NOTES ON FOURIER TRANSFORMS:

1 Fourier Series

Consider a function $f(x)$ defined on the domain $-L / 2 \leq x \leq L / 2$.
According to Fourier's theorem we may write this as

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{2 n \pi x}{L}\right)+\sum_{n=0}^{\infty} b_{n} \cos \left(\frac{2 n \pi x}{L}\right)
$$

The coefficents a_{n} and b_{n} are given by

$$
\begin{gathered}
a_{n}=\frac{1}{2 L} \int_{-L / 2}^{L / 2} f(x) \sin \left(\frac{2 n \pi x}{L}\right) d x \\
b_{0}=\frac{1}{L} \int_{-L / 2}^{L / 2} f(x) d x \\
b_{n}=\frac{1}{L} \int_{-L / 2}^{L / 2} f(x) \cos \left(\frac{2 n \pi x}{L}\right) d x, \quad(n>0)
\end{gathered}
$$

This can be seen from the integrals

$$
\begin{gathered}
\int_{-L / 2}^{L / 2} \cos \left(\frac{2 n \pi x}{L}\right) \cos \left(\frac{2 m \pi x}{L}\right) d x=\frac{L}{2} \delta_{m n} \\
\int_{-L / 2}^{L / 2} \sin \left(\frac{2 n \pi x}{L}\right) \sin \left(\frac{2 m \pi x}{L}\right) d x=\frac{L}{2} \delta_{m n} \\
\int_{-L / 2}^{L / 2} \sin \left(\frac{2 n \pi x}{L}\right) \cos \left(\frac{2 m \pi x}{L}\right) d x=0
\end{gathered}
$$

Introducing the complex coefficent

$$
A_{n}=b_{n}-i a_{n}
$$

and recalling that

$$
\cos \left(\frac{2 n \pi x}{L}\right)+i \sin \left(\frac{2 n \pi x}{L}\right)=\exp \left(i \frac{2 n \pi x}{L}\right)
$$

we may rewrite this as

$$
f(x)=\sum_{n=0}^{\infty} A_{n} \exp \left(i \frac{2 n \pi x}{L}\right)
$$

where

$$
A_{n}=\int_{-L / 2}^{L / 2} f(x) \exp \left(-i \frac{2 n \pi x}{L}\right) d x
$$

This can be seen from the integral

$$
\int_{-L / 2}^{L / 2} f(x) \exp \left(i \frac{2 n \pi x}{L}\right) \exp \left(-i \frac{2 m \pi x}{L}\right) d x=L \delta_{m n}
$$

2 Fourier Transforms

Now we take $L \rightarrow \infty$ so that $f(x)$ is defined everywhere in x.
The intervals $\frac{n}{L}$ go to zero, so we replace $\frac{2 \pi n}{L}$ by the continuous variable k, the sum over n in the Fourier series is replaced by an integral over k, and the coefficients A_{n} are replaced by a (complex) function $A(k)$.

Thus we have

$$
f(x)=\int_{-\infty}^{\infty} A(k) e^{i k x} d k
$$

where

$$
A(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x
$$

This can be seen from the definition of the Dirac delta-functio

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(k-k^{\prime}\right) x} d x=\delta\left(k-k^{\prime}\right)
$$

and

$$
\int_{\infty}^{\infty} A\left(k^{\prime}\right) \delta\left(k-k^{\prime}\right) d k^{\prime}=A(k)
$$

3 Application Fraunhoffer Diffraction

Consider a photon of wavenumber $k(=2 \pi / \lambda)$, moving in the z-direction and incident upon a diffracting device which attenuates the amplitude at transverse distance y form the z-axis, by a factor $A(y)$, situated at $z=0$.

The wave that is emitted from a distance y from the centre of the diffracting object at an angle θ to the z-axis travels a shorter distance than the wave emitted from the centre $(y=0)$ by an amount

$$
\delta=y \sin \theta
$$

Therefore the phase difference is

$$
k y \sin \theta
$$

and the amplitude for this wave is $A(y)$.
Now we sum over all the waves form all values of y, to obtain the diffraction amplitude

$$
\mathcal{A}_{d i f f .}(\theta)=\int A(y) e^{i k y \sin \theta} d y
$$

We can write

$$
q=k \sin \theta
$$

where q is the magnitude of the (vectorial) diffeence between the incoming wave-vector and the outgoing wave-vector (at angle θ), to get

$$
\mathcal{A}_{d i f f .}(\theta)=\int A(y) e^{i q y} d y
$$

Thus we see that the diffraction amplitude is the Fourier transform of the attentionation function of the diffracting object.

Example: The diffracting object is a slit of width d, so that

$$
\begin{gathered}
A(y)=1, \quad\left(-\frac{d}{2} \leq y \leq \frac{d}{2}\right) \\
A(y)=0, \quad\left(y<-\frac{d}{2}, \text { or } y>\frac{d}{2}\right)
\end{gathered}
$$

In this case we have

$$
\mathcal{A}_{d i f f .}(\theta)=\int_{-d / 2}^{d / 2} e^{i q y} d y=2 i \frac{\sin \left(\frac{q d}{2}\right)}{q}=2 i \frac{\sin \left(\frac{k \sin \theta d}{2}\right)}{k \sin \theta}
$$

This is the single slit Fraunhoffer diffraction amplitude.

