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al
ulation of radiative 
orre
tions to the Greenfun
tions in quantum �eld theory. The appearan
e of ultraviolet divergen
es is explained, their
lassi�
ation is given, the renormalization pro
edure whi
h allows one to get the �nite results isdes
ribed, and the basis of the renormalization group in QFT is presented. Numerous examples of
al
ulations in s
alar and gauge theories are given. Quantum anomalies are dis
ussed. In 
on
lusionthe pro
edure whi
h allows one to get rid of infrared divergen
es in S-matrix elements is des
ribed.The le
tures are based on the standard quantum �eld theory textbooks, the list of whi
h is givenat the end of the text.These le
tures were given to the 4-th year students of the Department of General and AppliedPhysi
s of the Mos
ow Institute of Physi
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0 Prefa
eToday there exist many ex
ellent textbooks on quantum �eld theory. The most popularones are listed in the bibliography to the present le
tures. Nevertheless, everyone who givesle
tures on quantum �eld theory fa
es the problem of sele
tion of material and writing thele
ture notes for students. The present text is just the le
ture notes devoted to the radiative
orre
tions in QFT. On this way, one en
ounters two problems, namely, the ultraviolet andthe infrared divergen
es. Our task is to demonstrate how one 
an get rid of these divergen
esand obtain �nite 
orre
tions to the 
ross-se
tions of elementary pro
esses. During the 
oursewe des
ribe the methods of Feynman diagram evaluation and regularization of divergen
es.In more detail, we 
onsider the renormalization theory and elimination of ultraviolet diver-gen
ies in the Green fun
tions o� mass shell, as exempli�ed by s
alar and gauge theories. In
onne
tion with the renormalization pro
edure we des
ribe also the renormalization groupformalism in QFT. As for the infrared divergen
es, in the literature one 
an �nd mainly thedis
ussion of the IR divergen
ies in quantum ele
trodynami
s. In non-Abelian theories aswell as in QED with massless parti
les the situation is mu
h more involved as there arise
ollinear divergen
es as well. In the last le
ture, we show how one 
an get rid of these di-vergen
es using the methods developed in quantum 
hromodynami
s. One more topi
 alsorelated to divergen
es is the so-
alled anomalies. They also lead to unwanted ultraviolet di-vergent 
ontributions. Therefore, a separate le
ture is dedi
ated to the axial and 
onformalanomalies.The presented text overlaps with many textbooks and is partly borrowed from there.However, the 
omposition of the material and most of the 
al
ulations belong to the author,so we omit the dire
t referen
es to any textbooks. It should be admitted that the style ofpresentation in di�erent textbooks varies very mu
h and the reader 
an 
hoose the booka

ording to his preferen
es. We mostly used the 
lassi
al monograph by N.Bogoliubov andD.Shirkov when des
ribing the renormalization theory and more modern book by M.Peskinand D.S
hreder whi
h we followed when dis
ussing the infrared divergen
es.Our experien
e in giving le
tures on quantum �eld theory, the renormalization theory andthe renormalization group tells us that this material is still 
ompli
ated for per
eption and isnot always presented 
learly enough. One often meets with the la
k of understanding of the
ompli
ated stru
ture of the �eld theory whi
h manifests itself in renormalization theory.Sometimes the nonrenormalizable theories are simplisti
ally treated as the �eld theories witha dimensional 
oupling 
onstant whi
h otherwise have no di�eren
e from the renormalizableones. The 
ollinear divergen
es arising in theories with massless parti
les, despite a longhistory, have not also be
ome the well-known part of the QFT 
ourse. Here we make anattempt of a simpli�ed presentation of this 
ompli
ated material. Of 
ourse, this means thatone has to sa
ri�
e some rigorousness and 
ompleteness. We hope that together with theexisting literature the present le
tures will serve the goal of 
lari�
ation and mastering ofquantum �eld theory and its appli
ations to parti
le physi
s.
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1 Le
ture I: Radiative 
orre
tions. General analysis ofdivergent integrals1.1 Radiative 
orre
tionsThe formalism of quantum �eld theory, being the generalization of quantum me
hani
s tothe 
ase of an in�nite number of degrees of freedom with non
onservation of the number ofparti
les, allows one to des
ribe the pro
esses of s
attering, annihilation, 
reation and de
ayof parti
les with the help of the set of well-de�ned rules. As in quantum me
hani
s the 
ross-se
tion of any pro
ess is given by the square of the modulus of the probability amplitude
al
ulated a

ording to the Feynman rules for the 
orresponding Lagrangian integrated overthe phase spa
e. Sin
e the exa
t 
al
ulations of the probability amplitudes seem to beimpossible, one is bound to use the perturbation theory with a small parameter - the 
oupling
onstant - and get the result in the form of a power series. The leading terms of this series
an be presented by Feynman diagrams without loops, the so-
alled tree diagrams. Theexamples of su
h diagrams for some typi
al pro
esses in QED are shown in Fig.1.
γ γ

γ
γ

Figure 1: The examples of tree diagrams of di�erent pro
esses in QED: à) the Comptons
attering, b) the Mueller s
attering, 
) the annihilation of the parti
le-antiparti
le pair.Shown are the momenta of external (real) and internal (virtual) parti
lesAll the diagrams shown in Fig.1 are proportional to the square of the 
oupling 
onstante2. They are 
onstru
ted a

ording to the well-known Feynman rules and do not 
ontainany integration over momenta (when working in momentum representation) sin
e due to the
onservation of four-momentum all momenta are de�ned uniquely.The situation 
hanges when 
onsidering the next order of perturbation theory. As anexample, in Fig.2 we show the 
orresponding diagrams for the Compton s
attering.They got the name of radiative 
orre
tions sin
e in ele
trodynami
s they 
orrespond tothe emission and absorption of photons. This name is also a

epted in other theories forperturbative 
orre
tions. All these diagrams are proportional to the fourth power of the
oupling 
onstant e4 and, hen
e, are the next order perturbations with respe
t to the treediagrams. However, 
ontrary to the tree diagrams, they 
ontain a 
losed loop whi
h requiresthe integration over the four-momenta running through the loop. Any loop 
orresponds to6



Figure 2: The one-loop diagrams for the pro
ess of the Compton s
atteringthe bifur
ation of momenta similarly to the bifur
ation of the ele
tri
 
urrent, a

ording tothe Kir
hho� rules, so that the total momentum is 
onserved but the momentum runningalong ea
h line is arbitrary. Therefore, one has to integrate over it.1.2 Divergen
e of integralsPrior to 
al
ulating the radiative 
orre
tions let us 
onsider the behaviour of the integrandand the integral as a whole. As an example we take the diagrams of the Compton s
atteringshown in Fig.2. The integral 
orresponding to the diagram shown in Fig.2.a) has the formZ d4k 
�(p̂� k̂ +m)
�[k2 + i"℄[(p� k)2 �m2 + i"℄ ; (1.1)where the photon propagator is written in Feynman gauge and the integration takes pla
e inMinkowskian spa
e. We shall not 
al
ulate expli
itly this integral now (we shall do it later)but 
onsider the integrand from the point of view of the presen
e of singularities as well asthe behaviour at small and large momenta.The presen
e of poles in the propagators for momentum equal to the mass squareddoes not 
reate any problem for the integration sin
e a

ording to the Feynman rules thedenominator 
ontains the in�nitesimal imaginary term � " ! 0, whi
h de�nes the way tobypass the pole. The 
hoi
e a

epted in (1.1) 
orresponds to the 
ausal Green fun
tion.Consider now the 
ase of k� ! 0, the so-
alled infrared behaviour. Despite the presen
eof k2 in the denominator, the singularity is absent due to the measure of the 4-dimensionalintegration whi
h is also proportional to k4. This is true for all su
h integrals. The singular-ities appear only for 
ertain external momenta whi
h are on mass shell and have a physi
alreason. O� shell the singularities are absent. For this reason we shall not dis
uss the infraredbehaviour of the integrals so far.Consider at last the 
ase of k� ! 1, the so-
alled ultraviolet behaviour. Noti
e thatin the denominator one has 4 powers of momenta, while in the numerator one has 1 plus4 powers in the measure of integration. Hen
e one has 5-4=1, i.e. the integral is linearly7



divergent as k� !1. Is it the property of a parti
ular integral or is it a general situation?What happens with the other diagrams?Consider the integral 
orresponding to the diagram shown in Fig.2.á). One has, a

ordingto the Feynman rules Z d4k
�(p̂1 � k̂) +m)
�(p̂2 � k̂) +m)
�k2[(p1 � k)2 �m2℄[(p2 � k)2 �m2℄ : (1.2)We are again interested in the behaviour for k� ! 1. The 
ounting of the powers ofmomenta in the numerator and the denominator gives: 6 in the denominator and 2 in thenumerator plus 4 in the integration measure. Altogether one has 6-6=0, i.e., the integral islogarithmi
ally divergent as k� !1.Here we met the diÆ
ulty 
alled the ultraviolet divergen
e of the integrals for the radiative
orre
tions. The examples 
onsidered above are not ex
eptional but the usual ones. The
orre
tions are in�nite, whi
h makes perturbation theory over a small parameter meaningless.The way out of this trouble was found with the help of the renormalization theory whi
h willbe 
onsidered later and now we try to estimate the divergen
e of the integrals in a theorywith an arbitrary Lagrangian.1.3 General analysis of ultraviolet divergen
esConsider an arbitrary Feynman diagram G shown in Fig.3. and try to �nd out whether it is

Figure 3: An arbitrary diagram 
ontaining L integrationsultraviolet divergent or not. For this purpose we have to 
al
ulate the number of powers ofmomenta in the integrand: ea
h internal loop leads to integration d4p that gives 4 powersof momenta; ea
h derivative in the vertex gives the momentum in p-spa
e, i.e., 1; ea
hinternal line gives a propagator whi
h behaves as prl=p2, i.e., rl � 2 powers of momenta,where rl = 0; 1; 2 for various �elds. Combining all these powers together we get the quantity
alled the index of divergen
e of the diagram (UV)!(G) = 4L+ Xverti
es Æv + Xinternal lines(rl � 2); (1.3)where L is the number of loops and Æv is the number of derivatives in a vertex v.The absen
e of the ultraviolet divergen
es means that !(G) < 0: However, one has to be
areful, there might be subdivergen
es in some subgraphs. Hen
e, the ne
essary 
onditionfor �niteness is The �niteness 
ondition (UV): !(
i) < 0; 8
i � G;8



where 
i are all possible subgraphs of the graph G in
luding the graph G itself.There exists, however, a simpler way to answer the same question whi
h does not needto analyse all the diagrams. One 
an see it dire
tly from the form of the Lagrangian. To seethis, let us introdu
e the quantity 
alled the index of the vertex (UV)!v = Æv + bv + 32fv � 4; (1.4)where Æv; bv and fv are the number of derivatives, internal boson and fermion lines, respe
-tively. Then the index of a diagram (1.3) 
an be written as!(G) = Xverti
es!maxv + 4� nb � 32nf ; (1.5)where !maxv 
orresponds to the vertex where all the lines are internal, nb and nf are the num-ber of external boson and fermion lines, and we have used the fa
t that usually rl(boson) = 0and rl(fermion) = 1:Equation (1.5) tells us that the �niteness (!(G) < 0) 
an take pla
e if !v � 0 andthe number of external lines is big enough. Prior to the formulation of 
onditions when ithappens, let us 
onsider some examples.Example 1: The s
alar theory Lint = ��'4:In this 
ase Æv = 0; fv = 0; bv = 4 and, hen
e, !maxv = 0. Thus, a

ording to (1.5),!(G) = 4�nb� 32nf and everything is de�ned by the number of external lines. The situationis illustrated in Fig.4.

Figure 4: The indi
es of divergen
e of the diagrams in the s
alar theoryWe see that there exists a limited number of divergent stru
tures in the '4 theory. Theseare the va
uum graphs, the two- and four-point fun
tions. All the other diagrams havingmore than 4 external lines are 
onvergent (though may have divergent subgraphs).Example 2: Quantum Ele
trodynami
s Lint = å � Â :In this 
ase Æv = 0; fv = 2; bv = 1; !maxv = 0. Hen
e, !(G) = 4� nb � 32nf and the sit-uation is similar to the previous example, everything is de�ned by external lines. Divergentare the va
uum diagrams (!(G) = 4), the photon propagator (!(G) = 2), the ele
tron prop-agator (!(G) = 1) and the triple vertex (!(G) = 0). All the other diagrams are 
onvergent.Example 3: Four-fermion intera
tion Lint = G �  �  :9



Here Æv = 0; fv = 4; bv = 0; !maxv = 2 and, hen
e, !(G) = 2Nâåðøèí � 32nf . Therefore,in
reasing the number of verti
es we get new divergent diagrams independently of the numberof external lines. The number of divergent stru
tures happens to be in�nite.Thus, the key role is played by the maximal index of the vertex. All the theories may be
lassi�ed a

ording to the value of !maxv :!maxv = 8><>: < 0 Finite number of divergent diagrams;0 Finite number of divergent stru
tures;> 0 Infinite number of divergent stru
tures: (1.6)Below we show that for the �rst two types of theories we 
an handle the ultraviolet diver-gen
es with the help of the renormalization pro
edure. The theories with !maxv = 0 are 
alledrenormalizable, the theories with !maxv > 0 are 
alled nonrenormalizable, and the theorieswith !maxv < 0 are 
alled superrenormalizable.1.4 The analysis of dimensionsThe property of a theory with respe
t to ultraviolet divergen
es 
an be reformulated in termsof dimensions. Consider for this purpose an arbitrary term of the intera
tion Lagrangianwhi
h is the produ
t of the �eld operators and their derivativesLI(x) = gYi;j 'i(x)�'j(x): (1.7)Consider the a
tion whi
h is the four-dimensional integral of the Lagrangian densityA = Z d4xL(x); (1.8)and �nd the dimensions of parameters in eq.(1.7). As a unit of measure we take the dimensionof a mass equal to 1. Then the dimension of length [L℄ = �1, the dimension of time is also[T ℄ = �1, the dimension of derivative [��℄ = 1, the dimension of momenta [p�℄ = 1. Sin
ethe a
tion is dimensionless (we use the natural units where �h = 
 = 1)[A℄ = 0;the dimension of the Lagrangian is[L℄ = 4; (D � in D dimensional spa
e.)This gives us the dimensions of the �elds. Indeed, from the kineti
 term for the s
alar �eldone �nds [(��)2℄ = 4! [�℄ = 1; (D � 22 in D dimensional spa
e);for the spinor �eld[ � �̂ ℄ = 4! [ ℄ = 32 ; (D � 12 in D dimensional spa
e);for the ve
tor �eld[(��A� � ��A�)2℄ = 4! [A�℄ = 1; (D � 22 in D dimensional spa
e):10



This allows one to �nd the dimension of the 
oupling 
onstant in (1.7)[g℄ = 4� Æv � bv � 32fv = �!maxv : (1.9)Then the 
lassi�
ation of intera
tions (1.6) 
an be written as[g℄ = 8><>: > 0 Superrenormalizable theories;0 Renormalizable theories;< 0 Nonrenormalizable thoeries: (1.10)Consider whi
h 
ategory various theories belong to. For this purpose we have to 
al
ulatethe dimensions of the 
ouplings.IllustrationL'3 = ��'3 ) [�℄ = 1; SuperRen:L'4 = ��'4 ) [�℄ = 0; Ren:LQED = e 
�A� ) [e℄ = 0; Ren:Lgauge = �14F 2�� = �14 h��Aa� � ��Aa� + gfab
Ab�A
�i2 ) [g℄ = 0; Ren:LY ukawa = y ' ) [y℄ = 0: Ren:Thus, all these models are renormalizable.L = �h'6 ) [h℄ = �2; Nonren:L = G    ) [G℄ = �2 Nonren:L = � ��V� ) [�℄ = �1 Nonren:L = 
 ��'
� ) [
℄ = �1: Nonren:All these models on the 
ontrary are nonrenormalizable. Noti
e that they in
lude the four-fermion or 
urrent-
urrent intera
tion whi
h was previously used in the theory of weakintera
tions.Hen
e, we 
ome to the following 
on
lusion: the only renormalizable intera
tions in fourdimensions are:i) the '4 intera
tion;ii) the Yukawa intera
tion;iii) the gauge intera
tion;iv) the theory '3 is superrenormalizable. It 
ontains only two divergent diagrams shownin Fig.5.
Figure 5: The only divergent diagrams in the �3 theoryIf one looks at the spins of parti
les involved in the intera
tions, one �nds out that theyare strongly restri
ted. The renormalizable intera
tions 
ontain only the �elds with spins 0,11



1/2 and 1. All the models with spins 3/2, 2, et
. are nonrenormalizable. The latter in
ludealso gravity. Indeed, the 
oupling 
onstant in this 
ase is the Newton 
onstant whi
h hasdimension equal to [G℄ = �2, i.e., quantum gravity is nonrenormalizable.Sin
e we do not know how to handle the nonrenormalizable intera
tions be
ause theultraviolet divergen
es are out of 
ontrol, there are only three types of intera
tions whi
hare used in the 
onstru
tion of the Standard Model of fundamental intera
tions, namely the'4, the Yukawa and the gauge intera
tions with the s
alar, spinor and ve
tor parti
les.Here one has to make a 
omment 
on
erning the ve
tor �elds with M 6= 0: Remind theform of the propagator of the massive ve
tor �eldV�V� = ig�� � k�k�=M2M2 � k2 � i� :It gives rl = 2; whi
h leads to some modi�
ation of the formulas used above and �nally tothe nonrenormalizability of the theory. The only known way to avoid this diÆ
ulty is thespontaneous breaking of symmetry. In this 
ase,V�V� = ig�� � k�k�=k2M2 � k2 � i� ;that gives rl = 0 and the theory happens to be renormalizable. This me
hanism is used inthe Standard Model to give masses to the intermediate weak bosons without breaking therenormalizability of the theory.
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2 Le
ture II: RegularizationThe divergen
es whi
h appear in radiative 
orre
tions are not yet a 
atastrophe for a theory(remind, for example, the in�nite self-energy of an ele
tri
 
harge in its own Coulomb �eld)but require a quantitative des
ription. To get a �nite di�eren
e of the two in�nite quanti-ties, one has to give them some meaning. This 
an be a
hieved by introdu
ing a kind ofregularization of divergent integrals. The most natural way of regularization is to 
ut o� theintegral on the upper or lower bound of integration. There are also di�erent ways of regular-ization based on a modi�
ation of the integrand or of the measure of integration. Below we
onsider three most popular kinds of regularization: the ultraviolet 
uto� in Eu
lidean spa
e(�-regularization), the Pauli-Villars regularization, and the dimensional regularization.2.1 Eu
lidean integral and the ultraviolet 
uto�All the integrals in quantum �eld theory are written in Minkowski spa
e; however, theultraviolet divergen
e appears for large values of modulus of momentum and it is useful toregularize it in Eu
lidean spa
e. Transition to Eu
lidean spa
e 
an be a
hieved by repla
ingthe zeroth 
omponent of momentum k0 ! ik4, so that the squares of all momenta andthe s
alar produ
ts 
hange the sign k2 = k20 � ~k2 ! �k24 � ~k2 = �k2E and the measure ofintegration be
omes equal to d4k ! id4kE, where the integration over the fourth 
omponentof momenta goes along the imaginary axis. To go to the integration along the real axis, onehas to perform the (Wi
k) rotation of the integration 
ontour by 90o (see. Fig.6). This ispossible sin
e the integral over the big 
ir
le vanishes and during the transformation of the
ontour it does not 
ross the poles.

