so we replace 2πn
L

by the continuous variable k, the sum over
n in the Fourier series is replaced by an integral over k, and the coefficients An are replaced
by a (complex) function A(k).

Thus we have

f(x) =
∫

∞

−∞

A(k)eikxdk

where

A(k) =
1

2π

∫

∞

−∞

f(x)e−ikxdx

This can be seen from the definition of the Dirac delta-functio

1

2π

∫

∞

−∞

ei(k−k′)xdx = δ(k − k′)

and

∫

∞

∞

A(k′)δ(k − k′) dk′ = A(k)

3 Application Fraunhoffer Diffraction

Consider a photon of wavenumber k (=2π/λ), moving in the z-direction and incident upon
a diffracting device which attenuates the amplitude at transverse distance y form the z-axis,
by a factor A(y), situated at z = 0.
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k A(y) z

y
δ θ

The wave that is emitted from a distance y from the centre of the diffracting object at
an angle θ to the z-axis travels a shorter distance than the wave emitted from the centre
(y = 0) by an amount

δ = y sin θ

Therefore the phase difference is
ky sin θ

and the amplitude for this wave is A(y).

Now we sum over all the waves form all values of y, to obtain the diffraction amplitude

Adiff.(θ) =
∫

A(y)eiky sin θ dy

We can write
q = k sin θ,

where q is the magnitude of the (vectorial) diffeence between the incoming wave-vector and
the outgoing wave-vector (at angle θ), to get

Adiff.(θ) =
∫

A(y)eiqy dy

Thus we see that the diffraction amplitude is the Fourier transform of the attentionation
function of the diffracting object.

Example: The diffracting object is a slit of width d, so that

A(y) = 1,

(

−
d

2
≤ y ≤

d

2

)

A(y) = 0,

(

y < −
d

2
, or y >

d

2

)

In this case we have

Adiff.(θ) =
∫ d/2

−d/2
eiqy dy = 2i

sin
(

qd
2

)

q
= 2i

sin
(

k sin θd
2

)

k sin θ

This is the single slit Fraunhoffer diffraction amplitude.
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