Chapter 18

Electromagnetic Interactions

18.1 Electromagnetic Decays

There are a few cases of particles which could decay via the strong interactions without
violating flavour conservation, but where the masses of the initial and final state particles
are such that this decay is not energetically allowed.

For example the 3*0 (mass 1385 MeV/c?) can decay into a A (mass 1115 MeV /c?) and
a 7 (mass 135 MeV/c?). The quark content of the X** and A are the same and the 7°
consists of a superposition of quark-antiquark pairs of the same flavour. As required in
strong interaction processes the isospin is conserved - the ¥*¥ has isospin I=1, the A has
isospin I = 0 and the pion has isospin [ = 1.

On the other hand, the ¥° whose mass is 1189 MeV /c? does not have enough energy to
decay into a A and a pion.

In such cases the decay can proceed via the electromagnetic interactions producing one
or more photons in the final state. The dominant decay mode of the X9 is

Y — Aty

The quark content of the ¥° and the A are the same, but one of the charged quarks emits a
photon in the process. Note that in this decay the isospin is not conserved - the initial state
has isospin I=1, whereas the final state has isospin I = 0. Electromagnetic interactions do
not conserve isospin.

Because the electromagnetic coupling constant, e, is much smaller than the strong cou-
pling constant the rates for such decays are usually much smaller than the rates for decays
which can proceed via the strong interactions.The lifetime of the X? is 107!° seconds, whereas
the ¥*0 has a width of 36 MeV, corresponding to a lifetime of about 10723 seconds.

Another important example of electromagnetic decay is the decay of the 7° into two
photons.

7° — Y + 7.

137



Note that to produce only one photon would not be possible by conservation of energy and
momentum. For a 7° decaying from rest momentum is conserved because the two photons
have identical frequency and move in opposite directions. The 7¥ is actually a superposition
of a v — u quark-antiquark pair and a d — d quark-antiquark pair

O—L wi) — |dd
Iw>fﬂ(\ ) — |dd))

In either of these states, the quark can annihilate against the antiquark of identical flavour
to produce two photons. In terms of Feynman diagrams we have

v

v

Using Quantum Field Theory, we can work out the decay rate for this process and
summing over the u and d contributions we get an estimate for the 70 lifetime of

T = 7.6x1071%s,

whereas the measured value if 8.4 x 10717 seconds.

What has gone wrong is that we have forgotten about colour. In the calculation of the
decay amplitude we must not only sum the contribution from the above Feynman diagram
over u and d quarks but also over the three possible colours that these quarks can have. This
gives us a further factor of 3 in the decay amplitude and so a factor of 9 in the decay rate.

18.2 Electron-positron Annihilation

Another striking piece of evidence that quarks come in three colours comes from the study
of the process
e” +e- — hadrons

(summed over all possible hadrons in the final state)

At the level of quarks, the Feynman diagram for this process is

e q

q
(provided /s < Mzc? so that the Z-exchange diagram can be neglected.)
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For the process

et e — pt o,

the Feynman diagram is

The only difference between these two graphs is the coupling of the final state quarks or
final state muons to the photon, i.e. the electric charges of the quarks and the muons.

This means that for a quark of flavour ¢ with electric charge @; (in units of e¢) the ratio
of the amplitudes is
Alete” — qiqi)
Alete” — ptp)

= Qi

In order to calculate the ratio of total cross-sections we square the amplitude and sum over
all possible final state quarks that can be produced, so that

o(eTe” — hadrons
R=7 by

olere — prp)

How many quarks we sum over depends on the centre-of-mass energy /s. If /s < 2m.c?,
then only u, d and s quarks can be produced in the final state and we have

_ o(efe” — hadrons) B 2\ 2 C1\? N2 )
= olete — ptp~) 3(Qr+Qi+Q3) = 3((5) + <?) + (?) _ 9

The factor of 3 is needed because we can produce final state quarks in any of the three
colours states (in principle these would be distinguishable at the quark level - so we multiply
the cross-section by 3 and not the amplitude.)

In the region 2m.c* < /s < 2myc* we can also produce a c- (charm) quark and this

has to be added to the cross-section. Likewise, for /s > 2m;c? we also have to include the
production of b-quarks. Thus we expect this ratio, R, to have jumps as we cross thresholds
in incoming energy which allow the production of more massive quarks.

139



- T | R | T T T B Eog TN | T T T N % BB
g T h
3 - — p—
WE yzs)
W =
i » w ¢ .
10 = P !
= ' 3
C 4 i b
1
@ \ ‘W__ 1 i
= - W' 1 E
= J i 3
= |
10 q I"i y ok | | | | | T | 1 | | N b Eu |
1 10 10°
Vs (GeV)
Fragmentation

What we are interested in is the total cross-section for e™ e~ to annihilate to produce hadrons,
whereas what we have calculated is the total cross-section to all quarks.

What happens is that the quarks, which cannot be observed directly, interact with gluons
in a complicated way and are converted into sets of ordinary hadrons. This process is called
“fragmentation”. Its mechanism is not understood but several computer simulations have
been developed which mimic this process fairly well.

In the centre-of-mass frame, the final state quark and antiquark are moving in opposite
directions. What usually happens is that the process of fragmentation acting on the quark
and antiquark separately leads to two narrow jets of particles moving in opposite directions.

Resonances
As well as the almost constant value for the ratio, R, between energy thresholds (with jumps

near each threshold), the quantity, R, is populated with resonances wherever 1/s/c? is equal
to the mass of a neutral, spin one, particle that can couple directly to a photon.

The spin has to be the same as the spin of the photon (spin 1), as there is a direct coupling
between the photon and the resonant particle which must conserve angular momentum.

€ q
e

At low energies these are mesons such as p which consist of a quark and antiquark of the
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same flavour (or superpositions like in the case of 7°). When /s/c* = m,, the p propagator

1
(s —m2c* +im,l,c?)

gives rise to a resonance.

The thresholds for the production of more massive quarks are also indicated by thresholds.
When /s & 2m.c? it is possible to create a resonance of a particle called J/¥ which is a
bound state of a c-quarks and a ¢ antiquark, with mass 3.1 GeV/c? - there are further
resonances corresponding to excited states with the same quark content.

Likewise at the threshold \/_5 = 2myc?, there is a resonance called the Y, which is a
bound state of a b-quark and a b antiquark, with mass 9.5 GeV/c? - and also some further
resonances corresponding to excited states.
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