Figure 6: The Wi
k rotation of the integration 
ontourWhen transferring to Eu
lidean spa
e the poles in all the propagators disappear. Nowthe integral in 4-dimensional Eu
lidean spa
e 
an be evaluated in spheri
al 
oordinates andthe integral over the modulus 
an be 
ut on the upper limit. Let us demonstrate how thismethod works in the 
ase of the simplest s
alar diagram shown in Fig.7. The 
orresponding13



Figure 7: The simplest divergent diagram in a s
alar theorypseudo-Eu
lidean integral has the formI(p2) = 1(2�)4 Z d4k[k2 �m2℄[(p� k)2 �m2℄ : (2.1)Transforming it to Eu
lidean spa
e one getsI(p2E) = i(2�)4 Z d4kÅ[k2E +m2℄[(p� k)2E +m2℄ : (2.2)(in what follows the index Å will be omitted.)For 
al
ulation of this kind of integrals we use the following approa
h. First, we transformthe produ
t of several bra
kets in the denominator into the single bra
ket with the help ofthe so-
alled Feynman parametrization. The following general formula is valid:1A�11 A�22 � � �A�nn = �(�1 + �2 + � � �+ �n)�(�1)�(�2) � � ��(�n) Z 10 dx1dx2 � � �dxn: Æ(1� x1 � x2 � � � � � xn)x�1�11 x�2�12 � � �x�n�1n[A1x1 + A2x2 + � � �Anxn℄�1+�2+���+�n : (2.3)Here �(�) is the Euler �-fun
tion whi
h has the following properties:�(1) = 1; �(n+ 1) = n!; x�(x) = �(x+ 1); �(1 + x) = e[�x
E + 1Xn=2 (�x)nn �(n)℄;where 
E is the Euler 
onstant and �(n) is the Riemann zeta-fun
tion. The �-fun
tion is�nite for positive values of the argument and has simple poles at negative integer values andat zero.In our 
ase, (n = 2; �1 = �2 = 1) and eq.(2.3) has the form:1[k2 +m2℄[(p� k)2 +m2℄ = �(2)�(1)�(1) Z 10 dx1x2Æ(1� x1 � x2)[[k2 +m2℄x1 + [(p� k)2 +m2℄x2℄2= Z 10 dx[k2 � 2pkx+ p2x +m2℄2 : (2.4)Thus, integral (2.2) 
an be written asI(p2)= i(2�)4 1Z0 dxZ d4k[k2�2kpx+p2x+m2℄2k!k�px= i(2�)4 1Z0 dxZ d4k[k2+p2x(1�x)+m2℄2 (2.5)14



Now the integral depends only on the modulus of k and one 
an use the spheri
al 
oor-dinates: I(p2) = i(2�)4 Z 10 dx 
4 Z �0 k3dk[k2 + p2x(1� x) +m2℄2 ; (2.6)where the volume of the 4-dimensional sphere equals 
4 = 2�2 (in general 
D = 2�D=2�(D=2)).The integral over the modulus 
an be easily 
al
ulated12 Z �20 k2dk2[k2 + p2x(1� x) +m2℄2 = 12 log( �2p2x(1� x) +m2 ) + 1; (2.7)and, as one 
an see, is logarithmi
ally divergent at the upper limit. The full answer has theform I(p2) = i16�2 Z 10 dx log( �2p2x(1� x) +m2 ) + 1! : (2.8)The last integral over x 
an also be evaluated and takes the simplest form in the limiting
ases for m = 0 or p = 0. Now one 
an go ba
k to Minkowski spa
e p2E => �p2.The regularization with the ultraviolet 
ut-o� is quite natural and relatively simple. Thedrawba
k of this regularization is Eu
lidean rather than Lorentzian invarian
e and also theabsen
e of the gauge invarian
e. Therefore, it is not useful in the gauge theories. However,one should noti
e that the noninvarian
e of a regularization is a

eptable sin
e the invarian
eis restored when removing the regularization . Still, this aspe
t 
ompli
ates the 
al
ulationas one has to take 
are of the validity of all the identities.2.2 Pauli-Villars RegularizationAnother method of regularization whi
h is 
alled the Pauli-Villars regularization is based onthe introdu
tion of a set of additional heavy �elds with a wrong sign of the kineti
 term.These �elds are not physi
al and are introdu
ed essentially with the purpose of regularizationof divergent integrals. The main tri
k is in the repla
ement1p2 �m2 ! 1p2 �m2 � 1p2 �M2 ; (2.9)where M ! 1 is the mass of the Pauli-Villars �elds. As a result, the propagator for largemomenta de
reases faster, whi
h ensures the 
onvergen
e of the integrals. The divergen
esmanifest themselves as logs and powers of M2 instead of the 
uto� parameter �2.One uses sometimes the modi�
ations of the Pauli-Villars regularization when the re-pla
ement (2.9) is performed not for ea
h propagator but for the loop as a whole. Thismethod of regularization is 
alled the regularization over 
ir
les. It is used in Abelian gaugetheories for the loops made of the matter �elds. This way one 
an preserve the gauge in-varian
e. However, in non-Abelian theories we fa
e some problems related to the loops ofthe gauge �elds whi
h 
annot be
ome massive without violating the gauge invarian
e. Thisproblem is often solved by introdu
ing an additional regularization for the ve
tor �elds, forexample, with the help of higher derivatives. Here we will not 
onsider this regularization.The positive property of the Pauli-Villars regularization is the expli
it Lorentz and gauge(in abelian 
ase) invarian
e, but it requires 
ompli
ated 
al
ulations sin
e one has to 
al
ulatemassive diagrams, while massless integrals are mu
h simpler.15



2.3 Dimensional RegularizationThe most popular in gauge theories is the so-
alled dimensional regularization. In this 
ase,one modi�es the integration measure.The te
hnique of dimensional regularization 
onsists of analyti
al 
ontinuation from aninteger to a noninteger number of dimensions. Basi
ally one goes from some D to D � 2�,where � ! 0. In parti
ular, we will be interested in going from 4 to 4 � 2� dimensions. Inthis 
ase, all the ultraviolet and infrared singularities manifest themselves as pole terms in �.To perform this 
ontinuation to non-integer number of dimensions, one has to de�ne all theobje
ts su
h as the metri
, the measure of integration, the 
 matri
es, the propagators, et
.Though this 
ontinuation is not unique, one 
an de�ne a self-
onsistent set of rules, whi
hallows one to perform the 
al
ulations.The metri
: g��4 ! g��4�2�. Though it is rather tri
ky to de�ne the metri
 in non-integerdimensions, one usually needs only one relation, namely g��g�� = Æ�� = D = 4� 2�.The measure: d4q ! (�2)�d4�2�q , where � is a parameter of dimensional regularizationwith dimension of a mass. The integration with this measure is de�ned by an analyti
al
ontinuation from the integer dimensions.The 
 matri
es : The usual anti
ommutation relation holds f
�; 
�g = 2g��; however,some relations involving the dimension are modi�ed:
�
� = D = 4� 2�; Tr
�
� = g��Tr1 = g�� ( 2[D=2℄4 :Usually Tr1 = 4 is taken. Then the 
-algebra is straightforward:Tr
�
�
�
� = Tr1[g��g�� + g��g�� � g��g��℄;
�
�
� = �
�
�
� + 2g��
� = �(4� 2�)
� + 2
� = �(2� 2�)
�; et
:What is not well-de�ned is the 
5 sin
e 
5 = i
0
1
2
3 and 
annot be 
ontinued to anarbitrary dimension. This 
reates a problem in dimensional regularization sin
e there is no
onsistent way of de�nition of 
5.The propagator : In momentum spa
e the 
ontinuation is simple1p2 �m2 ! 1p2 �m2 :However, in 
oordinate spa
e one has: (take m = 0 for simpli
ity)Z d4pp2 eipx � 1x2 ) Z d4�2�pp2 eipx � 1[x2℄1�� :The basi
 integrals: The main idea is to 
al
ulate the integral in the spa
e-time dimensionwhere it is 
onvergent and then analyti
ally 
ontinue the answer to the needed dimension.Consider the earlier dis
ussed example (2.1) and use the Eu
lidean representation (2.5).Let us rewrite it formally in D-dimensional spa
eZ dDk[k2 +M2℄2 = 
D2 Z 10 (k2)D=2�1dk2[k2 +M2℄2 ; M2 � p2x(1� x) +m2: (2.10)16



The integral over k2 is now the table oneZ 10 (k2)D=2�1dk2[k2 +M2℄2 k2!k2M2= (M2)D2 �2 Z 10 xD=2�1dx(x + 1)2 = (M2)D2 �2 �(D2 )�(2� D2 )�(2) ; (2.11)where we assume that the dimension D is su
h that the integral exists. In this 
ase this is2 and 3. The main formula (2.11) allows one to perform the analyti
al 
ontinuation overD into the region D = 4 � 2". For " = 0, i.e., in 4 dimensions, the integral does not existsin
e the �-fun
tion has a pole at zero argument. However, in the vi
inity of zero we get aregularized expression.Colle
ting all together we getI(p2) = i(2�)D 
D2 Z 10 dx �(D=2)�(2�D=2)[p2x(1� x) +m2℄2�D=2 : (2.12)Substituting now D = 4 � 2" and transforming ba
k into the pseudo-Eu
lidean spa
e one�nds I(p2) = i(��)2�"(2�)4�2" �(") Z 10 dx(�2)"[p2x(1� x)�m2℄" (2.13)Expanding the denominator into the series over ", we �nally arrive atI(p2) = i16�2�(1 + ") 1" � Z 10 dx log[p2x(1� x)�m2��2 ℄ + log(4�)! : (2.14)Comparing it with eq.(2.8) we see that the ultraviolet divergen
e now takes the form ofthe pole over " instead of the logarithm of the 
uto�. This is less visual but mu
h simplerin the 
al
ulations and also is automati
ally gauge invariant.We present below the main integrals needed for the one-loop 
al
ulations. They 
an beobtained via the analyti
al 
ontinuation from the integer values of D. We will write themdown dire
tly in the pseudo-Eu
lidean spa
e.Z dDp[p2 � 2kp+m2℄� = i�(��D=2)�(�) (��)D=2[m2 � k2℄��D=2 ; (2.15)Z d4�2�p[p2 � 2kp+m2℄2 = i�(�)�(2) (��)2��[m2 � k2℄� ; �(�) � 1� !1;Z d4�2�p p�[p2 � 2kp+m2℄2 = i�(�)�(2) (��)2��k�[m2 � k2℄� ; (2.16)Z d4�2�p p�p�[p2 � 2kp+m2℄2 = i(��)2��"�(�)�(2) k�k�[m2 � k2℄�+ g��2 �(�� 1)�(2) 1[m2 � k2℄��1#The key formula is (2.15). All the rest 
an be obtained from it by the di�erentiation. Noti
ethe singularity in the r.h.s. of (2.15) for � = D=2 � n, n = 0; 1; ::. These integrals remainnon-regularized. However, they usually do not appear in the real 
al
ulations.Let us mention one important rule used in dimensional regularization and related to themassless theories. By de�nition it is a

epted that zero to any power is zero. Thus, forexample, the following integral is zeroZ dDk(k2)� = 0; 8 �: (2.17)17



In fa
t, here we have a 
an
ellation of the ultraviolet and infrared divergen
es whi
h bothhave the form of a pole over 1=". There is no any in
onsisten
y here and this way of doingis self-
onsistent in the 
al
ulations of dimensionally regularized integrals.This rule leads, in parti
ular, to the vanishing of all the diagrams of the tad-pole typein the massless 
ase. However, in the massive 
ase they survive and are important for therestoration of the gauge invarian
e. As it will be 
lear later, in the Standard Model thetad-poles give their 
ontribution to the renormalization of the quark masses and provide thetransversality of the ve
tor propagator in a theory with spontaneous symmetry breaking.
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3 Le
ture III: Examples of Cal
ulations. One-loop In-tegralsAll further 
al
ulations will be performed using dimensional regularization. Below we showhow the rules des
ribed above 
an be applied to 
al
ulate in various models of quantum �eldtheory.3.1 The s
alar theoryWe start with the simplest s
alar 
ase and 
onsider the theory des
ribed by the LagrangianL = 12(��')2 � m22 '2 � �4!'4: (3.1)The Feynman rules in this 
ase are:= ip2 �m2 ; = �i�� � �������First, we �nd the one-loop divergent diagrams. As it follows from Fig.4, they are thepropagator of the s
alar �eld and the quarti
 vertex.The propagator: In the �rst order there is only one diagram of the tad-pole type shownin Fig.8. � ������Figure 8: The one-loop propagator diagramThe 
orresponding integral isJ1(p2) = �i�(2�)4�2" i2 Z d4�2"k(�2)"k2 �m2 ; (3.2)where 1=2 is the 
ombinatori
 fa
tor. Cal
ulating the integral (3.2), a

ording to (2.16), we�ndJ1(p2) = �i�(4�)2�" �(�1 + ")2�(1) m2( �2m2 )" = i�32�2m2 "1" + 1�
E+log(4�)�log m2�2 # (3.3)The fa
t that the integral diverges quadrati
ally manifests itself in the stru
ture of themultiplier �(�1 + ") whi
h has a pole at " = 0 as well as at " = 1. However, sin
e weare interested in the limit " ! 0, we expand the answer in the Loran series in ". As one
an see, even in the 
ase of quadrati
ally divergent integrals the divergen
e takes the formof a simple pole over ", but the integral has the dimension equal to two. Noti
e, however,19



that for m = 0 the integral equals zero in a

ordan
e with the properties of dimensionalregularization mentioned above.The vertex: Here one also has only one diagram but the external momenta 
an be adjustedin several ways (see Fig.9). As a result the total 
ontribution to the vertex fun
tion 
onsists�������p1p2 p3p4 p1p2
p3p4

p1p2 p3p4��� + ���������� + ������������Figure 9: The one-loop vertex diagramof three parts I1 = I1(s) + I1(t) + I1(u);where we introdu
ed the 
ommonly a

epted notation for the Mandelstam variables (weassume here that the momenta p1 and p2 are in
oming and the momenta p3 and p4 areoutgoing)s = (p1 + p2)2 = (p3 + p4)2; t = (p1 � p3)2 = (p2 � p4)2; u = (p1 � p4)2 = (p2 � p3)2;and the integral equalsI1(s) = (�i�)248 (�2)"(2�)4�2" i2 Z d4�2"k[k2 �m2℄[(p� k)2 �m2℄ (3.4)(1/48 is the 
ombinatori
 
oeÆ
ient). We have already 
al
ulated this integral and theanswer has the form (2.14). Now we perform the 
al
ulation in a di�erent and simpler wayappli
able to the massless integrals.Two 
omments are in order. The �rst one 
on
erns the evaluation of the 
ombinatori

oeÆ
ient. It 
omes from the expansion of the S-matrix within the Wi
k theorem. In the 
asewhen all the parti
les are di�erent like, for example, in QED, the 
ombinatori
 
oeÆ
ientis usually 1. For identi
al parti
les their permutations are taken into a

ount already inthe Lagrangian (the fa
tors 1/2 and /4! in (3.1)) and lead to nontrivial 
oeÆ
ients. Thereexists a simple method to 
al
ulate the 
ombinatori
 
oeÆ
ient in these 
ases. The 
oeÆ
ientequals 1/Sym, where Sym is the symmetry fa
tor of a diagram. Consider the diagram shownin Fig.9. If one does not distinguish the arrangement of momenta, then the diagram hasthe following symmetries: the permutation of external lines entering into the left vertex, thepermutation of external lines entering into the right vertex, the permutation of the verti
es,the permutation of internal lines. Altogether one has: 2 � 2 � 2 � 2 = 16. Hen
e, the
ombinatori
 
oeÆ
ient equals 1=16 but, sin
e we distinguish three di�erent momentumarrangements, one has 1=48. The same rule is valid for the multiloop diagrams and we willuse it in the next se
tion.The se
ond 
omment is related to the 
al
ulation of the massless integrals whi
h are mu
hsimpler, and in some 
ases one 
an get the answer without any expli
it integration. Themethod, whi
h we will des
ribe below, is appli
able to a 
ertain type of massless integralsand is based on 
onformal properties of the massless integrals depending on one externalargument and uses the symmetry between the 
oordinate and momentum representations.20



The key formula is the Fourier-transformation of the propagator of a massless parti
leZ d4p eipxp2 = i�2x2 ; (3.5)whi
h 
an be generalized to an arbitrary dimension and any power of the propagator asfollows: Z dDp eipx(p2)� = i(��)D=2�(D=2� �)�(�) 1(x2)D=2�� : (3.6)Obviously, this formula is also valid for the 
oordinate integration instead of momentum.This way the transition from momentum representation to the 
oordinate one and vi
e versais performed with the help of (3.6) and is a

ompanied by the fa
tor �(D=2��)�(�) .Let us go ba
k to the diagram Fig.9. In momentum spa
e it 
orresponds to the integralover the momenta running along the loop. However, in 
oordinate spa
e it is just the prod-u
t of the two propagators and does not 
ontain any integration. Therefore, the integral inmomentum spa
e 
an be repla
ed by the Fourier-transform of the square of the propagator.Sin
e in the massless 
ase all the propagators in both momentum and 
oordinate representa-tion are just the powers of p2 or x2, all of them are easily 
al
ulated with the help of relation(3.6).In the 
ase of the integral (3.4) for m = 0 one �rst has to mentally transform both thepropagators into 
oordinate spa
e whi
h, a

ording to (3.6), gives the fa
tor (�(1�")�(1) )2, thenmultiply the obtained propagators (this gives 1=(x2)2�2")) and transform the obtained resultba
k into momentum spa
e that gives the fa
tor �(")�(2�2") and the power of momenta 1=(p2)"(the same as in the argument of the last �-fun
tion). Besides this, ea
h loop 
ontains thefa
tor i(��)2�". Colle
ting all together one getsI1(s) = (�i�)248 (�2)"i2(2�)4�2" Z d4�2"kk2(p� k)2 = �248 i�2�"(2�)4�2"  �2�s!"�(1� ")�(1� ")�(")�(1)�(1)�(2� 2")= i48 �2(4�)2�"" �2�s#" 1"(1�2") �2(1�")�(1+")�(1� 2") = i48 �216�2 [1" + 2� 
E + log 4� + ln �2�s ℄;whi
h 
oin
ides with (2.14) at m = 0.The des
ribed method for 
al
ulation of massless integrals is appli
able to any integraldepending on one external momentum (propagator type) and allows one to perform the
al
ulations in any number of loops simply writing down the 
orresponding fa
tors withoutexpli
it integration. In the 
ase when the integral depends on more than one externalmomentum (like for a triangle or a box) and they 
annot be put equal to zero the methodis not dire
tly appli
able though some modi�
ations are available. We do not 
onsider themhere.The four-point vertex in the one-loop approximation thus equals (we take the 
ommonfa
tor 1=4!�4 out of the bra
kets):�4=�i�(1� �16�2  32" + 3� 32
E+32 log 4� + 12 ln �2�s + 12 ln �2�t + 12 ln �2�u!) : (3.7)As one 
an see, the Euler 
onstant and the logarithm of 4� always a

ompany the pole term1=" and 
an be absorbed into the rede�nition of �2.21



3.2 Quantum ele
trodynami
sConsider now the 
al
ulation of the diagrams in the gauge theories. We start with quantumele
trodynami
s. The QED Lagrangian has the formLQED = �14F 2�� + � (i
��� �m) + e � 
�A� � 12� (��A�)2; (3.8)where the ele
tromagneti
 stress tensor is F�� = ��A� � ��A�, and the last term in (3.8)�xes the gauge. In what follows we 
hoose the Feynman or the diagonal gauge (� = 1).The Feynman rules 
orresponding to the Lagrangian (3.8) are shown in Fig.10.
µ ν

µν
µ ν

µ
µFigure 10: The Feynman rules for QEDIn quantum ele
trodynami
s the divergen
es appear only in the photon propagator, theele
tron propagator, and the triple vertex. The one-loop divergent diagrams are shown inFig.11.

µ ν

µ

Figure 11: The one-loop divergent diagrams in QEDWe begin with the va
uum polarization graph. It is given by the diagram shown in Fig.11a). The 
orresponding expression looks like:���(p) = (�) e2(2�)4 Z d4kTr[
�(m + k̂)
�(m+ k̂ � p̂)℄[m2 � k2℄[m2 � (k � p)2℄ ; (3.9)where the "-" sign 
omes from the fermion loop and q̂ � 
�q�. We �rst go to dimension4� 2�. Then the integral (3.9) be
omes�Dim�� (p) = (�) e2(�2)"(2�)4�2" Z d4�2"kTr[
�(m + k̂)
�(m+ k̂ � p̂)℄[m2 � k2℄[m2 � (k � p)2℄ ; (3.10)Let us put m = 0 for simpli
ity. This will allow us to get a simple answer at the end. First,we 
al
ulate the tra
e of the 
-matri
es:Tr
�k̂
�(k̂ � p̂) = Tr(
�
�
�
�)k�(k � p)� = 4k�(k � p)�[g��g�� + g��g�� � g��g��℄:22



So the integral now looks likeIDim�� (p) = (�) (�2)"(2�)4�2" Z d4�2"kk�(k � p)�k2(k � p)2 :Using the Feynman parametrization and performing the integration a

ording to the formu-lae given above one �ndsIDim�� (p) = (�) (�2)"(2�)4�2" Z 10 dx Z d4�2"kk�(k � p)�[k2 � 2pkx+ p2x℄2 (3.11)= (�)i(��2)"�2�"(2�)4�2" (��(")Z 10 dxp�p�x(1� x)[p2x(1� x)℄" +�("� 1)g��2 Z 10 dx[p2x(1� x)℄"�1) :To evaluate the remaining integrals, we use the standard integral for the Euler beta-fun
tion Z 10 dxx��1(1� x)��1 = B(�; �) = �(�)�(�)�(� + �) ;whi
h gives in our 
ase Z 10 dxx1�"(1� x)1�" = �(2� ")�(2� ")�(4� 2") :Thus, the integral (3.11) be
omesIDim�� (p) = i16�2 (4�)"  ��2p2 !" �2(2� ")�(")�(4� 2") "p�p� + 12 g��p21� "# ; (3.12)where we have used that �(�1 + ") = � �(")1� " . Multiplying eq.(3.12 ) by the tra
e[g��g�� + g��g�� � g��g��℄p�p� = p�p� + p�p� � g��p2 = 2p�p� � g��p2;[g��g�� + g��g�� � g��g��℄g��p2 = g��p2 + g��p2 � g��(4� 2")p2 = �(2� 2")p2g��;we �nd �Dim�� (p) = i 4e216�2 (4�)"  ��2p2!" �2(2� ")�(")�(4� 2") h2p�p� � g��p2 � g��p2i= �i 8e216�2 (4�)"  ��2p2 !" (g��p2 � p�p�)�2(2� ")�(")�(4� 2") : (3.13)Expanding now over " with the help of�(") = 1"�(1+"); �(2�") = (1�")�(1�"); �(4�2") = (3�2")(2�2")(1�2")�(1�2");we �nally get�Dim�� (p) = �i e216�2 (4�)"  ��2p2!" (g��p2 � p�p�)4(1 + 5=3")3" e�
"= �ie2 g��p2 � p�p�16�2 43 "1" � 
E + log 4� + log ��2p2 + 53# ; (3.14)= i(g��p2 � p�p�)�Dim(p2);23



where �Dim(p2) = � e216�2 43 "1" � 
E + log 4� + log ��2p2 + 53# : (3.15)Given the expression for the va
uum polarization one 
an 
onstru
t the photon propa-gator as shown in Fig.12.
Figure 12: The photon propagator in QEDOne has G��(p) = �ip2 g�� + �ip2 g������ip2 g�� + � � �= �ip2 g�� � ���p4 + � � � = �ip2 g�� � i(g�� � p�p�=p2)p2 �(p2) + � � �= �ip2 (g�� � p�p�p2 )(1 + �(p2) + � � �)� ip2 p�p�p2 ;where �(p2) is given by eq.(3.15). Noti
e that the radiative 
orre
tions are always propor-tional to the transverse tensor P�� = g�� � p�p�=p2. This is a 
onsequen
e of the gaugeinvarian
e and follows from the Ward identities.Consider now the ele
tron self-energy graph Fig.11b). The 
orresponding integral is�(p̂) = � e2(2�)4 Z d4k 
�(p̂� k̂ +m)
�k2[(p� k)2 �m2℄ : (3.16)A
ting in a usual way we go to dimension 4� 2", 
onvert the indi
es of the 
-matri
es andintrodu
e the Feynman parametrization. The result is�Dim(p̂) = � e2(�2)"(2�)4�2" Z 10 dx Z d4�2"k[�2(1� ")(p̂� k̂) + (4� 2")m℄[k2 � 2kpx+ p2x�m2x℄2 : (3.17)The integral over k 
an now be evaluated a

ording to the standard formulas�Dim(p̂) = �i e216�2 (��2)"(4�)�" �(") Z 10 dx�2(1� ")p̂(1� x) + (4� 2")m[p2x(1� x)�m2x℄" : (3.18)This expression 
an be expanded in series in "�Dim(p̂) = �i e216�2 "� p̂� 4m" + p̂� 2m� (p̂� 4m)(�
E + log(4�))+ Z 10 dx[2p̂(1� x)� 4m℄ log p2x(1� x)�m2x��2 # : (3.19)Noti
e that the linear divergen
e of the integral manifests itself as a simple pole in ", andthe 
oeÆ
ient has the dimension equal to 1 and is Lorentz invariant (this is either p̂ or m).24



At last, 
onsider the vertex fun
tion Fig.11
). The 
orresponding integral is�1(p; q) = e3(2�)4 Z d4k 
�(p̂� k̂ � q̂ +m)
�(p̂� k̂ +m)
�[(p� k � q)2 �m2℄[(p� k)2 �m2℄k2 : (3.20)Transfer to dimension 4� 2" and introdu
e the Feynman parametrization. This gives�Dim1 (p; q) = e3(�2)"(2�)4�2"�(3) Z 10 dx Z x0 dy (3.21)� Z d4�2"k[
�(p̂� k̂ � q̂ +m)
�(p̂� k̂ +m)
�℄[((p� k � q)2 �m2)y + ((p� k)2 �m2)(x� y) + k2(1� x)℄3 :The integral over k is straightforward and gives�Dim1 (p; q) = ie e216�2 (��2)"(4�)�" Z 10 dx Z x0 dy (3.22)(�(1 + ") [
�(p̂(1� x)� q̂(1� y) +m)
�(p̂(1� x) + q̂y +m)
�℄[(p� q)2y(1� x) + p2(1� x)(x� y) + q2y(x� y)�m2x℄1+"+�(")2 
�
�
�
�
�[(p� q)2y(1� x) + p2(1� x)(x� y) + q2y(x� y)�m2x℄") :As one 
an see, the �rst integral is �nite and the se
ond one is logarithmi
ally divergent.Expanding in series in " we �nd�Dim1 (p; q) = ie e216�2 �
�" � 2
� � 
�(
E � log(4�)) (3.23)� 2
� Z 10 dx Z x0 dy log "(p�q)2y(1�x)+p2(1�x)(x�y)+q2y(x� y)�m2x��2 #+ Z 10 dx Z x0 dy 
�(p̂(1� x)� q̂(1� y) +m)
�(p̂(1� x) + q̂y +m)
�(p� q)2y(1� x) + p2(1� x)(x� y) + q2y(x� y)�m2x) :3.3 Quantum 
hromodynami
sConsider now the non-Abelian gauge theories and, in parti
ular, QCD. The Lagrangian ofQCD has the formLQÑD = �14(F a��)2 + � (i
��� �m) + g � 
�Aa�T a � 12� (��Aa�)2+ ���
a��
2 + gfab
���
aAb�

; (3.24)where the stress tensor of the gauge �eld is now F a�� = ��Aa� � ��Aa� + gfab
Ab�A
� and thelast terms represent the Faddeev-Popov ghosts.The Lagrangian (3.24) generates the following set of Feynman rules:25
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ν ρ
µ

the spinor propagator = ip̂�mthe ve
tor propagator �iÆabg��p2the ghost propagator = iÆabp2the spino-gauge vertex �ig
�T a
the triple gauge vertex = �gfab
[(p� q)�g��+(q � k)�g��+(k � p)�g��℄
the ghost-gauge vertex = �gfab
q�

Consider the one-loop divergent diagrams. We start with the gluon propagator. Besidesthe diagram shown in Fig.11à), one has additional 
ontributions to the va
uum polariza-tion from the diagrams shown in Fig.13. The �rst diagram takes into a

ount the gluonself-intera
tion and the se
ond one the 
ontribution of the Faddeev-Popov ghosts. (As hasalready been mentioned, the tad-pole diagrams should not be in
luded sin
e they are auto-mati
ally zero.) These diagrams depend on the 
hoi
e of the gauge, and to evaluate themwe have to �x the gauge. In what follows we 
hoose the Feynman gauge (or the diagonalgauge) for the gluon �eld.
µ ν µ νρ

λ

Figure 13: The va
uum polarization diagrams in the Yang-Mills theory26



Then for the �rst diagram we have the expression�ab��(p) = g2CAÆab2(2�)4 Z d4kk2(k � p)2 [(2p� k)�g�� + (2k � p)�g�� � (k + p)�g��℄� [(2p� k)�g�� � (k + p)�g�� + (2k � p)�g��℄; (3.25)where 1=2 is a 
ombinatorial fa
tor and C2 is the quadrati
 Casimir operator whi
h for theSU(N) group equals N . It 
omes from the 
ontra
tion of the gauge group stru
ture 
onstantsfab
 fab
f db
 = C2Æad:Contra
ting the indi
es and going to 4� 2� dimensions, one gets�Dim (ab)�� (p) = Æab g2CA2 (�2)"(2�)4�2" Z d4�2"kk2(k � p)2fg��[4p2 + k2 + (k � p)2℄+(3�2")(2k�p)�(2k�p)��(2p�k)�(2p�k)��(k+p)�(k+p)�g: (3.26)To 
al
ulate the integrals, one 
an use the formulas given above. The �rst step is the Feynmanparametrization, eq.(2.4), and then the momentum integration is performed a

ording toeqs.(2.16). Applying these rules we get for the integral (3.26)�Dim (ab)�� (p) = ig2CAÆab(4�)2�" "��2p2 #"�(")�(1�")�(2�")�(4�2") [g��p2(192 �6")� p�p�(11�7")℄: (3.27)The se
ond diagram 
orresponds to the integral�Dim (ab)�� (p) = ig2CAÆab(4�)2�" "��2p2 #"�(")�(1�")�(2�")�(4�2") [g��p2(192 �6")� p�p�(11�7")℄: (3.28)here the "-" sign 
omes from the Fermi statisti
s of the ghost �elds.Cal
ulation is now straightforward and gives�Dim (ab)�� (p) = ig2CAÆab(4�)2�"  ��2p2 !" �(")�(1� ")�(2� ")�(4� 2") [g��p2=2 + p�p�(1� ")℄: (3.29)Adding up the two 
ontributions together, one �nally has�Dim (ab)�� (p) = iCA2g2Æab16�2 (4�)""��2p2 #"�(")�(1�")�(2�")�(4� 2") (5�3")[g��p2 � p�p�℄ (3.30)or expanding in "�Dim (ab)�� (p) = iCAÆabg2g��p2 � p�p�16�2 53 "1" � 
E + log 4� + log ��2p2 + 3115# : (3.31)A
ting the same way as in QED one 
an 
al
ulate the 
ontribution to the gluon propagator.Noti
e that the �nal result for the sum of the two diagrams is again proportional to thetransverse tensor P�� = g�� � p�p�=p2. This is not true, however, for the diagram with thegauge �elds and is valid only if one takes into a

ount the ghost 
ontribution. Noti
e alsothe opposite sign of the resulting expression 
ompared to that of eq.(3.14). This is due to a27



µµ µ

µ

Figure 14: The ghost propagator and the ghost-gluon vertex diagrams in QCDnon-Abelian nature of the gauge �elds and has very important 
onsequen
es to be dis
ussedlater.Consider also the ghost propagator. Here there is only one diagram shown in Fig.14a).It 
orresponds to the integral�Dim (ab)(p) = �CAÆab g2(�2)"(2�)4�2" Z d4�2"k k�p�k2(k � p)2 ; (3.32)whi
h equals�Dim (ab)(p) = �iCAÆab g22(4�)2�"  ��2p2 !" p2�(")�(1� ")�(1� ")�(2� 2")= �iCAÆab g232�2p2 "1" � 
E + log 4� + log ��2p2 + 2# : (3.33)Analogously one 
an 
al
ulate the vertex diagrams. We 
onsider in more detail the
al
ulation of the ghost-gluon vertex as a simpler one. The 
orresponding diagrams areshown in Fig.14. To simplify the evaluation, we put one of the momenta equal to zero. Thenthe �rst diagram gives the integralV Dim (ab
)1� (p) = iCA2 fab
 g3(�2)"(2�)4�2" Z d4�2"k k�k�p�(k2)2(k � p)2 : (3.34)Using the equality kp = 1=2[k2+p2�(k�p)2℄ and substituting it into (3.34) we �nd that the�rst two terms are redu
ed to the standard integrals and the last one leads to the tad-polestru
ture and is equal to zero. Adding up all together we getV Dim (ab
)1� (p) = �CA14fab
 g3(4�)2�"  ��2p2!" p��(")�(2� ")�(1� ")�(3� 2") (1 + 2")= �CA18fab
 g316�2p� "1" � 
E + log 4� + log ��2p2 + 4# : (3.35)The se
ond diagram givesV Dim (ab
)2� (p) = �iCA2 fab
 g3(�2)"(2�)4�2" Z d4�2"k (p� k)�p�[k�g�� + k�g�� � 2k�g��℄(k2)2(k � p)2 : (3.36)28



Contra
ting the indi
es in the numerator we have (p � k)�kp + p�k(p � k) � 2k�p(p � k),whi
h after integration leads toV Dim (ab
)2� (p) = �CA38fab
 g3(4�)2�"  ��2p2 !" p��(")�(1� ")�(1� ")�(2� 2") (1� 23")= �CA38fab
 g316�2p� "1" � 
E + log 4� + log ��2p2 + 43# : (3.37)Adding up the two 
ontributions together we �ndV Dim (ab
)� (p) = �CA 12fab
 g316�2p� "1" � 
E + log 4� + log ��2p2 + 2# : (3.38)Having in mind that at the tree level the vertex has the form V tree (ab
)� (p) = �gfab
p� weget the vertex fun
tion in the one-loop approximation asV (ab
)� (p) = �gfab
p� (1 + CA12 g216�2 "1" � 
E + log 4� + log ��2p2 + 2#) : (3.39)

29



4 Le
ture IV: Renormalization. General IdeaThus, we have 
onvin
ed ourselves that the integrals for the radiative 
orre
tions are indeedultraviolet divergent in a

ordan
e with the naive power 
ounting. The question then is:how to get a sensible result for the 
ross-se
tions of the s
attering pro
esses, de
ay widths,et
? To answer this question let us see what is the reason for divergen
es at large valuesof momenta. In 
oordinate spa
e the large values of momenta 
orrespond to the smalldistan
es. Hen
e, the ultraviolet divergen
es allow for the singularities at small distan
es.Indeed, the simplest divergent loop diagram (Fig.7) in 
oordinate spa
e is the produ
t oftwo propagators. Ea
h propagator is uniquely de�ned in momentum as well as in 
oordinatespa
e, but the square of the propagator has already an ill-de�ned Fourier-transform, it isultraviolet divergent. The reason is that the square of the propagator is singular as x2 ! 0and behaves like 1=(x2)2. In fa
t, the 
ausal Green fun
tion (the propagator) is the so-
alleddistribution whi
h is de�ned on smooth fun
tions. It has the Æ-fun
tion like singularitiesand needs an additional de�nition for the produ
t of several su
h fun
tions at a single point.The dis
ussed diagram is pre
isely this produ
t.The general approa
h to the elimination of the ultraviolet divergen
es known as the R-operation was developed in the 1950s. It 
onsists in the introdu
tion to the initial Lagrangianof additional lo
al (or quasi-lo
al) terms, 
alled the 
ounter-terms, whi
h serve the task ofthe de�nition of the produ
t of distributions at the 
oin
iding points. The 
ounter-termslead to additional diagrams whi
h 
an
el the ultraviolet divergen
es. The pe
uliarity of thispro
edure, being the subje
t of the Bogoliubov-Parasiuk theorem, is in that the singularitiesare lo
al in 
oordinate spa
e, i.e., are the fun
tions of a single point and 
an 
ontain onlya �nite number of derivatives. In the theories belonging to the renormalizable 
lass, wherethe number of divergent stru
tures is �nite, the number of types of the 
ounter-terms is also�nite, they repeat the terms of the original Lagrangian. This means that the introdu
tion ofthe 
ounter-terms in this 
ase is equivalent to the modi�
ation of the 
oeÆ
ients of variousterms., i.e. to the modi�
ation of the normalization of these terms. That is why thispro
edure was 
alled the renormalization pro
edure.It should be stressed that the parameters of the original Lagrangian like the masses, the
oupling 
onstants and the �elds themselves are not, stri
tly speaking, observable. They 
anbe in�nite. It is important that the renormalized parameters whi
h enter the �nal answersare meaningful.Below we show by several examples of renormalizable theories how one introdu
es the
ounter-terms into the Lagrangian, how they lead to the renormalization of the originalparameters and how the renormalization pro
edure allows one to get �nite results for theGreen fun
tions.4.1 The s
alar theory. The one-loop approximationWe start with the one-loop approximation and 
onsider for simpli
ity the s
alar theory(3.1). It belongs to the renormalizable type and has a �nite number of ultraviolet divergentstru
tures. The one-loop divergent diagrams in this theory were 
al
ulated in the third30



le
ture. Here we are interested in the singular parts, i.e., the poles in ". They are given byeqs. (3.3) and (3.7.The propagator : Sing J1(p2) = �im2( �16�2 )(� 12");The vertex : Sing �4(s; t; u) = �i�( �16�2 )(� 32"):Note that the singular parts do not depend on momenta, i.e. their Fourier-transform hasthe form of the Æ-fun
tion in 
oordinate spa
e.In order to remove the obtained singularities we add to the Lagrangian (3.1) extra terms,the 
ounter-terms equal to the singular parts with the opposite sign (the fa
tor i belongs tothe S-matrix and does not enter into the Lagrangian), namely,�L = 12" �16�2 (�m22 �2) + �16�2 32" (� �4!�4): (4.1)These 
ounter-terms 
orrespond to additional verti
es shown in Fig.15, where the 
ross
Figure 15: The one-loop 
ounter-terms in the s
alar theorydenotes the 
ontribution 
orresponding to (4.1). With a

ount taken of the new diagramsthe expressions for the propagator (3.3) and the vertex (3.7) be
omeJ1(p2) = i�32�2m2 �1� 
E + log(4�)� log(m2=�2)� : (4.2)��4 = i�( �16�2  3� 32
E + 32 log(4�) + 12 ln �2�s + 12 ln �2�t + 12 ln �2�u!) : (4.3)Noti
e that the obtained expressions have no in�nities but 
ontain the dependen
e on theregularization parameter �2 whi
h was absent in the initial theory. The appearan
e of thisdependen
e on a dimensional parameter is inherent in any regularization and is 
alled thedimensional transmutation, i.e., an appearan
e of a new s
ale in a theory.What we have done is equivalent to subtra
tion of divergen
es from the diagrams. Indoing this we have subtra
ted just the singular parts. This way of subtra
tion is 
alled theminimal subtra
tion s
heme or the MS-s
heme. One 
an make the subtra
tion di�erently,for instan
e, subtra
t also the �nite parts. It is useful to subtra
t the Euler 
onstant andlog 4� whi
h a

ompany the pole terms. This subtra
tion s
heme is 
alled the modi�edminimal subtra
tion s
heme or the MS-s
heme. It is equivalent to the rede�nition of theparameter �2. Another popular s
heme of subtra
tion is the so-
alled MOM -s
heme whenthe subtra
tions are made for �xed values of momenta. For example, in the 
ase of thevertex fun
tion one 
an make the subtra
tion at the point s = t = u = l2. This subtra
tionis 
alled the subtra
tion at a symmetri
 point.The di�eren
e between various subtra
tion s
hemes is in the �nite parts; in the one-loop approximation this is just the 
onstant independent of momentum, however, in higherloops one already has momentum dependent terms. Therefore, the �nite parts of the Greenfun
tions depend on a subtra
tion s
heme. Note that this dependen
e in general is not31



redu
ed to the rede�nition of the parameter �, sin
e there are usually a few divergent Greenfun
tions and all of them are independent.Thus, in the three subtra
tion s
hemes dis
ussed above we have three di�erent values forthe vertex fun
tion�MS4 = �i�(1� �16�2 "3� 32
E+32 log 4�+12 ln �2�s+12 ln �2�t+12 ln �2�u#) ;�MS4 = �i�(1� �16�2 "3 + 12 ln �2�s + 12 ln �2�t + 12 ln �2�u#) ;�MOM4 = �i�(1� �16�2 "12 ln l2�s + 12 ln l2�t + 12 ln l2�u#) :The 
ounter-terms are also di�erent. It is useful to write them in the following way�L = �(Z � 1)m22 �2 � (Z4 � 1) �4!�4; (4.4)where for di�erent subtra
tion s
hemes one hasZMS = 1 + 12" �16�2 ;ZMS = 1 + [ 12" + 1� 
E + log(4�)℄ �16�2 ;ZMS4 = 1 + 32" �16�2 ; (4.5)ZMS4 = 1 + [ 32" � 3
E + 3 log(4�)℄ �16�2 ;ZMOM4 = 1 + [ 32" + 3� 3
E + 3 log(4�) + 32 ln �2l2 ℄ �16�2 :The Lagrangian (3.1) together with the 
ounter-terms (4.4) 
an be written asL+�L = Z212(��')2 � Zm22 '2 � Z4 �4!'4 = LBare; (4.6)where the renormalization 
onstants Z and Z4 are given by (4.5) and the renormalization
onstant Z2 in the one-loop approximation equals 1.Writing the "bare" Lagrangian in the same form as the initial one but in terms of the"bare" �elds and 
ouplingsLBare = 12(��'B)2 � m2B2 '2B � �B4! '4B (4.7)and 
omparing it with (4.6), we get the 
onne
tion between the "bare" and renormalizedquantities 'B = qZ2'; m2B = ZZ�12 m2; �B = Z4Z�22 �: (4.8)Equations (4.7) and (4.8) imply that the one-loop radiative 
orre
tions 
al
ulated from theLagrangian (4.7) with parameters 
hosen a

ording to (4.8,4.5) are �nite.32



4.2 The s
alar theory. The two-loop approximationConsider now the two-loop diagrams. For simpli
ity and in order to 
omplete all the integra-tions we restri
t ourselves to the massless 
ase. Sin
e we are going to 
al
ulate the diagramso� mass shell, no infrared divergen
es may appear.The propagator: In this order of PT there is only one diagram shown in Fig.16.&%'$� �Figure 16: The two-loop propagator type diagramThe 
orresponding integral equalsJ2(p2) = (�i�)23! i3(�2)2"(2�)8�4" Z d4�2"kd4�2"qq2(k � q)2(p� k)2 ;(1/3! is a 
ombinatorial 
oeÆ
ient). Let us use the method of evaluation of the masslessdiagrams des
ribed above. One has to transform ea
h of the propagators into 
oordinatespa
e, multiply them and transform ba
k to momentum spa
e. This redu
es to writing downthe 
orresponding transformation fa
tors. One getsJ2(p2) = i�26 (i�2)2�"(2�)8�4"p2  �2�p2!2" �(1� ")�(1� ")�(1� ")�(�1 + 2")�(1)�(1)�(1)�(3� 3")= i6 �2(16�2)2 " �2�p2 #2" p2(2�3")(1�3")(1�2")2" = i24 �2(16�2)2p2 "1"+132 +2 ln �2�p2 # ;where the Euler 
onstant and log 4� are omitted.The appeared ultraviolet divergen
e, the pole in ", 
an be removed via the introdu
tionof the (quasi)lo
al 
ounter-term �L = 12(Z2 � 1)(��)2; (4.9)where the wave fun
tion renormalization 
onstant Z2 in theMS s
heme is obtained by takingthe singular part of the integral with the opposite signZ2 = 1� 124"  �16�2!2 : (4.10)After that the propagator in the massless 
ase takes the form� ������ � �= +� � �� �����= � �n1+ ����� o� � == ip2 (1� 124 �2(16�2)2  132 + 2 ln �2�p2!) : (4.11)33



������������ + 
rossed terms��� �Æ �
��� ���� �� + 
rossed termsFigure 17: The two-loop vertex diagramsThe vertex: In the given order there are two diagrams (remind that in the massless 
asethe tad-poles equal to zero) shown in Fig.17.The �rst diagram by analogy with the one-loop 
ase equals the sum of s; t and u 
hannelsI21 = I21(s) + I21(t) + I21(u);where ea
h integral is nothing else but the square of the one-loop integralI21(s) = (�i�)396  (�2)"(2�)4�2" i2 Z d4�2"kk2(p� k)2!2 = � i96 �3(16�2)2 (1" + 2 + ln �2�s)2: (4.12)(1/96 is the 
ombinatorial 
oeÆ
ient).Opening the bra
ket we, for the �rst time here, 
ome a
ross the se
ond order pole term1="2 and the single pole log(��2=s)=" a

ompanying it. This latter pole is not harmlesssin
e its Fourier-transform is not a lo
al fun
tion of 
oordinates. This means that it 
an notbe eliminated by a lo
al 
ounter-term. This would be an unremovable problem if it werenot the one-loop 
ounter-terms (4.1) whi
h 
reated the new verti
es shown in Fig.15. In thesame order of �3 one gets additional diagrams presented in Fig.18..Figure 18: The diagrams with the 
ounter-terms in the two-loop approximationThese diagrams lead to the subtra
tion of divergen
es in the subgraphs (left and right)in the �rst diagram of Fig.17. The subtra
tion of divergent subgraphs (the R-operationwithout the last subtra
tion 
alled the R0-operation) looks likeR0 ������������ = ������������ - ������������ -� � ������������ � �,where the subgraph surrounded with the dashed line means its singular part, and the restof the graph is obtained by shrinking down the singular subgraph to a point. The result hasthe form R0I21(s) = � i4 �3(16�2)2 ((1" + 2 + ln �2�s)2 � 2"(1" + 2 + ln �2�s)) == � i4 �3(16�2)2  � 1"2 + 4 + ln2 �2�s + 4 ln �2�s! :34



Noti
e that after the subtra
tions of subgraphs the singular part is lo
al, i.e. in momentumspa
e does not 
ontain ln p2. The terms with the single pole 1=" are absent sin
e the diagram
an be fa
torized into two diagrams of the lower order.The 
ontribution of a given diagram to the vertex fun
tion equals��4 = �i�(14 �2(16�2)2 �� 3"2 + 12 (4.13)+ ln2 �2�s + 4 ln �2�s + ln2 �2�t + 4 ln �2�t + ln2 �2�u + 4 ln �2�u!)The 
ontribution to the renormalization 
onstant of the four-point vertex in theMS s
hemeis equal to the singular part with the opposite sign�Z4 = + 34"2  �16�2!2 : (4.14)The se
ond diagram with the 
rossed terms 
ontains 6 di�erent 
ases. Consider one ofthem. Sin
e we are interested here in the singular parts 
ontributing to the renormalization
onstants, we perform some simpli�
ation of the original integral. We use a very importantproperty of the minimal subtra
tion s
heme that the renormalization 
onstants depend onlyon dimensionless 
oupling 
onstants and do not depend on the masses and the 
hoi
e ofexternal momenta. Therefore, we put all the masses equal to zero, and to avoid arti�
ialinfrared divergen
es, we also put equal to zero one of the external momenta. Then thediagram be
omes the propagator type one:p ! ! p�����0 �� �The 
orresponding integral is:I22(p2) = (�i�)348 (�2)2"(2�)8�4" i4 Z d4�2"qd4�2"kq2(k � q)2k2(p� k)2 ;(1/48 is the 
ombinatorial 
oeÆ
ient). Sin
e putting one of the momenta equal to zero weredu
ed the diagram to the propagator type, we 
an again use the advo
ated method to
al
ulate the massless integral. One hasI22(p2) = i�348 (�2)2"(2�)8�4" i�2�(1� ")�(1� ")�(")�(1)�(1)�(2� 2") Z d4�2"k(k2)1+"(p� k)2= � i48 �3(16�2)2  �2�p2!2" �(1� ")�(1� ")�(")�(1� 2")�(1� ")�(2")�(1)�(1)�(2� 2")�(1 + ")�(1)�(2� 3")= � i48 �3(16�2)2  �2�p2!2" 12"2(1� 2")(1� 3")= � i48 �3(16�2)2 ( 12"2 + 52" + 2 + ln(��2=p2)" + ln2 �2�p2 + 5 ln �2�p2) :35



As one 
an see, in this 
ase we again have the se
ond order pole in " and, a

ordingly,the single pole with the logarithm of momentum. The reason of their appearan
e is thepresen
e of the divergent subgraph. Here we again have to look at the 
ounter-terms of theprevious order whi
h eliminate the divergen
e from the one-loop subgraph. The subtra
tionof divergent subgraphs (the R-operation without the last subtra
tion) looks likeR0 ����� = ����� - ���� ���
�	or R0I2(s) = � i2 �3(16�2)2 8<: �2�p2!2" 12"2(1� 2")(1� 3") �  �2�p2!" 1"2(1� 2")9=;= � i2 �3(16�2)2 ( 12"2 + 52" + 2 + ln(��2=p2)" + ln2 �2�p2 + 5 ln �2�p2!� 1"2 + 2" + 4 + ln(��2=p2)" + 12 ln2 �2�p2 + 2 ln �2�p2!) == � i2 �3(16�2)2 (� 12"2 + 12" � 2 + 12 ln2 �2�p2 + 3 ln �2�p2) :On
e again, after the subtra
tion of the divergent subgraph the singular part is lo
al, i.e. inmomentum spa
e does not depend on ln p2.The 
ontribution to the vertex fun
tion from this diagram is:��4 = �i�(12 �2(16�2)2  � 3"2 + 3" � 12 + 12 ln2 �2�p2 + 3 ln �2�p2 + : : :!) (4.15)and, a

ordingly, �Z4 = ( 32"2 � 32") �16�2!2 : (4.16)Thus, due to (4.5) and (4.16) in the two-loop approximation the quarti
 vertex renor-malization 
onstant in the MS s
heme looks like:Z4 = 1 + 32" �16�2 +  �16�2!2 ( 94"2 � 32"): (4.17)With taking a

ount of the two-loop renormalization of the propagator (4.10) one has:Z� = Z4Z�22 = 1 + 32" �16�2 +  �16�2!2 ( 94"2 � 1712"): (4.18)The statement is that the 
ounter-terms introdu
ed this way eliminate all the ultravioletdivergen
es up to two-loop order and make the Green fun
tions and hen
e the radiative
orre
tions �nite. In the 
ase of nonzero mass, one should also add the mass 
ounter-term.36



4.3 The general stru
ture of the R-operationWe are ready to formulate now the general pro
edure of getting �nite expressions for theGreen fun
tions o� mass shell in an arbitrary lo
al quantum �eld theory. It 
onsists of:In any order of perturbation theory in the 
oupling 
onstant one introdu
es to the La-grangian the (quasi) lo
al 
ounter-terms. They perform the subtra
tion of divergen
es in thediagrams of a given order. The subtra
tion of divergen
es in the subgraphs is provided by the
ounter-terms of the lower order. After the subtra
tion of divergen
es in the subgraphs therest of the divergen
es are always lo
al. The Green fun
tions of the given order 
al
ulatedon the basis of the initial Lagrangian with a

ount of the 
ounter-terms are ultraviolet �nite.The stru
ture of the 
ounter-terms as fun
tions of the �eld operators depends on thetype of a theory. A

ording to the 
lassi�
ation dis
ussed in the �rst le
ture, the theoriesare divided into three 
lasses: superrenormalizable (a �nite number of divergent diagrams),renormalizable (a �nite number of types of divergent diagrams) and non-renormalizable (ain�nite number of types of divergent diagrams). A

ordingly, in the �rst 
ase one has a�nite number of 
ounter-terms; in the se
ond 
ase, a in�nite number of 
ounter-terms butthey repeat the stru
ture of the initial Lagrangian, and in the last 
ase, one has an in�nitenumber of stru
tures with an in
reasing number of the �elds and derivatives.In the 
ase of renormalizable and superrenormalizable theories, sin
e the 
ounter-termsrepeat the stru
ture of the initial Lagrangian, the result of the introdu
tion of 
ounter-terms
an be represented as L+�L = LBare = L(�B; fgBg; fmBg); (4.19)i.e., LBare is the same Lagrangian L but with the �elds, masses and 
oupling 
onstants beingthe "bare" ones related to the renormalized quantities by the multipli
ative equalities�Barei = Z1=2i (fgg; 1=")�; gBarei = Zig(fgg; 1=")gi; mBarei = Zim(fgg; 1=")mi; (4.20)where the renormalization 
onstants Zi depend on the renormalized parameters and theparameter of regularization (for de�niteness we have 
hosen 1="). In some 
ases the renor-malization 
an be nondiagonal and the renormalization 
onstants be
ome matri
es.The renormalization 
onstants are not unique and depend on the renormalization s
heme.This arbitrariness, however, does not in
uen
e the observables expressed through the renor-malized quantities. We will 
ome ba
k to this problem later when dis
ussing the group ofrenormalization. In the gauge theories Zi may depend on the 
hoi
e of the gauge though inthe minimal subtra
tion s
heme the renormalizations of the masses and the 
ouplings aregauge invariant.In the minimal s
hemes the renormalization 
onstants do not depend on dimensionalparameters like masses and do not depend on the arrangement of external momenta in thediagrams. This property allows one to simplify the 
al
ulation of the 
ounter-terms puttingthe masses and some external momenta to zero, as it was exempli�ed above by 
al
ulationof the two-loop diagrams. In making this tri
k, however, one has to be 
areful not to 
reatearti�
ial infrared divergen
es. Sin
e in dimensional regularization they also have the formof poles in ", this may lead to the wrong answers.In renormalizable theory the �nite Green fun
tion is obtained from the "bare" one, i.e.,is 
al
ulated from the "bare" Lagrangian by multipli
ation on the 
orresponding renormal-ization 
onstant �(fp2g; �2; g�) = Z�(1="; g�)�Bare(fp2g; 1="; gBare); (4.21)37



where in the n-th order of perturbation theory the "bare" parameters in the r.h.s. have tobe expressed in terms of the renormalized ones with the help of relations (4.20) taken in the(n-1)-th order. The remaining 
onstant Z� 
reates the 
ounter-term of the n-th order of theform �L = (Z��1)O�, where the operator O� re
e
ts the 
orresponding Green fun
tion. Ifthe Green fun
tion is �nite by itself (for instan
e, has many legs), then one has to remove thedivergen
es only in the subgraphs and the 
orresponding renormalization 
onstant Z� = 1.Note that sin
e the propagator is inverse to the operator quadrati
 in �elds in the La-grangian, the renormalization of the propagator is also inverse to the renormalization of the1-parti
le irredu
ible two-point Green fun
tionD(p2; �2; g�) = Z�12 (1="; g�)DBare(p2; 1="; gBare): (4.22)The propagator renormalization 
onstant is also the renormalization 
onstant of the 
orre-sponding �eld, but the �elds themselves, 
ontrary to the masses and 
ouplings, do not enterinto the expressions for observables.We would like to stress on
e more that the R-operation works independently on thefa
t renormalizable or non-renormalizable the theory is. In lo
al theory the 
ounter-termsare lo
al anyway. But only in renormalizable theory the 
ounter-terms are redu
ed to themultipli
ative renormalization of the �nite number of �elds and parameters.One 
an perform the R-operation for ea
h diagram separately. For this purpose one has�rst of all to subtra
t the divergen
es in the subgraphs and then subtra
t the divergen
ein the diagram itself whi
h has to be lo
al. This serves as a good test that the divergen
esin the subgraphs are subtra
ted 
orre
tly. In this 
ase the R-operation 
an be symboli
allywritten in a fa
torized form RG = Ydiv:subgraphs(1�M
)G; (4.23)where G is the initial diagram,M is the subtra
tion operator (for instan
e, subtra
tion of thesingular part of the regularized diagram) and the produ
t goes over all divergent subgraphsin
luding the diagram itself. By a subgraph we mean here the 1-parti
le irredu
ible diagram
onsisting of the verti
es and lines of the diagram whi
h is UV divergent. The 1-parti
leirredu
ible is 
alled the diagram whi
h 
an not be made dis
onne
ted by deleting of one line.We have demonstrated above the appli
ation of theR-operation to the two{loop diagramsin a s
alar theory. Consider some other examples of diagrams with larger number of loopsshown in Fig.19. They appear in the �4 theory in the three-loop approximation.
Figure 19: The multiloop diagrams in the �4 theoryIn order to perform the R-operation for these diagrams one �rst has to �nd out thedivergent subgraphs. They are shown in Fig.20.38



Figure 20: The divergent subgraphs in the diagrams of Fig.19Let us use the fa
torized representation of the R-operation in the form of (4.23). For thethree 
hosen diagrams one has, respe
tively,RGa = (1�MG)(1�M
1)(1�M
01)Ga;RGb = (1�MG)(1�M
2)(1�M
1)Gá;RG
 = (1�MG)(1�M
2)(1�M
02)(1�M
1)Gâ;where 
1 and 
2 are the one- and two-loop divergent subgraphs shown in Fig.20.The result of the appli
ation of the R-operation without the last subtra
tion ( R0-operation) for the diagrams of interest graphi
ally is as follows:

Figure 21: The R0-operation for the multiloop diagramsHere, as before, the graph surrounded with the dashed 
ir
le means its singular part andthe remaining graph is obtained by shrinking the singular subgraph to a point.Let us demonstrate how the R0-operation works for the diagram Fig.19a). Sin
e theresult of the R0-operation does not depend on external momenta, we put two momenta onthe diagonal to be equal to zero so that the integral takes the propagator form. Then we
an use the method based on Fourier-transform, as it was explained above. One has
39



= ��(1� ")�2(1�")�(")�(2�2") �2= ��(1�")�2(1�")�(")�(2�2") �2 ��(1�") �2(1�2")�(3")�2(1+")�(2�4")� (�2p2 )3" �= 1"3(1�2")2(1�4")(�2p2 )3":We use here the angular integration measure in the 4 � 2" dimensional spa
e a

eptedabove, whi
h results in the multipli
ation of the standard expression by �(1� ") in order toavoid the unwanted trans
endental fun
tions. Following the s
heme shown in Fig.21 we get= 1"�(1� ")�2(1�")�(")�(2�2")= 1"�(1� ")�2(1�")�(")�(2�2") �(1� ")�(1�")�(1�2")�(2")�(1+")�(2�3") (�2p2 )2" �= 1"3(1�2")(1�3") (�2p2 )2":
= 1"2�(1� ")�2(1�")�(")�(2�2") (�2p2 )" �= 1"3(1�2")(�2p2 )":Combining all together one �nds�= 1"3(1�2")2(1�4")(�2p2 )3" � 2 1"3(1�2")(�2p2 )" + 1"3(1�2")(�2p2 )"= 1� "� "2"3 :Note the 
an
ellation of all nonlo
al 
ontributions. The singular part after the R0-operationis always lo
al.The realization of theR0-operation for ea
h diagramG allows one to �nd the 
ontributionof a given diagram to the 
orresponding 
ounter-term and, in the 
ase of a renormalizabletheory, to �nd the renormalization 
onstant equal toZ = 1�K R0G; (4.24)where K means the extra
tion of the singular part. Adding the 
ontribution of variousdiagrams we get the resulting 
ounter-term of a given order and, a

ordingly, the renormal-ization 
onstant.
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5 Le
ture V: Renormalization. Gauge Theories andthe Standard ModelConsider now the gauge theories. The di�eren
e from the s
alar 
ase is in the relationsbetween various renormalization 
onstants whi
h follow from the gauge invarian
e. If theregularization and the renormalization s
heme do not break the symmetry these relationshold automati
ally. In the opposite 
ase, this is an additional requirement imposed on the
ounter-terms.5.1 Quantum ele
trodynami
sQuantum ele
trodynami
s (3.8) is a renormalizable theory; hen
e, the 
ounter-terms repeatthe stru
ture of the Lagrangian. They 
an be written as�LQED = �Z3 � 14 F 2�� + (Z2 � 1)i � �̂ �m(Z � 1) �  + e(Z1 � 1) � Â : (5.1)The term that �xes the gauge is not renormalized. In the leading order of perturbationtheory we 
al
ulated the 
orresponding diagrams with the help of dimensional regulariza-tion (see (3.15),(3.19),(3.23)). Their singular parts with the opposite sign give the properrenormalization 
onstants. They are, respe
tively,Z1 = 1� e216�2 1";Z2 = 1� e216�2 1";Z3 = 1� e216�2 43"; (5.2)Z = 1� e216�2 4":Adding (5.1) with (3.8) we getLQED +�LQED = �Z34 F 2�� + Z2i � �̂ �mZ �  + eZ1 � Â � 12� (��A�)2= �14F 2��B + i � B �̂ B �mZZ�12 � B B + eZ1Z�12 Z�1=23 � BÂB B�Z�132� (��A�B)2; (5.3)that gives B = Z1=22  ; AB = Z1=23 A; mB = ZZ�12 m; eB = Z1Z�12 Z�1=23 e; �B = Z3�: (5.4)41



The gauge invarian
e here manifests itself in two pla
es. First, the transversality of theradiative 
orre
tion to the photon propagator means that the gauge �xing term is not renor-malized and, hen
e, the gauge parameter � is renormalized as a gauge �eld. Se
ond, thegauge invarian
e 
onne
ts the vertex Green fun
tion and the fermion propagator (the Wardidentity), whi
h leads to the identity Z1 = Z2. Sin
e the dimensional regularization whi
hwe use throughout the 
al
ulations does not break the gauge invarian
e, this identity is sat-is�ed automati
ally (see (5.2)). This means that the renormalization of the 
oupling (5.4)is de�ned by the photon propagator only. Note, however, that this is not true in general ina non-Abelian theory.5.2 Quantum 
hromodynami
sThe 
ompli
ations whi
h appear in non-Abelian theories are 
aused by the presen
e of manyverti
es with the same 
oupling as it follows from the gauge invarian
e. Hen
e, they haveto renormalize the same way, i.e there appear new identities, 
alled the Slavnov-Tayloridentities. The full set of the 
ounter-terms in QCD looks like�LQÑD = �Z3 � 14 (��Aa� � ��Aa�)2 � g(Z1 � 1)fab
Aa�Ab���A
��(Z4�1)g24 fab
fadeAb�A
�Ad�Ae� + ( ~Z3�1)���
a��
a + g( ~Z1�1)fab
���
aAb�

+i(Z2 � 1) � �̂ �m(Z � 1) �  + g(Z1 � 1) � ÂaT a ; (5.5)that being added to the initial Lagrangian givesLQÑD +�LQÑD = �Z34 (��Aa� � ��Aa�)2 � gZ1fab
Aa�Ab���A
��Z4 g24 fab
fadeAb�A
�Ad�Ae� � ~Z3���
a�
a � g ~Z1fab
���
aAb�

+iZ2 � �̂ �mZ �  + gZ1 � ÂaT a � 12� (��Aa�)2= �14(��Aa�B � ��Aa�B)2 � gZ1Z�3=23 fab
Aa�BAb�B��A
�B�Z4Z�23 g24 fab
fadeAb�BA
�BAd�BAe�B + ���
aB��
aB + g ~Z1 ~Z�13 Z�1=23 fab
���
aBAb�B

B+Z�132� (��Aa�B)2 + i � B �̂ B �mZZ�12 � B B + gZ1 Z�12 Z�1=23 � BÂaBT a B: (5.6)This results in the relations between the renormalized and the "bare" �elds and 
ouplings B = Z1=22  ; AB = Z1=23 A; 
B = ~Z1=23 
;mB = ZZ�12 m; gB = Z1Z�3=23 g; �B = Z3�; (5.7)Z1Z�13 = ~Z1 ~Z�13 ; Z4 = Z21Z�13 ; Z1 Z�12 = Z1Z�13 :The last line of equalities follows from the requirement of identi
al renormalization of the
oupling in various verti
es and represents the Slavnov-Taylor identities for the singularparts. 42



The expli
it form of the renormalization 
onstants in the lowest approximation followsfrom the one-loop diagrams 
al
ulated earlier (see (3.14), (3.19), (3.23), (3.31), (3.33), (3.39).Aa usual, one has to take the singular part with the opposite sign. One has in theMS s
hemeZ2 = 1� g216�2 CF" ;Z3 = 1 + g216�2 ( 53"CA � 43"Tfnf );Z = 1� g216�2 4CF" ;~Z1 = 1� g216�2 CA2" ; (5.8)~Z2 = 1 + g216�2 CA2" ;Zg = ~Z1 ~Z�12 Z�1=23 = 1� g216�2 (116"CA � 43"Tfnf );where the following notation for the Casimir operators of the gauge group is usedfab
f db
 = CAÆad; (T aT a)ij = CF Æij; T r(T aT b) = TF Æab:For the SU(N) group and the fundamental representation of the fermion �elds they areequal to CA = N; CF = N2 � 12N ; TF = 12 :5.3 The Standard Model of fundamental intera
tionsIn the Standard Model of fundamental intera
tions besides the gauge intera
tions and thequarti
 intera
tion of the Higgs �elds there are also Yukawa type intera
tions of the fermion�elds with the Higgs �eld. These intera
tions are also renormalizable and is 
hara
terizedby the Yukawa 
oupling 
onstants, one for ea
h fermion �eld. The pe
uliarity of the SM isthat the masses of the �elds appear as a result of spontaneous symmetry breaking when theHiggs �eld develops a va
uum expe
tation value. As a result the masses are not independentbut are expressed via the 
oupling 
onstant multiplied by the va
uum expe
tation value.Here there are two possibilities: to treat the Yukawa 
ouplings as independent quantitiesand to renormalize them in a usual way and then express the renormalized masses via therenormalized 
ouplings or to start with the masses of parti
les and to treat the Yukawa
ouplings as se
ondary quantities. The �rst approa
h is usually used within the minimalsubtra
tion s
heme where the renormalizations do not depend on masses. On the 
ontrary, inthe ÌÎÌ s
heme when the subtra
tion is 
arried out on mass shell (the so-
alled "on-shell"s
heme), one usually takes masses of parti
les as the basis. Under this way of subtra
tionthe pole of the propagator is not shifted and the renormalized mass 
oin
ides with the massof a physi
al parti
le. Below we 
onsider the renormalizations in the SM in the MS s
hemeand 
on
entrate on the renormalization of the �elds and the 
ouplings.Another property of the Standard Model is that it has the gauge group SU
(3)�SUL(2)�UY (1) whi
h is spontaneously broken to SU
(3)�UEM(1). In the theories with spontaneouslybroken symmetry, a

ording to the Goldstone theorem there are massless parti
les, thegoldstone bosons. These parti
les indeed are present in the SM but they are not the physi
al43



degrees of freedom and due to the Higgs e�e
t are absorbed by ve
tor bosons turning intolongitudinal degrees of freedom of massive ve
tor parti
les.Thus, there are two possibilities to formulate the SM as a theory with spontaneoussymmetry breaking: the unitary formulation in whi
h nonphysi
al degrees of freedom areabsent and ve
tor bosons have three degrees of freedom, and the so-
alled renormalizableformulation in whi
h goldstone bosons are present in the spe
trum and ve
tor �elds havetwo degrees of freedom. These two formulations 
orrespond to two di�erent 
hoi
es of thegauge in spontaneously broken theory.In unitary gauge we have only physi
al degrees of freedom, i.e., the theory is automati
allyunitary, hen
e the name of this gauge. However, the propagator of the massive ve
tor �eldsin this 
ase has the form G��(k) = �ig�� � k�k�M2k2 �M2 ;i.e., does nor de
rease when momentum goes to in�nity. This leads to the in
rease in thepower of divergen
es and the theory happens to be formally nonrenormalizable despite the
oupling 
onstant being dimensionless. We have mentioned this fa
t in the �rst le
ture.On the other hand, in renormalizable gauge, where the ve
tor �elds have two degrees offreedom, the propagator behaves asG��(k) = �ig�� � k�k�k2k2 �M2 ;whi
h obviously leads to a renormalizable theory whi
h explains the name of this gauge.However, the presen
e of the goldstone bosons 
alls into question the unitarity of the theorysin
e transitions between the physi
al and unphysi
al states be
ome possible.Sin
e all the gauges are equivalent, one 
an work in any of them but in the unitarygauge one has to prove the renormalizability while in the renormalizable gauge one has toprove unitarity. The gauge invarian
e of observables preserved in a spontaneously brokentheory should guarantee the ful�lment of both the requirements simultaneously. Note thatin spontaneous symmetry breaking the symmetry of the Lagrangian is preserved, it is theboundary 
ondition that breaks the symmetry.The rigorous proof of that the theory is simultaneously renormalizable and unitary isnot so obvious and eventually was awarded the Nobel prize, but 
an be seen by using someintermediate gauge 
alled the R�-gauge. The gauge �xing term in this 
ase is 
hosen in theform � 12� (��Aa� � �gF ai �i)2; gF ai = v2 0BBB� g 0 00 g 00 0 g0 0 g0 1CCCA ;where v is the va
uum expe
tation value of the Higs �eld, and �i are the goldstone bosons.In this gauge the ve
tor propagator has the formG��(k) = �ig�� � k�k�k2��M2 (1� �)k2 �M2 ;and at � = 0 
orresponds to the renormalizable gauge while as � ! 1 it 
orresponds tothe unitary one. Sin
e all the observables do not depend on �, we 
an 
hoose � = 0 wheninvestigating the renormalizability properties and 
hoose � =1 in examining the unitarity.44



Sin
e we are interested here in the renormalizability of the SM, in what follows we will workin a renormalizable gauge.The Lagrangian of the Standard Model 
onsists of the following three parts:L = Lgauge + LY ukawa + LHiggs; (5.9)The gauge part is totally �xed by the requirement of the gauge invarian
e leaving only thevalues of the 
ouplings as free parametersLgauge = �14Ga��Ga�� � 14W i��W i�� � 14B��B�� (5.10)+iL�
�D�L� + iQ�
�D�Q� + iE�
�D�E�+iU�
�D�U� + iD�
�D�D� + (D�H)y(D�H);where the following notation for the 
ovariant derivatives is usedGa�� = ��Ga� � ��Ga� + gsfab
Gb�G
�;W i�� = ��W i� � ��W i� + g�ijkW j�W k� ;B�� = ��B� � ��B�;D�L� = (�� � ig2� iW i� + ig02B�)L�;D�E� = (�� + ig0B�)E�;D�Q� = (�� � ig2� iW i� � ig06B� � igs2 �aGa�)Q�;D�U� = (�� � i23g0B� � igs2 �aGa�)U�;D�D� = (�� + i13g0B� � igs2 �aGa�)D�:The Yukawa part of the Lagrangian whi
h is needed for the generation of the quarkand lepton masses is also 
hosen in the gauge invariant form and 
ontains arbitrary Yukawa
ouplings (we ignore the neutrino masses, for simpli
ity)LY ukawa = yL��L�E�H + yD��Q�D�H + yU��Q�U� ~H + h:
:; (5.11)where ~H = i�2Hy.At last the Higgs part of the Lagrangian 
ontains the Higgs potential whi
h is 
hosenin su
h a way that the Higgs �eld a
quires the va
uum expe
tation value and the potentialitself is stable LHiggs = �V = m2HyH � �2(HyH)2: (5.12)Here there are two arbitrary parameters: m2 è �. The ghost �elds and the gauge �xingterms are omitted.The Lagrangian of the SM 
ontains the following set of free parameters:� 3 gauge 
ouplings gs; g; g0;� 3 Yukawa matri
es yL��; yD��; yU��;� Higgs 
oupling 
onstant �; 45



� Higgs mass parameter m2;� the number of the matter �elds (generations).All parti
les obtain their masses due to spontaneous breaking of the SUleft(2) symmetrygroup via a nonzero va
uum expe
tation value (v.e.v.) of the Higgs �eld< H >=  v0 ! ; v = m=p�: (5.13)As a result, the gauge group of the SM is spontaneously broken down toSU
(3)
 SUL(2)
 UY (1)) SU
(3)
 UEM(1):The physi
al weak intermediate bosons are linear 
ombinations of the gauge onesW�� = W 1� � iW 2�p2 ; Z� = � sin �WB� + 
os �WW 3� (5.14)with masses mW = 1p2gv; mZ = mW= 
os �W ; tan �W = g0=g; (5.15)while the photon �eld 
� = 
os �WB� + sin �WW 3� (5.16)remains massless.The matter �elds a
quire masses proportional to the 
orresponding Yukawa 
ouplings:Mu�� = yu��v; Md�� = yd��v; M l�� = yl��v; mH = p2m: (5.17)The mass matri
es have to be diagonalized to get the quark and lepton masses.The expli
it mass terms in the Lagrangian are forbidden be
ause they are not SUleft(2)symmetri
. They would destroy the gauge invarian
e and, hen
e, the renormalizability of theStandard Model. To preserve the gauge invarian
e we use the me
hanism of spontaneoussymmetry breaking whi
h, as was explained above, allows one to get the renormalizabletheory with massive �elds.The Feynman rules in the SM in
lude the ones for QED and QCD with additional newverti
es 
orresponding to the SU(2) group and the Yukawa intera
tion, as well as the verti
eswith goldstone parti
les if one works in the renormalizable gauge. We will not write themdown due to their 
omplexity, though the general form is obvious.Consider the one-loop divergent diagrams in the SM. Besides the familiar diagrams inQED and QCD dis
ussed above one has the diagrams presented in Fig.22. The diagrams
ontaining the goldstone bosons are omitted. The 
al
ulation of these diagrams is similarto what we have done above. Therefore, we show only the results for the renormalization
onstants of the �elds and the 
oupling 
onstants. They have the form (for the gauge �eldswe use the Feynman gauge)Z2QL = 1� 1" 116�2 [ 136g02 + 34g2 + 43g2s + 12y2U + 12y2D℄;Z2uR = 1� 1" 116�2 [49g02 + 43g2s + y2U ℄;46



Figure 22: Some divergent one-loop diagrams in the SM. The dotted line denotes the Higgs�eld, the solid line - the quark and lepton �elds, and the wavy line - the gauge �eldsZ2dR = 1� 1" 116�2 [19g02 + 43g2s + y2D℄;Z2LL = 1� 1" 116�2 [14g02 + 34g2 + 12y2L℄;Z2eR = 1� 1" 116�2 [g02 + y2L℄;Z2H = 1 + 1" 116�2 [12g02 + 32g2 � 3y2U � 3y2D � y2L℄;Z3B = 1� 1" 116�2 [209 NF + 16NH ℄g02 U(1)Y bosonZ3A = 1 + 1" 116�2 [3� 329 NF ℄e2 photonZ3W = 1 + 1" 116�2 [103 � 13(NF + 3NF )� 16NH ℄g2;Z3G = 1 + 1" 116�2 [5� 43NF ℄g2s ;Zg23 = 1 + 1" 116�2 [�11 + 43NF ℄g2s ;Zg22 = 1 + 1" 116�2 [�223 + 43NF + 16NH ℄g2;Zg02 = 1 + 1" 116�2 [209 NF + 16NH ℄g02;Zy2U = 1 + 1" 116�2 [�1712g02 � 94g2 � 8g2s + 92y2U + 32y2D + y2L℄;Zy2D = 1 + 1" 116�2 [� 512g02 � 94g2 � 8g2s + 32y2U + 92y2D + y2L℄;Zy2L = 1 + 1" 116�2 [�154 g02 � 94g2 + 94y2L + 3y2U + 3y2D℄;Z� = 1 + 1" 116�2 [�32g02 � 92g2 + 2(3y2U + 3y2D + y2L) + 6��2(3y4U + 3y4D + y4L)=�+ (38g04 + 98g4 + 34g2g02)=�℄;where, for simpli
ity, we ignored the mixing between the generations and assumed the47



Yukawa matri
es to be diagonal.The di�eren
e from the expressions 
onsidered above is that the renormalization 
onstantof the s
alar 
oupling 
ontains the terms of the type g4=� and y4=�. This is be
ause writingthe 
ounter-term for the quarti
 vertex we fa
torized �. The 
ounter-terms themselves areproportional to g4 and y4 and are not equal to zero. Thus, the quantum 
orre
tions generatea new intera
tion even if it is absent initially. Sin
e the gauge and Yukawa intera
tionsbelong to the renormalizable type, the number of types of the 
ounter-terms is �nite and theonly new intera
tion whi
h is generated this way, if it was absent, is the quarti
 s
alar one.With allowan
e for this intera
tion the model is renormalizable.Sin
e the masses of all the parti
les are equal to the produ
t of the gauge or Yukawa
ouplings and the va
uum expe
tation value of the Higgs �eld, in the minimal subtra
tions
heme the mass ratios are renormalized the same way as the ratio of 
ouplings. To �nd therenormalization of the mass itself, one should know how the v.e.v. is renormalized or �ndexpli
itly the mass 
ounter-term from Feynman diagrams. In this 
ase, one has also to takeinto a

ount the tad-pole diagrams shown in Fig.22, in
luding the diagrams with goldstonebosons.For illustration we present the renormalization 
onstant of the b-quark mass in the SMZmb = 1 + 1" 116�2 [Xl y4l� + 3Xq y4q� � 32�+ 34(y2b � y2t )� 316 (g2 + g02)2� � 38 g4� � 3Qb(Qb � T 3b )g02 � 4g2s ℄: (5.18)The result for the t-quark 
an be obtained by repla
ing b by t. For the light quarks theYukawa 
onstants are very small and 
an be ignored in eq.(5.18).Note that here we again have the Higgs self-intera
tion 
oupling � in the denominator. Itappears from the tad-pole diagrams but, 
ontrary to the previous 
ase, the renormalization
onstant Zmq is not multiplied by � and the denominator is not 
an
elled. This does notlead to any problems in perturbation theory sin
e by order of magnitude � � g2 � y2 andthe loop expansion is still valid.

48



6 Le
ture VI: Renormalization GroupThe pro
edure formulated above allows one to eliminate the ultraviolet divergen
es and getthe �nite expression for any Green fun
tion in any lo
al quantum �eld theory. In renormal-izable theories this pro
edure is redu
ed to the multipli
ative renormalization of parameters(masses and 
ouplings) and multipli
ation of the Green fun
tion by its own renormalization
onstant. This is true for any regularization and subtra
tion s
heme. Thus, for example, inthe 
uto� regularization and dimensional regularization the relation between the "bare" andrenormalized Green fun
tions looks like�(fp2g; �2; fg�g) = Z�(�2=�2; fg�g)�Bare(fp2g;�; fgBareg) (6.1)�(fp2g; �2; fg�g) = Z�(1="; fg�g)�Bare(fp2g; 1="; fgBareg); (6.2)where fp2g is the set of external momenta, fgg is the set of masses and 
ouplings, andgBare = Zg((�2=�2; fg�g)g or gBare = Zg((1="; fg�g)g:It is obvious that the operation of multipli
ation by the 
onstant Z obeys the groupproperty. Indeed, after the elimination of divergen
es one 
an multiply the 
ouplings, massesand the Green fun
tions by �nite 
onstants and this will be equivalent to the 
hoi
e ofanother renormalization s
heme. Sin
e these �nite 
onstants 
an be 
hanged 
ontinuously,we have a 
ontinuous Lie group whi
h got the name of renormalization group. The grouptransformations of multipli
ation of the 
ouplings and the Green fun
tions are 
alled theDyson transformations.6.1 The group equations and solutions via the method of 
hara
-teristi
sIn what follows we sti
k to dimensional regularization and rewrite relation (6.2) in the form�Bare(fp2g; 1="; fgBareg) = Z�1� (1="; fg�g)�(fp2g; �2; fg�g): (6.3)It is obvious that the l.h.s. of this equation does not depend on the parameter of dimensionaltransmutation � and, hen
e, the r.h.s. should not also depend on it. This allows us to writethe fun
tional equation for the renormalized Green fun
tion. Di�erentiating it with respe
tto the 
ontinuous parameter � one 
an get the di�erential equation whi
h has a pra
ti
alvalue: solving this equation one 
an get the improved expression for the Green fun
tionwhi
h 
orresponds to summation of an in�nite series of Feynman diagrams.Consider an arbitrary Green fun
tion � obeying equation (6.2) with the normalization
ondition �(fp2g; �2; 0) = 1:Di�erentiating (6.2) with respe
t to �2 one gets:�2 dd�2� =  �2 ���2 + �2 �g��2 ��g!� = �2d lnZ�d�2 Z��Bare;49



or  �2 ���2 + �(g) ��g + 
�!�(fp2g; �2; g�) = 0; (6.4)where we have introdu
ed the so-
alled beta fun
tion �(g) and the anomaly dimension ofthe Green fun
tion 
�(g) de�ned as� = �2 dgd�2 jgbare; (6.5)
� = ��2d lnZ�d�2 jgbare: (6.6)Equation (6.4) is 
alled the renormalization group equation in partial derivatives (in Ovsyan-nikov form). In the western literature it is also 
alled the Callan-Simanzik equation.The solution of the renormalization group equation 
an be written in terms of 
hara
ter-isti
s: � etfp2g�2 ; g! = � fp2g�2 ; �g(t; g)!e tZ0 
�(�g(t; g))dt; (6.7)where the 
hara
teristi
 equation is (for de�niteness we restri
t ourselves to a single 
oupling)ddt�g(t; g) = �(�g); �g(0; g) = g: (6.8)The quantity �g(t; g) is 
alled the e�e
tive 
harge or e�e
tive 
oupling.We will 
onsider the useful properties of this solution (6.7) later and we �rst derive severalother similar equations. Sin
e the vertex fun
tion usually 
omes with the 
oupling, one 
an
onsider the produ
t g� fp2g�2 ; g! : (6.9)If � is the n-point fun
tion, then the renormalization of the 
oupling g is given bygBare = Z�Z�n=22 g;and the produ
t (6.9) is renormalized asg� = Zn=22 gBare�Bare:Hen
e, one has the same equation as (6.2) with solution (6.7) but with Z� = Zn=22 and
� = �n=2
2. (Re
all that the anomalous dimension 
2 is de�ned with respe
t to therenormalization 
onstant Z�12 .)Furthermore, one 
an 
onstru
t the so-
alled invariant 
harge by multiplying the produ
t(6.9) by the 
orresponding propagators� = g� fp2g�2 ; g! nYi D1=2  p2i�2 ; g! : (6.10)The invariant 
harge �, being RG-invariant, obeys the RG equation without the anomalousdimension and plays an important role in the formulation of the renormalization group50



together with the e�e
tive 
harge. In some 
ases, for instan
e in the MOM subtra
tions
heme, the e�e
tive and invariant 
harges 
oin
ide.The usefulness of solution (6.7) is that it allows one to sum up an in�nite series of logs
oming from the Feynman diagrams in the infrared (t ! �1) or ultraviolet (t ! 1)regime and improve the usual perturbation theory expansions. This in its turn extends theappli
ability of perturbation theory and allows one to study the infrared or the ultravioletasymptoti
s of the Green fun
tions.To demonstrate the power of the RG, let us 
onsider the invariant 
harge in a theory witha single 
oupling and restri
t ourselves to the massless 
ase. Let the perturbative expansionbe �( p2�2 ; g) = g(1 + bg ln p2�2 + :::): (6.11)The � fun
tion in the one-loop approximation is given by�(g) = bg2: (6.12)Noti
e that the 
oeÆ
ient b of the logarithm in eq.(6.11) 
oin
ides with that of the � fun
tion.Alternatively the � fun
tion 
an be de�ned as the derivative of the invariant 
harge withrespe
t to logarithm of momentum�(g) = p2 ddp2 �( p2�2 ; g)jp2=�2 : (6.13)This de�nition is useful in the MOM s
heme where the mass is not 
onsidered as a
oupling but as a parameter and the renormalization 
onstants depend on it. We will 
omeba
k to the dis
ussion of this question below when 
onsidering di�erent de�nitions of themass.A

ording to eq.(6.7) (with vanishing anomalous dimension) the RG-improved expressionfor the invariant 
harge 
orresponding to the perturbative expression (6.11) is:�RG( p2�2 ; g) = �PT (1; �g( p2�2 ; g)) = �g( p2�2 ; g); (6.14)where we have put in eq.(6.7) p2 = �2 and then repla
ed t by t = ln p2=�2. The e�e
tive
oupling is a solution of the 
hara
teristi
 equationddt�g(t; g) = b�g2; �g(0; g) = g; t � ln p2�2 : (6.15)The solution of this equation is �g(t; g) = g1� bgt : (6.16)Being expanded over t, the geometri
al progression (6.16) reprodu
es the expansion (6.11);however, it sums the in�nite series of terms of the form gntn. This is 
alled the leading logapproximation (LLA) in QFT. To get the 
orre
tion to the LLA, one has to 
onsider thenext term in the expansion of the � fun
tion. Then one 
an sum up the next series of termsof the form gntn�1 whi
h is 
alled the next to leading log approximation (NLLA), et
. Thispro
edure allows one to des
ribe the leading asymptoti
s of the Green fun
tions for t! �1.51



Consider now the Green fun
tion with non-zero anomalous dimension. Let its perturba-tive expansion be �( p2�2 ; g) = 1 + 
g ln p2�2 + ::: (6.17)Then in the one-loop approximation the anomalous dimension is
(g) = 
g: (6.18)Again the 
oeÆ
ient of the logarithm 
oin
ides with that of the anomalous dimension. Inanalogy with eq.(6.13) the anomalous dimension 
an be de�ned as a derivative with respe
tto the logarithm of momentum
(g) = p2 ddp2 ln �( p2�2 ; g)jp2=�2 : (6.19)Substituting (6.18) into eq.(6.7), one has in the exponenttZ0 
(�g(t; g)dt = �gZg 
(g)�(g)dg = �gZg 
gbg2dg = 
b ln �gg :This gives for the Green fun
tion the improved expression�RG =  �gg!�
=b =  11� bgt!
=b � 1 + 
t+ ::: (6.20)Thus, one again reprodu
es the perturbative expansion, but expression (6.20) again 
ontainsthe whole in�nite sum of the leading logs. To get the NLLA, one has to take into a

ountthe next term in eq.(6.18) together with the next term of expansion of the � fun
tion.All the formulas 
an be easily generalized to the 
ase of multiple 
ouplings and masses.6.2 The e�e
tive 
ouplingBy virtue of the 
entral role played by the e�e
tive 
oupling in RG formulas, 
onsider itin more detail. The behaviour of the e�e
tive 
oupling is determined by the � fun
tion.Qualitatively, the � fun
tion 
an exhibit the behaviour shown in Fig.23. We restri
t ourselvesto the region of small 
ouplings.In the �rst 
ase, the �-fun
tion is positive. Hen
e, with in
reasing momentum the e�e
-tive 
oupling unboundedly in
reases. This situation is typi
al of most of the models of QFTin the one-loop approximation when �(g) = bg2 and b > 0. The solution of the RG equationfor the e�e
tive 
oupling in this 
ase has the form of a geometri
 progression (6.16). It is
hara
terized by the presen
e of a pole at high energies, 
alled the Landau pole. We will
onsider this pole in detail later.In the se
ond 
ase, the �-fun
tion is negative and, hen
e, the e�e
tive 
oupling de
reaseswith in
reasing momentum. This situation appears in the one-loop approximation whenb < 0, whi
h takes pla
e in the gauge theories. Here we also have a pole but in the infraredregion.In the third 
ase, the �-fun
tion has zero: at �rst, it is positive and then is negative.This means that for small initial values the e�e
tive 
oupling in
reases; and for large ones,52



Figure 23: The possible form of the �-fun
tion. The arrows show the behaviour of thee�e
tive 
oupling in the ultraviolet regime (t!1)de
reases. In both the 
ases, with in
reasing momentum it tends to the �xed value de�nedby the zero of the �-fun
tion. This is the so-
alled ultraviolet stable �xed point. It appearsin some models in higher orders of perturbation theory.Eventually, in the last 
ase one also has the �xed point but now for the small initial
oupling it de
reases and for the large one it in
reases, i.e., with in
reasing momentum thee�e
tive 
oupling moves away from the �xed point, it is ultraviolet unstable. On the 
ontrary,with de
reasing momentum it tends to the �xed point, i.e., it is infrared stable. It appearsin some models in lower dimensions, for instan
e, in statisti
al physi
s.6.3 Dimensional regularization and the MS s
hemeConsider now the 
al
ulation of the � fun
tion and the anomalous dimensions in someparti
ular models within the dimensional regularization and the minimal subtra
tion s
heme.Note that in transition from dimension 4 to 4� 2" the dimension of the 
oupling is 
hangedand the "bare" 
oupling a
quires the dimension [gB℄ = 2". That is why the relation betweenthe "bare" and renormalized 
oupling 
ontains the fa
tor (�2)"gB = (�2)"Zgg: (6.21)Hen
e, even before the renormalization when Zg = 1, in order to 
ompensate this fa
tor thedimensionless 
oupling g should depend on �. Di�erentiating (6.21) with respe
t to �2 onegets 0 = "Zgg + d logZgd log�2Zgg + Zg dgd log�2 ;i.e., �4�2"(g) � dgd log�2 = �"g + gd logZgd log�2 = �"g + �4(g): (6.22)In the MS s
heme the renormalization 
onstants are given by the pole terms in 1="expansion and so does the bare 
oupling. They 
an be written asZ� = 1 + 1Xn=1 
n(g)"n = 1 + 1Xn=1 1Xm=n 
nmgm"n : (6.23)53



And similarly gBare = (�2)" "g + 1Xn=1 an(g)"n # = (�2)" "g + 1Xn=1 1Xm=n anmgm+1"n # : (6.24)Di�erentiating eq.(6.23) with respe
t to ln�2 and having in mind the de�nitions (6.5)and (6.6), one has: �[1 + 1Xn=1 
n(g)"n ℄
�(g) = [�"g + �(g)℄ ddg 1Xn=1 
n(g)"n :Equalizing the 
oeÆ
ients of equal powers of ", one �nds
�(g) = g ddg
1(g); (6.25)g ddg
n(g) = [
�(g) + �(g) ddg ℄
n�1(g); n � 2: (6.26)One sees that the 
oeÆ
ients of higher poles 
n; n � 2 are 
ompletely de�ned by thatof the lowest pole 
1 and the � fun
tion. In its turn the �-fun
tion is also de�ned by thelowest pole. To see this, 
onsider eq.(6.24). Di�erentiating it with respe
t to ln�2 one has" "g + 1Xn=1 an(g)"n # + [�"g + �(g)℄ "1 + ddg 1Xn=1 an(g)"n # = 0: (6.27)Equalizing the 
oeÆ
ients of equal powers of ", one �nds�(g) = (g ddg � 1)a1(g); (6.28)(g ddg � 1)an(g) = �(g) ddgan�1(g); n � 2: (6.29)Thus, knowing the 
oeÆ
ients of the lower poles one 
an reprodu
e all the higher orderdivergen
es. This means that they are not independent, all the information about them is
onne
ted in the lowest pole. In parti
ular, substituting in (6.29) the perturbative expansion(6.24) one 
an solve the re
urrent equation and �nd for the highest pole termann = an11; (6.30)i.e. in the leading order one has the geometri
 progressiongB = �2" g1� ga11="; (6.31)whi
h re
e
ts the fa
t that the e�e
tive 
oupling in the LLA is also given by a geometri
progression (6.16).The pole equations are easily generalized for the multiple 
ouplings 
ase, the higher polesare also expressed through the lower ones though the solutions of the RG equations are more
ompli
ated.Consider now some parti
ular models and 
al
ulate the 
orresponding �-fun
tions andthe anomalous dimensions. 54



The �4 theoryThe renormalization 
onstants in the MS s
heme up to two loops are given by eqs.(4.10,4.14,4.18). (g � �=16�2)Z4 = 1 + 32"g + g2( 94"2 � 32"); (6.32)Z�12 = 1 + g224"; (6.33)Zg = 1 + 32"g + g2( 94"2 � 1712"): (6.34)Noti
e that the higher pole 
oeÆ
ient a22 = 9=4 in the last expression is the square of thelowest pole one a11 = 3=2 in a

ordan
e with eq.(6.30).Applying now eqs.(6.25) and (6.28) one gets
4(g) = 32g � 3g2; (6.35)
2(g) = 112g2; (6.36)�(g) = g(
4 + 2
2) = 32g2 � 176 g2: (6.37)One 
an see from eq.(6.37) that the �rst 
oeÆ
ient of the �-fun
tion is 3=2, i.e., the �4 theorybelongs to the type of theories shown in Fig.23a). In the leading log approximation (LLA)one has a Landau pole behaviour. In the two-loop approximation (NLLA) the �-fun
tiongets a non-trivial zero and the e�e
tive 
oupling possesses an UV �xed point like the oneshown in Fig.23â). However, this �xed point is unstable with respe
t to higher orders and isnot reliable. Here we en
ounter the problem of divergen
e of perturbation series in quantum�eld theory, they are the so-
alled asymptoti
 series whi
h have a zero radius of 
onvergen
e.QEDIn QED in the one-loop approximation the renormalization 
onstants in the Feynmangauge are given by eq.(5.2). Due to the Ward identities the renormalization of the 
ouplingis de�ned by the photon wave fun
tion renormalization 
onstant Z3 and is gauge invariant.Equation (5.2) allows one to determine the anomalous dimensions and the �-fun
tion
1(�) = ��; (6.38)
2(�) = �; (6.39)
3(�) = 43�; (6.40)
m(�) = �4�; (6.41)��(�) = 43�2; (6.42)where we use the notation � � e2=16�2.Thus, in QED in the one-loop approximation the e�e
tive 
oupling behaves the sameway a in the �4 theory and has a Landau pole in the LLA. In this theory, the next term ofexpansion of the �-fun
tion is also 
al
ulated. It has the same sign.55



QCDIn QCD the 
al
ulation of the � fun
tion 
an be based on various verti
es. The resultshould be the same due to the gauge invarian
e. To simplify the 
al
ulations, we 
hoose theghost-ghost-ve
tor vertex. The renormalization 
onstants in the one-loop approximation inthe Feynman gauge are given by (5.8) and lead to the following anomalous dimensions andthe �-fun
tion: ~
1(�) = �C22 �; (6.43)~
2(�) = �C22 �; (6.44)
3(�) = �(53C2 � 23nf )�; (6.45)��(�) = �(2~
1 + 2~
2 + 
3) = �(113 CÀ � 23nf )�2; (6.46)where like in QED we take � � g2=16�2, the Casimir operator CÀ in the 
ase of SU(3)groups is equal to 3, and nf is the number of quark 
avours.One 
an see from eq.(6.46) that if the number of 
avours is less than 112 C2 = 332 , the�-fun
tion is negative and the e�e
tive 
oupling de
reases and tends to zero with in
reasingmomentum. This type of behaviour of the e�e
tive 
oupling is 
alled the asymptoti
 freedom.It takes pla
e only in gauge theories.6.4 �QCDThe solution of the 
hara
teristi
 equation for the e�e
tive 
oupling, whi
h is a di�erentialequation of the �rst order, depends on initial 
onditions. Therefore, the solution (6.16)depends on the 
hoi
e of the initial point and the value of the 
oupling at this point. However,this 
hoi
e is not unique and one 
an 
hoose another initial point and another value of the
oupling and still get the same solution, as it is shown in Fig.24.
Λ
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Figure 24: Di�erent parametrizations of the e�e
tive 
oupling. Ea
h 
urve is 
hara
terizedby a single parameter �In fa
t, every 
urve is not 
hara
terized by two numbers (the initial point and the 
ou-pling), but by one number and the transition from one 
urve to another is de�ned by the56




hange of this number. To see this, 
onsider the one-loop expression for the e�e
tive 
ouplingin a gauge theory and rewrite it in equivalent form�g(Q2�2 ; g�) = g�1� �0g� ln Q2�2 = 11g� � �0 ln Q2�2 � � 1�0 ln Q2�2 = �g(Q2�2 ); (6.47)where we have introdu
ed the notation�2 = �2e� 1�0�� : (6.48)This quantity is 
alled �QCD in quantum 
hromodynami
s and 
an be introdu
ed in anymodel. The numeri
al value of � is de�ned from experiment.Equation (6.48) 
an be generalized to any number of loops. For this purpose, let usrewrite the RG equation for the e�e
tive 
oupling in the Gell-Mann { Low form. One hasln Q2�2 = Z gQg� dg�g(g) : (6.49)Combining the lower limit with ln�2 one getsln Q2�2 = Z gQ dg�g(g) ; (6.50)where �2 = �2exp Z g� dg�g(g)! ; (6.51)whi
h is the generalization of eq.(6.48) for an arbitrary number of loops.The quantity �, introdu
ed this way, is �-independent but depends on the renormaliza-tion s
heme due to the s
heme dependen
e of the �-fun
tion. However, the s
heme depen-den
e of � is given exa
tly (!) in one-loop order. Indeed, sin
e � does not depend on �, letus 
hoose � in su
h a way that g� ! 0. Then for the �-fun
tion one 
an use the perturbativeexpansion ��(�) = �0�2 + �1�3 + :::or Z d��(�) = � 1�0� + ln� +O(�):In this limit the ratio of two parameters � belonging to two di�erent s
hemes isln �21�22 = � 1�0 � 1�1 � 1�2 � = � 1�0 [
1 � 
2℄ ; (6.52)where the 
oeÆ
ients 
1 and 
2 are 
al
ulated in the one-loop order. They 
an be foundfrom perturbative expansion of any physi
al quantity in two di�erent s
hemesR = g1(1 + 
1g1 + :::)= g2(1 + 
2g2 + :::):57



Sin
e � does not depend on g, one 
an take any value of g, and eq.(6.52) is always valid.The di�eren
e 
1 � 
2 does not depend on a parti
ular 
hoi
e of R (though ea
h of themdepends) and is universal.It should be noted that the quantities like the invariant or e�e
tive 
oupling, the �-fun
tion, et
. are not dire
tly observable. Therefore, their dependen
e on the subtra
tions
heme does not 
ontradi
t the independen
e of predi
tions of the method of 
al
ulations.We perform the perturbative expansion over the 
oupling whi
h is s
heme dependent, butthe 
oeÆ
ients are also s
heme dependent. As a result, within the given a

ura
y de�nedby the order of perturbation theory the answer is universal.In the minimal subtra
tion s
hemes when the renormalizations depend only on dimension-less 
ouplings, the one-loop renormalization 
onstants and hen
e the anomalous dimensionsand the �-fun
tion are the same in all s
hemes; the di�eren
e starts from two loops. Theex
eption is the �-fun
tion in a theory with a single 
oupling like QED, QCD or the �4 the-ory, where the di�eren
e starts from three loops. Indeed, if one has two subtra
tion s
hemesM1 and M2 so that the 
ouplings in two s
hemes are related byg2 = q(g1) = g1 + 
g21 +O(g31);then the �-fun
tions �1(g1) and �2(g2) are 
onne
ted by the relation�2(g2) = dq(g1)dg1 �1(g1)and their perturbative expansions are�1(g1) = �0g1 + �1g21 + �2g31 + :::;�2(g2) = �0g2 + �1g22 + � 02g32 + ::::so that the �rst two terms of the �-fun
tion are universal.As for the further terms of expansion, they depend on the renormalization s
heme andone 
an use this dependen
e as dis
retion, for instan
e, one 
an put all of them equal tozero. Then we would have an exa
t �-fun
tion. However, one should have in mind that itis not valuable by itself but rather in the aggregate with the PT expansion for the Greenfun
tions for whi
h we 
onstru
t the solution of the RG equation. This expansion in our"exa
t" s
heme is unknown.6.5 The running massesIn the minimal subtra
tion s
heme the renormalization of the mass is performed the sameway as the renormalization of the 
ouplings, i.e., the mass is treated as an additional 
ouplingand is renormalized multipli
atively, namely,mBare = Zmm;where the mass renormalization 
onstant Zm is independent of the mass parameters anddepends only on dimensionless 
ouplings. Then, in full analogy with the e�e
tive 
ouplingone 
an introdu
e the e�e
tive or the "running" massddt �m(t; g) = �m
m(�g); �m(0; g) = m0: (6.53)58



Solving this equation together with the equation for the e�e
tive 
oupling (6.8) one has�m(t; g) = m0e tZ0 
m(�g(t; g))dt = m0e �gZg 
(g)�(g)dg: (6.54)In the one-loop order �(�) = b�2; 
m(�) = 
�and the solution is m(t) = m0  �(t)�0 !
=b :This is the running mass!The natural question arises: what is the physi
al mass measured in experiment and howis it related to the running mass and at what s
ale?To answer this question, 
onsider why the mass is running. This is due to the radiative
orre
tions. If one 
onsiders the value of momentum whi
h is bigger than the mass, i.e. p2 >m2, then the parti
les are 
reated, they are running inside the loops and give the 
ontributionto the running. On the 
ontrary, if p2 < m2, parti
les are not 
reated, they "de
ouple" anddo not 
ontribute to the running. In the MOM s
heme this takes pla
e automati
ally be
ausefor the momentum smaller than the mass the diagram simply disappears. In the minimals
heme, on the 
ontrary, this does not happen. Hen
e, it is quite natural in this 
ase to stopthe running at the value of p2 = m2 and to identify the physi
al mass with the running massat the s
ale of the mass, i.e m2 = �m2(m2):However, this is true only up to �nite 
orre
tions. Let us 
ome ba
k to the de�nitionof the mass term in the Lagrangian. It is 
hosen in su
h a way that the propagator of aparti
le, whi
h is the inverse to the quadrati
 form, has the pole at p2 = m2. Therefore, amore appropriate de�nition of the physi
al mass is the position of the pole of the propagatorwith allowan
e for the radiative 
orre
tions, .i.e.,physi
al mass � pole massThis de�nition of a mass does not depend on a s
ale and it is also s
heme independentand may have physi
al meaning. The pole mass 
an be expressed through the running massat the s
ale of a mass with �nite and 
al
ulable 
orre
tions.Consider as an example the quark mass in QCD. The quark propagator is graphi
allypresented in Fig.25.--- = - + - &%'$�������� - + ...Figure 25: The quark propagator59



The 
orresponding expression isG(p̂; m) = ip̂�m + ip̂�m(iAp̂+ iBm) ip̂�m + :::= ip̂�m "1� Ap̂+Bmp̂�m + :::# = ip̂�m 11 + Ap̂+Bmp̂�m = ip̂�m+ Ap̂ +Bm:The pole mass is now de�ned as a root of the equationp̂(1 + A(p2))�m(1� B(p2)) = 0; (6.55)whi
h gives in the lowest ordermpole = m1� B(m2)1 + A(m2) = m[1� A(m2)� B(m2)℄:To 
al
ulate the fun
tions A and B, 
onsider the one-loop diagram shown in Fig.26.
Figure 26: The quark propagator in one loop in QCDThe 
orresponding expression is� = � g2s(2�)4CF Z dk 
�(p̂� k̂ +m)
�[(p� k)2 �m2℄ g��k2 (6.56)and was 
al
ulated earlier. The result has the form (3.19)A(p2; m2) = g2s16�2CF "1"�1�2 Z 10 dx(1�x) log p2x(1� x)�m2��2 # ; (6.57)B(p2; m2) = g2s16�2CF "�4" + 2 + 4 Z 10 dx log p2x(1� x)�m2��2 # : (6.58)After subtra
tion of divergen
es in the MS-s
heme one hasAMS(p2; m2) = � g2s16�2CF "1+2 Z 10 dx(1�x) log p2x(1�x)�m2��2 # ; (6.59)BMS(p2; m2) = g2s16�2CF "2 + 4 Z 10 dx log p2x(1� x)�m2��2 # : (6.60)Substituting p2 = m2, one �ndsAMS(m2; m2) = 2 + ln �2m2 ; BMS(m2; m2) = �6� 4 ln �2m2 : (6.61)60



Thus, for the radiative 
orre
tion to the pole mass we havempole = m(�) "1 + �sCF4� (4 + 3 ln �2m2 )# : (6.62)Substituting CF = 4=3 and �2 = m2 one obtains the desired relation between the pole massand the running mass at the mass s
alempole = m(m) �1 + 43 �s� � : (6.63)
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7 Le
ture VII: Zero Charge and Asymptoti
 FreedomSin
e the behaviour of the e�e
tive 
oupling has so essential 
onsequen
es we 
onsider twotypi
al examples whi
h are realized in quantum �eld theory in the one-loop approximationand presumably take pla
e in a full theory. Usually, one speaks about the zero 
hargebehaviour or the asymptoti
 freedom. We explain below what it means.7.1 The zero 
hargeThe notion of the zero 
harge appeared in QED in the leading log approximation. This iswhat takes pla
e within the renormalization group method in the one-loop approximation.If one writes down the expression for the renormalized 
oupling as a fun
tion of the "bare"
oupling, i.e. inverts eq.(6.31), one getsg = gB1 + �0gB=" = gB1 + �0gB log�2 ; (7.1)where the �rst 
oeÆ
ient of the �-fun
tion �0 > 0. Then, removing the regularization, i.e.,for " ! 0 or � ! 1, the renormalized 
oupling tends to zero independently of the valueof the "bare" 
oupling. This is what is 
alled the zero 
harge. For the e�e
tive 
oupling
onsidered above the zero 
harge 
orresponds to the behaviour shown on the left panel ofFig.27 whi
h is 
hara
terized by the Landau pole at high energies.

Figure 27: The behaviour of the e�e
tive 
oupling: the zero 
harge (left) and the asymptoti
freedom (right)The zero 
harge behaviour is typi
al of QED, the �4 theory for positive quarti
 
ouplingand also the Yukawa type intera
tions, i.e., in those theories where the �-fun
tion is positive.62



It is obvious that in the vi
inity of the pole the perturbation theory does not work and,hen
e, the one-loop formula is not appli
able. However, for small momenta transfer theone-loop approximation is reliable. For instan
e, in QED the e�e
tive expansion parameteris e2=16�2 = �=4� � 1=137=4� � 5:8 � 10�4 and the next loop 
orre
tions (whi
h have thesame sign) do not play any essential role. The behaviour of the e�e
tive 
oupling in QEDin the region up to 100 GeV has got the experimental 
on�rmation in measuring the �nestru
ture 
onstant at the LEP a

elerator. At the s
ale equal to the mass of the Z-bosonMZthe �ne stru
ture 
onstant is not 1=137 but �(MZ) � 1=128, whi
h is in a good agreementwith the one-loop formula.The large momenta transfer in this 
ase are limited by the pole provided the pole doesnot disappear in a full theory. It is still un
lear how higher orders of perturbation theoryin
uen
e this behaviour sin
e the perturbation series is divergent and it is impossible tomake de�nite 
on
lusions without additional nonperturbative information.The presen
e of the Landau pole indi
ates the presen
e of unphysi
al ghost states. Tosee this, 
onsider the photon propagator in QED whi
h due to the Ward identities 
oin
ideswith the invariant 
harge and in the leading log approximation has the form of a geometri
progression G(p2) = �ig�� � p�p�=p2p2 11� 43 PQ2 �04� log(�p2=m2) ; (7.2)where Q is the ele
tri
 
harge of a parti
le (in the units of ele
tron 
harge) running roundthe loop.This expression has a pole in the Eu
lidean region at p2 = �m2exp( 3��0Q2nf ). Substitutingm = me = 0:5 MeV, �0 ' 1=137 and PQ2 = [(4=9 + 1=9)3 + 1)3℄ = 8, one gets p2 '�(5 � 1031)2 GeV2. That is the pole is very far o�, even beyond the Plan
k s
ale, and at lowenergies one 
an ignore it. However, the presen
e of the pole indi
ates the presen
e of a newasymptoti
 state and the residue at the pole de�nes the norm of this state. In the 
ase ofthe Landau pole the residue is negative, i.e., the new state is a ghost, it has the wrong signof the kineti
 term in the Lagrangian. This fa
t, in its turn, leads to negative probabilities,whi
h indi
ates internal in
onsisten
y of the theory.Usually, it is assumed that there are two ways out of this trouble: either the higher order
orre
tions improve the behaviour of the theory at high momenta so that the Landau poledisappears, or that the zero 
harge theory is 
ontradi
tory by itself, but at high energiesit is part of a more general theory where the behaviour of the 
oupling is improved. Theexample of su
h a behaviour is given by the Grand Uni�ed Theories where QED is one ofthe bran
hes of a non-Abelian gauge theory with the asymptoti
ally free behaviour. In boththe 
ases the theory at high energies is modi�ed. At the same time, the zero 
harge theoryis infrared free, i.e. for small momenta transfer the 
oupling goes to zero.7.2 The asymptoti
 freedomThe name asymptoti
 freedom originates from the non-Abelian gauge theories where it wasfound that the sign of the �rst 
oeÆ
ient of the �-fun
tion is negative. The e�e
tive 
ouplingin this 
ase behaves as is shown in the right panel of Fig.27 and tends to zero at highmomenta transfer. This means that quarks in QCD are quasi-free parti
les, i.e., pra
ti
allydo not intera
t. This way one explains the su

ess of the so-
alled parton model of thestrong intera
tions at high energies, a

ording to whi
h the proton behaves as a set of free63



partons, and at high energies the intera
tion takes pla
e with the individual partons andtheir intera
tion does not play any role.The behaviour of the e�e
tive 
oupling in QCD at high energies was tested at variousa

elerators and in various experiments and the validity of the renormalization group formulawas 
on�rmed. The a

ura
y of modern measurements assumes the in
lusion of the nextterms of perturbative expansion. In QCD in theMS s
heme the four terms of the �-fun
tionare known. Below we present the two-loop expression��(�s) = � 14� [11� 23nf ℄�2s � 1(4�)2 [102� 383 nf ℄�3s +O(�4s): (7.3)As one 
an see, if the number of quarks in not too big, both the 
oeÆ
ients of the �-fun
tionare negative. All the experimental data �t a single 
urve for the e�e
tive 
oupling with theparameter �QCD ' 200 MeV (see Fig.28)
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Figure 28: The variation of the e�e
tive 
oupling of the strong intera
tions �s with energyIn four-dimensional spa
e the asymptoti
 freedom o

urs only in non-Abelian gaugetheories. But in the 
ase when one has several intera
tions, like in the Standard Model,the non-Abelian 
oupling may draw other 
ouplings into the asymptoti
ally free region.Consider, for instan
e, the behaviour of the Yukawa 
ouplings in the SM. For simpli
ity, letus take a single Yukawa 
oupling for the t-quark and a single gauge 
oupling. Then in theone-loop approximation the equations for the e�e
tive 
ouplings look likedgdt = �bg2; g � g2s16�2 ; (7.4)dydt = y(ay � 
g); y � y2t16�2 ; t � log q2q20 ;64



where the 
oeÆ
ients b; a and 
 are always positive and for the SM are equal to 7; 9=2 and8, respe
tively. The solutions to these equations areg = g01 + bg0t ; y = y0E1� ay0F ; (7.5)E(t) = (g=g0)
=b; F (t) = Z t0 E(t0)dt0:In the 
ase of a single Yukawa 
oupling it 
an be written in an expli
it formy = y0( gg0 )
=b1 + y0g0 a
�b [( gg0 )
=b�1 � 1℄ : (7.6)Graphi
ally, it 
an be presented in a phase diagram shown in Fig.29. For the initial 
ondition

Figure 29: The behaviour of the Yukawa and gauge 
ouplings for various initial 
onditionssu
h that y0 > (
�b)=a g0 the Yukawa 
oupling in
reases with momenta and has the Landaupole, while for y0 � (
 � b)=a g0 it demonstrates the asymptoti
ally free behaviour. In asimilar way in the Grand Uni�ed Theories one 
an rea
h the asymptoti
 freedom for all the
ouplings.The ba
k side of the asymptoti
 freedom at high energies is the presen
e of a pole at lowenergies or the infrared pole. In this region, we also go beyond the validity of perturbationtheory sin
e the 
oupling in
reases. To �nd the true behaviour of the 
oupling one has toattra
t independent nonperturbative information. However, in QCD the region near theinfrared pole p � �QCD is in the phase of hadronization, i.e., in this region the quark-gluondes
ription is no more adequate. Therefore, the behaviour of the e�e
tive 
oupling in thisregion is not des
ribed by perturbative QCD.7.3 The s
reening and anti-s
reening of the 
hargeThe variation of the 
oupling with momenta transfer or with the s
ale, whi
h is the 
har-a
teristi
 feature of quantum �eld theory, has its analog in a 
lassi
al theory. This analogyallows one to understand the qualitative reason for the variation of the 
oupling.Indeed, let us 
onsider the ele
tromagneti
 phenomena. Consider the diele
tri
 mediumand put the test ele
tri
 
harge in it. The medium will be polarized. The ele
tri
 dipolespresent in the medium will be rearranged in su
h a way as to s
reen the 
harge (see Fig.30).This is a 
onsequen
e of the Coulomb law: the opposite 
harges are attra
ted and the same
harges are repulsed. This is the essen
e of the ele
tri
 s
reening phenomena.65



Figure 30: The ele
tri
 s
reening and magneti
 anti-s
reeningThe opposite situation o

urs in magneti
 medium. A

ording to the Bio-Savart law, theele
tri
 
urrents of the same dire
tion are attra
ted and the opposite dire
tion are repulsed(see Fig.30). This leads to the anti-s
reening in magneti
 medium.In quantum �eld theory the role of the medium is played by the va
uum. The va
uum ispolarized in the presen
e of 
reated virtual pairs. The matter parti
les as well as transverselypolarized quanta of the gauge �elds a
t like the ele
tri
 dipoles in the diele
tri
 and 
ause thes
reening of the 
harge. At the same time, the longitudinal quanta of the gauge �elds behavelike 
urrents and 
ause the anti-s
reening. These two e�e
ts are in 
ompetition (see eq.(3.31)above) and, for instan
e, in QCD with a small number of quarks the e�e
t of anti-s
reeningprevails.Thus, the 
ouplings be
ome the fun
tions of the distan
e or momentum transfer des
ribedby the renormalization group equations.
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8 Le
ture VIII: AnomaliesThe gauge invarian
e leads to numerous relations between various operators and their va
-uum averages, i.e., the Green fun
tions. We have already 
ome a
ross su
h relations 
alledthe Ward or the Slavnov-Taylor identities. They are the 
onsequen
es of the gauge symme-try of the 
lassi
al theory. In 
ase when one has divergen
es in a theory and is bound to usesome regularization, the validity of these identities depends on invarian
e of the regulariza-tion. However, one 
an always perform the subtra
tion of divergen
es in su
h a way thatthe �nite parts obey these relations.The ex
eption from this rule is the so-
alled anomalies. By anomalies one usually meansthe violation in quantum theory of some relation, for instan
e, the 
onservation of the 
urrentor the Ward identity following from the symmetry properties of a 
lassi
al theory. The well-known examples of quantum anomalies is the anomaly of the tra
e of the energy-momentumtensor or the axial anomaly. The 
hara
teristi
 feature of the anomaly is the impossibilityof its removing by the rede�nition of any quantities or parameters.8.1 The axial anomalyConsider quantum ele
trodynami
s. Let us de�ne the ve
tor and the axial ve
tor 
urrentsj� = � 
� ; j5� = � 
�
5 : (8.1)In 
lassi
al theory the equations of motion lead to the 
onservation or partial 
onservationof the 
urrent ��j� = 0; ��j5� = 2imj5; (8.2)where j5 = � 
5 .On the other hand, as a 
onsequen
e of the gauge invarian
e, the ve
tor and the axialverti
es obey the Ward identities(p� p0)���(p; p0) = S�1(p)� S�1(p0); (8.3)(p� p0)��5�(p; p0) = S�1(p)
5 + 
5S�1(p0) + 2m�5(p; p0); (8.4)where ��;�5� and �5 are the ve
tor, axial and pseudos
alar verti
es, respe
tively, and S isthe fermion propagator.If one looks how the identities (8.3,8.4) are ful�lled in perturbation theory, one �rst of allhas to introdu
e some regularization due to the presen
e of the ultraviolet divergen
es. If theregularization is gauge invariant, then the ve
tor Ward identity is satis�ed in any order ofPT. For the axial identity there are two types of diagrams: in the �rst one the axial 
urrentis in the outgoing fermion line, and in the se
ond one the axial 
urrent is in the internal loop(see Fig.31). For the �rst type of a diagram the identity (8.4) is satis�ed, and for the se
ondtype there exists one famous triangle diagram (see Fig.32) where it is violated due to theultraviolet divergen
e of the integral. 67
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Figure 31: The diagrams with the axial 
urrent in external and internal fermion lines
γµγ

Figure 32: The anomalous triangle diagram for the axial 
urrentIndeed, the 
orresponding integral in momentum spa
e looks like
µ

ν

λ

= (�)(�ie)2 Z d4k(2�)4Tr "
�
5 ik̂k2
� i(k̂ + p̂)(p+ k)2
� i(k̂ + q̂)(q + k)2 # (8.5)and is formally divergent requiring the regularization.To preserve the 
onservation of the gauge invarian
e, it is useful to introdu
e the dimen-sional regularization; however, here we for the �rst time fa
e a problem sin
e the 
5 matrixhas no natural and 
onsistent 
ontinuation to non-integer dimension. Two properties of the
5 matrix, namely, the anti
ommutation with all 
�, � = 0; 1; 2; 3 and the property of thetra
e Tr(
5
�
�
�
�) = �4i����� are in 
ontradi
tion if the dimension is noninteger. To
al
ulate the axial anomaly, we use the following tri
k: we use the formula for the tra
e butreje
t the property of anti
ommutativity of 
5. This allows one to perform al the 
al
ulationsin a 
onsistent and unambiguous way.The divergen
e of the axial 
urrent 
an be obtained by multipli
ation of (8.5) by iq�whi
h gives e2 Z d4k(2�)4 Tr hq̂
5k̂
�(k̂ + p̂)
�(k̂ + q̂)ik2(k + p)2(k + q)2 (8.6)Using the 
y
li
 property of the tra
e we move q̂ to the right and write it as q̂ = (q̂+ k̂)� k̂.Then the �rst term multiplied by k̂+ q̂ gives (k+ q)2 and 
an
els with the denominator. Asa result, one gets the integral Z d4k(2�)4 Tr hq̂
5k̂
�(k̂ + p̂)
�ik2(k + p)2 ;whi
h depends only on p and after the integration turns to zero due to the antisymmetry ofthe tra
e with the 
5 matrix. 68



In the se
ond term we will drag k̂ to the left until it is multiplied by k̂ giving k2. As aresult, at ea
h step we always get the tra
e of four 
-matri
es with 
5 for whi
h we have theformula with the �-tensor. We obtain in the numerator�4i�����k�(k + p)�[(k + q)2 � q2℄ + 8i�����k�(k + p)�q�k� � 4i�����k�q�[(k + p)2 � p2℄�4i�����p�q�k2 + 8i�����k�p�q�k�:Despite the fa
t that the integral is formally divergent, using a dimensional regularizationand 
olle
ting all terms together we �nally get the �nite answer equal to� e24�2 �����p�q� = � e24�2 �����p�(q � p)�; (8.7)One has to add to this expression the same diagram but with the repla
ement p $q � p; � $ � and take the sum, but the answer is already invariant with respe
t to thisrepla
ement. Multiplying (8.7) by A�(p)A�((q � p) and transforming to the 
oordinaterepresentation, one gets��j5� = e24�2 �������A���A� = e216�2 �����F��F��: (8.8)As a result one has the following modi�
ation of equations for the divergen
e of the axial
urrent and the axial vertex ��j5� = 2imj5 + �4�F��F�������; (8.9)(p� p0)��5�(p; p0) = S�1(p)
5 + 
5S�1(p0) + 2m�5(p; p0)� i �4�F (p; p0); (8.10)where F (p; p0) is the vertex with insertion of the operator F ~F . The appearan
e of the r.h.sin these equations is 
alled anomaly known as the Adler-Bell-Ja
kiw or triangle anomaly.The most essential here is not the violation of the Ward identity but the fa
t that sub-tra
ting the anomaly and restoring the "normal" Ward identity for the axial vertex weviolate the 
onservation of the ve
tor 
urrent. In other words, it is impossible to satisfy the
onservation of axial and ve
tor 
urrents simultaneously.Noti
e that the violation of the 
onservation of the axial 
urrent preserving the 
on-servation of the ve
tor 
urrent (8.9) 
an be obtained by a

urately 
al
ulating the matrixelement for the divergen
e of the axial 
urrent in x-spa
e splitting the arguments of the �eldoperators. Consider the va
uum average of the divergen
e of the axial 
urrent, and to avoidthe singularity for the produ
t of two operators at 
oin
iding points, split the arguments.Then to preserve the gauge invarian
e, we have to insert between the operators the exponentof the Wilson line. The axial 
urrent then takes the formj5�(x) = lim"!0f � (x + "=2)
�
5 exp[�ie x+"=2Zx�"=2 dz�A�(z)℄ (x� "=2)g; (8.11)and for the divergen
e we get��j5�(x) = lim"!0f�� � (x+ "=2)
�
5 exp[�ie Z x+"=2x�"=2 dz�A�(z)℄ (x � "=2)+ � (x + "=2)
�
5 exp[�ie Z x+"=2x�"=2 dz�A�(z)℄�� (x� "=2) (8.12)+ � (x + "=2)
�
5[�ie"���A�(x)℄ exp[�ie Z x+"=2x�"=2 dz�A�(z)℄ (x� "=2)g:69



Using the equations of motion
��� = �ieÂ ; �� � 
� = ie � Âand keeping the terms of the order of " we �nd��j5�(x) = lim"!0f�� � (x+ "=2)[�ieÂ(x+ "=2)� ieÂ(x� "=2)�ie"�
���A�(x)℄
5 (x� "=2)g= lim"!0f � (x+ "=2)[�ie"�
�(��A� � ��A�)℄
5 (x� "=2)g (8.13)Now we have to 
al
ulate the va
uum average over the fermion va
uum (the photon �eld isassumed to be external) whi
h means that we have to permute the fermion operators. Thepermutation fun
tion of the fermion operators is singular and this is the reason for appear-an
e of a nonzero term similarly to the appearan
e of triangle anomaly due to divergen
y ofthe integral. Indeed, 
al
ulating the propagator of the fermion in external �eld and keepingthe terms linear in the photon �eld, we getS(y � z) = Z d4k(2�)4 eik(y�z) ik̂k2 + Z d4k(2�)4 d4p(2�)4 ei(k+p)ye�ikz i(k̂ + p̂)(k + p)2 (�ieÂ(p) ik̂k2 + ::: (8.14)The propagator (8.14) is singular as y ! z; however, the �rst term does not give a 
ontri-bution to the divergen
e, while the se
ond one leads toh � (x + "=2)
�
5 (x� "=2)i == Z d4k(2�)4 d4p(2�)4 eipxe�ik"Tr[ i(k̂ + p̂)(k + p)2 (�ieÂ(p)) ik̂k2
�
5℄= Z d4k(2�)4 d4p(2�)4 eipxe�ik"4e�����(k + p)�A�(p)k�(k + p)2k2 : (8.15)To �nd the limit as "! 0, one 
an expand the integrand for large k, whi
h givesh � (x+ "=2)
�
5 (x� "=2)i = 4e����� Z d4p(2�)4 eipxp�A�(p) Z d4k(2�)4 e�ik"k�k4= �4e�����i��A�(x) 2"�16�2"2 = �e�����iF��(x) "�4�2"2 ; (8.16)Substituting this expression into (8.13) we �nd��j5� = lim"!0f�e�����iF��(x) "�4�2"2 (�ie"�F�� )g = e216�2 �����F��F��; (8.17)that 
oin
ides with (8.9).The axial anomaly has one very important property: the obtained formulas (8.9) and(8.10) are exa
t in all orders of perturbation theory, i.e., have no radiative 
orre
tions. Morerigorous statement is: there exists su
h a renormalization s
heme (and it was 
onstru
tedexpli
itly) that the radiative 
orre
tions to the axial anomaly are absent. This statement isthe subje
t of the Adler-Bardeen theorem. Graphi
ally, this means the 
an
ellation of the
ontributions of the diagrams shown in Fig.33, whi
h was 
he
ked by expli
it 
al
ulation.The Adler-Bardeen theorem is valid also in non-Abelian theories. It has important 
on-sequen
es: if the anomaly is 
ompensated in the lowest order, it will not appear further.70



γµγ γµγ γ γ γ γγ γ γµ µ µ µγFigure 33: Can
ellation of radiative 
orre
tions to the axial anomaly8.2 Consequen
es of the axial anomalyLet us ask the question what are the 
onsequen
es of the axial anomaly? Here one has todistinguish two 
ases: when the operator of the axial 
urrent is an external operator withrespe
t to the Lagrangian and when it is present in the intera
tion Lagrangian.In the �rst 
ase, the presen
e of anomaly does not lead to any troubles and even maybe useful. Thus, for instan
e, in the 
urrent algebra whi
h des
ribes the low energy hadronintera
tions, the axial anomaly is responsible for the neutral pion de
ay �0 ! 2
 and is inagreement with the experiment.In the se
ond 
ase, the triangle anomaly leads to that the ultraviolet renormalizations ofthe ve
tor vertex do not remove all divergen
es from the axial vertex. This has destru
tive
onsequen
es for the renormalizability of the whole theory. To see this, 
ompare the twopro
esses of the elasti
 s
attering of leptons: �e + e ! �e + e and �� + e ! �e + � in theStandard Model. Graphi
ally, in the lowest order they di�er by one diagram 
ontaining thetriangle anomaly (See Fig.34).
γ γ

ν ν

γµ

Figure 34: The anomaly in the pro
ess of lepton s
attering in the Standard ModelAs a result, after the renormalization the amplitude of ��e-s
attering has �nite radiative
orre
tions, while that of �åe-s
attering is divergent. This led to nonrenormalizability of thetheory and was a serious problem for the left-right nonsymmetri
 model with SUL(2)�U(1)symmetry before the introdu
tion of the ñ-quark. Remarkably, the ñ-quark introdu
ed byGlashow, Iliopoulos and Maiani for suppression of the neutral 
urrent 
hanging strangenessleads to the 
ompensation of the 
ontributions of quarks and leptons to triangle anomalyand restores the renormalizability of the theory.In the Standard Model due to its left-right asymmetry the presen
e of the axial 
urrentsfor quarks and leptons leads to several kinds of triangle anomalies where all three gauge�elds may be in the verti
es of the triangle. However, not all of them lead to anomalies. Ingeneral, the anomaly is proportional to the tra
eTr T afT b; T 
g;71



where the matrix T a is the generator of the 
orresponding gauge group in the representa-tion 
orresponding to the �elds that run inside the triangle. The ne
essary 
ondition ofthe existen
e of anomaly is the presen
e of the 
omplex representations and the nontrivialanti
ommutator of the generators of the group. Among the simple Lie groups whi
h satisfythis requirement, only the groups SU(n); SO(4n+ 2) and E6 have 
omplex representationsand out of them only the SU(n); n > 2 and SO(6) groups have a symmetri
 invariant neededfor the 
onstru
tion of the anomaly. The gauge theories built on other groups are free fromanomalies.The non-vanishing anomalies 
orresponding to the symmetry group of the StandardModel SU
(3) � SUL(2) � UY (1) are presented in Fig.35 where the gauge �elds adjustedto the groups U(1) and SU(2) are shown prior to mixing. The parti
les that run over thetriangle 
an be either left or right quarks and leptons. Parti
les of di�erent heli
ity give theopposite sign 
ontribution to the axial anomaly.
Figure 35: The triangle anomaly in the Standard ModelIn the �rst 
ase, the anomaly is proportional to the tra
e of the 
ube of hyper
hargeTrY 3 = TrY 3L � TrY 3R and its absen
e is a
hieved by the 
an
ellation of the 
ontributionsof quarks and leptons in ea
h generationTrY 3 = = 3 �(13)3 + (13)3 � (43)3 � (�23)3�+ (�1)3 + (�1)3 � (�2)3 = 0:" " " " " " " " (8.18)
olour uL dL uR dR �L eL eR:In further diagrams the anomaly is proportional to, respe
tively,TrYL = 3�13 + 13�� 1� 1 = 0;T rYq = 3�13 + 13 � 43 � (�23)� = 0; (8.19)TrY = 3�13 + 13 � 43 � (�23)�� 1� 1� (�2) = 0:This way the anomaly is mira
ulously 
an
eled in all the 
ases and does not break therenormalizability of the SM.8.3 The 
onformal anomalyAnother example of quantum anomaly is the 
onformal anomaly or the anomaly of the tra
eof the energy-momentum tensor. The requirement of 
onformal (s
ale) invarian
e means the72



invarian
e of the a
tion with respe
t to the transformationx� ! x�e��; �(xe��)! e���(x); (8.20)where � is the dimension of a �eld. This 
ondition is ful�lled in the 
lassi
al Lagrangianif it has no dimensional parameters. In this 
ase, a

ording to the Noether theorem, thereexists a 
onserved 
urrent 
alled the dilatation 
urrent D� = ���x� , so that��D� = ���;where ��� is the symmetri
 energy-momentum tensor.The easiest way to see it is to de�ne the energy-momentum tensor as a variation of thea
tion of the matter �elds with respe
t to the spa
e-time metri
 in the external gravitational�led ��� = 2 ÆÆg�� Z d4x L(x): (8.21)The s
ale transformation 
an be realized as a variation of the metri
g��(x)! e2�g��(x): (8.22)This means that the variation of the Lagrangian under this transformation is the tra
e of���. The deviation of the tra
e of the energy-momentum tensor from zero indi
ates theviolation of the s
ale (and hen
e 
onformal) invarian
e.In the quantum 
ase, due the presen
e of the ultraviolet divergen
es the new s
ale ap-pears. This is the same phenomenon of dimensional transmutation dis
ussed above. There-fore, the s
ale invarian
e of the a
tion is violated.Sin
e the 
oupling 
onstant be
omes s
ale dependent, its variation with the s
ale (8.20)takes the form Æg = ��dgd� = ��(g): (8.23)Hen
e, for the variation of the Lagrangian we getÆ L = � ÆLÆgi�i(fgg); (8.24)i.e., ��D� = ��� = ÆLÆgi�i(fgg): (8.25)This relation is known as the tra
e anomaly of the energy-momentum tensor.Similarly to the axial anomaly, relation (8.25) 
an be 
he
ked by perturbation theory.However, in this 
ase the result is de�ned by the full �-fun
tion 
al
ulated in all orders ofPT.
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9 Le
ture IX: Infrared Divergen
esOne more problem that we en
ounter on the way of 
al
ulating the �nite expressions for theprobabilities of physi
al pro
esses is the presen
e of the so-
alled infrared divergen
es. Theyappear when 
al
ulating the matrix elements of the s
attering matrix on shell, i.e., when thesquares of external momenta are equal to the 
orresponding masses squared and the theory
ontains massless parti
les like photons or gluons. The infrared divergen
es 
an be of twotypes: the divergen
es for small values of momenta (the genuine infrared divergen
es) andthe divergen
es at parallel momenta (the 
ollinear divergen
es). Contrary to the ultravioletdivergen
es, the infrared divergen
es have a 
lear physi
al meaning: a massless parti
lewith a very small momentum 
an not be registered and with momentum parallel to anotherparti
le 
annot be distinguished. For this reason in the theories with massless parti
les onehas to de�ne the physi
al pro
ess to be evaluated in a proper way.9.1 The double logarithmi
 asymptoti
sFor illustration 
onsider the pro
ess of 
reation of a muon pair in the e+e� annihilation. Theleading diagrams for this pro
ess are shown in Fig.36.
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Figure 36: The diagrams 
ontributing to the pro
ess e+e� ! �+�� in QED: a) the leadingorder, b)- d) the virtual 
orre
tions of the order of �, e) the real 
orre
tions of the order of�. The �rst diagram is the tree amplitude, it gives the 
ontribution in the leading order. Theradiative 
orre
tions due to emission of virtual photons (Fig.36 b)) are the 
orre
tions to thevertex fun
tion 
onsidered above (see (3.23)). It is easy to see that if one puts in this formulaall fermion momenta on mass shell, i.e. p2 = (p�q)2 = m2, then in the se
ond integral in thedenominator one gets [�m2x2 + q2y(x� y)℄. Performing the 
hange of variables y ! yx sothat all the integrations are performed within the limits [0,1℄, we get [�m2x2+q2x2y(1�y)℄,and the integral (with a

ount of the Ja
obian = x) is logarithmi
ally divergent as x! 0.74



The appeared divergen
e has the infrared nature. Like the ultraviolet one it 
an beregularized, for instan
e, by introdu
ing the nonzero photon mass or 
utting the integralover momenta at the lower limit, or with the help of dimensional regularization but it 
annotbe removed by any renormalization.Let us 
al
ulate this diagram on mass shell introdu
ing the nonzero photon mass mphinto the virtual photon line. This will not break the gauge invarian
e sin
e, as it will be
lear later, after the 
an
ellation of the IR divergen
es one 
an put the mass of a photonequal to zero.Let us go ba
k to eq.(3.23), remove the UV divergen
e by the minimal subtra
tion andgo to the mass shell for the fermion �elds taking into a

ount that the external fermionoperators obey the Dira
 equation (p̂�m)u(p) = 0 and �u(p� q)(p̂� q̂�m) = 0. Then aftersome exer
ise we obtain for the vertex fun
tion the following expression:�R1 (p; q) = ie �F1(q2)
� + iF2(q2)���q�2m � ; ��� � i
�
� � 
�
�2 ; (9.1)where the form-fa
tors Fi(q2) have the formF1(q2) = e216�2 "�2� 2 Z 10 dxZ 10 dy x log �m2x2 + q2x2y(1� y)��2 !+ Z 10 dx Z 10 dy x 2m2(2�2x�x2)�2q2(1�xy)(1�x+xy)�m2x2 + q2x2y(1� y)�m2ph(1� x) # ; (9.2)F2(q2) = e216�2 "Z 10 dx Z 10 dy x �4m2x(1� x)�m2x2+q2x2y(1�y)�m2ph(1�x)# : (9.3)The form fa
tor F2 is IR 
onvergent and does not need any regularization. Substitutingmph = 0, we get F2(q2) = �4� Z 10 dy 2m2m2 � q2y(1� y) : (9.4)For q2 = 0 it 
an be easily 
al
ulated and equalsF2(q2 = 0) = �2� ; (9.5)whi
h is nothing else but the �rst 
orre
tion to the g-fa
tor, whi
h is 
alled the anomalousmagneti
 moment of ele
tron (muon).As for the form fa
tor F1, it is IR divergent. We 
al
ulate its divergent part in the limitmph ! 0. It 
omes only from the se
ond integral in (9.2). To simplify the integration, wenoti
e that the divergen
e is de�ned by the region of the parameter x � 0. Therefore, weput x = 0 everywhere in the numerator and in the 
oeÆ
ient of mph in the denominator.Then one gets F1(q2) ' e216�2 Z 10 dy Z 10 xdx 2(2m2 � q2)[�m2 + q2y(1� y)℄x2 �m2ph : (9.6)The integral over x is now easily evaluatedF1(q2) ' �4� Z 10 dy 2m2 � q2[�m2 + q2y(1� y)℄ log �m2 + q2y(1� y)�m2ph�m2ph ! : (9.7)75



The remaining integral over y is also simple. We 
al
ulate it in the limit �q2 ! 1. Thenit takes the formF1(q2) ' � �4� Z 10 dy q2[�m2+q2y(1�y)℄ log �q2m2ph! '��2� log �q2m2 ! log �q2m2ph! : (9.8)The obtained double logarithmi
 behaviour of the form-fa
tor is 
alled the Sudakov doublelogarithm. It 
ontains the infrared 
uto� in the form of the photon mass. In the amplitudeof 
reation of the muon pair there are two of su
h form fa
tors for the ele
tron and themuon verti
es, respe
tively. The 
orre
tions to the fermion and the photon propagatorsdo not 
ontain the IR divergen
es. Thus, the 
ross-se
tion of the pro
ess e+e� ! �+��is logarithmi
ally divergent. In order to understand the reason of appearan
e of the IRdivergen
e and to �nd the method of its elimination, 
onsider the pro
ess of 
reation of themuon pair from the point of view of an observer.9.2 The soft photon emissionDuring the pro
ess of ele
tron-positron annihilation the muon pair is 
reated with momentathat satisfy the 
onservation law and 
an be measured. However, they are registered withsome a

ura
y, and momentum smaller than some value whi
h depends on a parti
ular de-te
tor is not registered. Therefore, if besides the muon pair the photon with momentumsmaller than this value is 
reated, then this pro
ess with emission of the "soft" 
-quantume+e� ! �+��
 is experimentally indistinguishable from the initial pro
ess e+e� ! �+��.The diagrams 
orresponding to the pro
ess e+e� ! �+��
 are shown in Fig.36 e). They
ontain an additional vertex and hen
e additional 
oupling, but being squared give a 
or-re
tion to the main pro
ess of the order of �, exa
tly as the radiative 
orre
tions due to thevirtual photon.Let us 
ompare the di�erential 
ross-se
tions of the pre
ess e+e� ! �+�� in the one-loopapproximation and e+e� ! �+��
 in the tree approximation. We have, respe
tively,d�d
(e+e� ! �+��) =  d�d
!0"1��� log �q2m2e;�! log �q2m2ph!+:::+O(�2)# (9.9)d�d
(e+e� ! �+��
) =  d�d
!0"+�� log �q2m2e;�! log �q2m2ph!+:::+O(�2)# (9.10)where the se
ond 
ross-se
tion is written down without derivation whi
h we will performlater. As follows from eqs.(9.9,9.10), ea
h of these 
ross-se
tions is IR divergent, but in thesum the divergen
es 
an
el and one gets the �nite answer.What is observable after all? In fa
t, neither the �rst nor the se
ond pro
ess is observableseparately. In a real dete
tor with limited sensitivity one observes the pro
ess of 
reationof the muon pair plus an arbitrary number of soft photons with the total energy below thesensitivity threshold. In a given order of perturbation theory we have to sum the 
ross-se
tions of the two pro
esses in order to get the observed 
ross-se
tion d�d
!observable =  d�d
! (e+e� ! �+��) +  d�d
! (e+e� ! �+��
; E < Emin): (9.11)76



The latter 
ross-se
tion is given by the same formula (9.10) with the repla
ement in these
ond logarithm of the photon energy by Emin. Thus, we get d�d
!observable =  d�d
!0 "1� �� log �q2m2e;�! log �q2E2min!+ :::+O(�2)# : (9.12)As one 
an see, for the proper statement of the problem the 
ross-se
tion of the observablepro
ess is �nite and does not depend on the IR regulator. At the same time, it depends on thesensitivity of the dete
tor Emin and for improved sensitivity tends to in�nity. However, thisin�nity also is not physi
al and is the artefa
t of perturbation theory: when the logarithmbe
omes large we go beyond the s
ope of appli
ability of perturbation theory and it isne
essary to perform the summation of these 
orre
tions by analogy with what happenswith the ultraviolet logarithms within the renormalization group method.Thus, the IR divergen
es appear due to the 
ontributions of the photons with "soft" mo-menta: real with the energy smaller than Emin and virtual with momenta k2 < E2min. Whatis important is that the momenta of fermions are on mass shell, otherwise the singularitiesin the propagator do not arise. The typi
al diagram of higher order 
ontains a big amountof real and virtual photon lines (see Fig.37).

Figure 37: The hard pro
ess with 
reation of the soft photonsLet us try to sum up the 
ontributions of these soft photons. Consider �rst the externalfermion line with the outgoing photons (real and virtual).
Figure 38: The emission of the soft photons from the fermion lineIt 
orresponds to the following expression:�u(p) (�ie
�1) i(p̂ + k̂1 +m)2pk1 (�ie
�2) i(p̂+ k̂1 + k̂2 +m)2p(k1 + k2) +O(k2) � � � (9.13)� � � (�ie
�n) i(p̂+ k̂1 + � � �+ k̂n +m)2p(k1 + � � �kn) +O(k2) iMhard:77



We use now the fa
t that the operator �u(p) obeys the Dira
 equation �u(p)(p̂�m) = 0 andomit the momenta ki � p in the numerator. Then we get�u(p)
�1(p̂+m)
�2(p̂+m) � � � = �u(p)2p�1
�2(p̂+m) � � � = �u(p)2p�12p�2 � � � : (9.14)Hen
e, eq.(9.13) takes the form�u(p) (ep�1pk1 )(e p�2p(k1 + k2)) � � � (e p�np(k1 + � � �+ kn)): (9.15)The next step is the summation over all the permutations of the photon lines and thepermutations of momenta ki. (So far we have not distinguished between the real and virtualphotons, we will do it later.) This operation is non-trivial but leads to the simple result.One has Xpermutations 1pk1 1p(k1 + k2) � � � 1p(k1 + k2 + � � �+ kn) = 1pk1 1pk2 � � � 1pkn : (9.16)The same pro
edure 
an be applied to the in
oming fermion line. The di�eren
e isthat the fermion momentum has the opposite dire
tion whi
h leads to the repla
ement of(p+ki)2 to (p�ki)2 in the propagator, i.e., the 
hange of the sign p! �p in the denominator.Colle
ting both fa
tors together we get the following expression for the amplitude of emissionof soft photons from arbitrary points of the in
oming and the outgoing line (Fig.39):

Figure 39: The emission of soft photons from arbitrary points of the in
oming and theoutgoing linesM = �u(p0) iMhard u(p) e p0�1p0k1 � p�1pk1! e p0�2p0k2 � p�2pk2! � � � e p0�np0kn � p�npkn! : (9.17)Now we have to de
ide whi
h photons are real and whi
h are virtual. The virtual photon
an be obtained by joining the two photon momenta ki and kj, taking ki = �kj = k,multiplying by the photon propagator and integrating over k. In this way for any virtualphoton we get the expression:e22 Z d4k(2�)4 �ik2  p0p0k � ppk! p0�p0k � p�pk! ; (9.18)where the fa
tor 1/2 
ompensates the double 
ounting due to permutation of ki and kj. Theobtained integral is nothing else but the vertex fun
tion in the one-loop approximation, i.e.,the form fa
tor F1(q2). 78



If the number of virtual photons equals n, one gets the produ
t of n expressions like(9.18) and the fa
tor 1=n! taking into a

ount the permutations whi
h do not 
hange theresult. The full answer is obtained with the help of summation over the soft virtual photons,whi
h gives � 1Xn=0 F n1n! = �u(p0) iMhard u(p) exp(F1): (9.19)At the same time, if the real photon is emitted, then instead of the propagator one hasto multiply the amplitude by the polarization operator, sum up over all polarizations andintegrate the square of the matrix element over the photon phase spa
e. In this 
ase, onegets the following expression:I(q2) = e2 Z d3k(2�)3 �g��2jkj  p0�p0k � p�pk! p0�p0k � p�pk! ; (9.20)whi
h is the element of the 
ross-se
tion of the pro
ess e+e� ! �+��
. The integrationover the modulus of the three-ve
tor ~k has to be performed within the limits (mph; Emin).Contra
ting the indi
es one getsI(q2) = � e2(2�)3 Z d3k2jkj  p02(p0k)2 � 2 p0p(pk)(p0k) + p2(pk)2! : (9.21)The �rst and the last integrals are equal to ea
h other. Let us 
onsider the last one and
hoose the frame where ~p = 0. This givesI1 = � e2(2�)3 4� Z Eminmph k2dk2k m2(mk)2 = � �2� log(E2minm2ph ): (9.22)As for the se
ond integral, we pro
eed in the following way: �rst we also 
hoose the frame~p = 0, and then we 
ovariantize the answer. One hasI2 = e2(2�)32� Z Eminmph k2dkk Z 1�1 d 
os � mq~p02 +m2(mk)(q~p02 +m2k � j~p0jk 
os �)= �2� log(E2minm2ph )q~p02 +m2j~p0j log0B�q~p02 +m2 � j~p0jq~p02 +m2 + j~p0j1CA : (9.23)Covariantizing this answer and having in mind that q = p � p0; p2 = p02 = m2 and, hen
e,q2 = 2m2 � 2mq~p02 +m2 one getsI2(q2) = �2� log(E2minm2ph ) 2m2 � q2q�q2(4m2 � q2) log0�2m2 � q2 �q�q2(4m2 � q22m2 � q2 +q�q2(4m2 � q21A : (9.24)Thus,I(q2) = �2� log(E2minm2ph ) 24 2m2 � q2q�q2(4m2 � q2) log0�2m2�q2�q�q2(4m2�q22m2�q2+q�q2(4m2�q21A�235 : (9.25)79



In the limit �q2 !1 we get the desired answerI(q2)! �� log(E2minm2ph ) log(�q2m2 ); (9.26)
oin
iding with (9.10).If there are n real photons, there are n su
h 
ontributions and the symmetry fa
tor 1=n!taking into a

ount the identity of the �nal parti
les. The 
ross-se
tion of the pro
ess withemission of an arbitrary number of photons with the energy smaller than Emin hen
e equals1Xn=0 d�d
(e+e�!�+��+ n
) = d�d
(e+e�!�+��)� 1Xn=0 Inn! = d�d
(e+e�!�+��)eI : (9.27)Combining the results for the real and virtual photons one gets the �nal expression forthe observable 
ross-se
tion with emission of an arbitrary number of photons with the energysmaller than Emin d�d
!observable =  d�d
!0 � exp (2F1)� exp (I)=  d�d
!0 exp "��� log(�q2m2e;� ) log(�q2m2ph )# exp "�� log(�q2m2e;� ) log(E2minm2ph )#=  d�d
!0 exp "��� log(�q2m2e;� ) log( �q2E2min )# : (9.28)The obtained expression is valid in all orders of perturbation theory. The exponential fa
tordoes not depend on the IR 
uto� but on the sensitivity of the dete
tor. It is 
alled theSudakov form fa
tor. When Emin tends to zero, the form fa
tor de
reases and in the limitEmin ! 0 vanishes. This is the manifestation of the statement that he amplitude of 
reationof the fermion pair without a

ompanying soft photons indeed vanishes: the 
harged parti
leinevitably emits the low frequen
y ele
tromagneti
 waves. This means that the 
ross-se
tionof elasti
 ele
tron s
attering without in
lusion of emission of bremsstrahlung quanta shouldvanish, pre
isely as it follows from eq.(9.28).Let us estimate the value of the Sudakov form fa
tor for some real pro
ess. A goodexample is the 
ross-se
tion of e+e� annihilation into hadrons whi
h in the leading orderin the �ne stru
ture 
onstant is des
ribed by one diagram with Z-boson ex
hange in thes-
hannel. The 
ross-se
tion has a maximum in the Z-boson peak where it is des
ribed bythe Breit-Wigner resonan
e formula. The energy is equal to the Z-boson mass MZ and theenergy resolution is de�ned by the Z-boson width �Z . Substituting the values MZ = 91:187GeV, �Z = 2:496 GeV, me = 0:5 MeV, � = 1=128 into the form fa
tor (9.28) we getexp "��� log(M2Zm2e ) log(M2Z�2Z )# � 0:648:As one 
an see, the form fa
tor, despite the smallness of the �ne stru
ture 
onstant, 
onsid-erably departs from unity and has to be taken into a

ount when analysing the experimentaldata. 80



9.3 The 
an
ellation of the infrared divergen
esThe 
onsidered example is typi
al of the QED and one 
an make the general statement
on
erning the infrared divergen
es for the elements of the S-matrix.The infrared divergen
es in radiative 
orre
tions to the 
ross-se
tion of any physi
alpro
ess in QED are 
an
elled in every order of perturbation theory if to the 
ross-se
tionof the elasti
 pro
ess one adds the inelasti
 
ross-se
tion of the pro
ess with emission of anarbitrary number of additional photons integrated over the phase spa
e with the requirementthat the total photon energy does not ex
eed some value Emin.This statement is also valid for the 
ross-se
tions of the pro
esses in non-Abelian gaugetheories like the ele
troweak theory and some pro
esses in QCD, though in this 
ase, dueto the self-intera
tion of the non-Abelian gauge �elds, there is no full fa
torization withthe exponentiation, and the proof of this statement presents some problem. Nevertheless,for many pro
esses the result has the same form. Thus, for example, the ele
tromagneti
form-fa
tor in QCD has the same Sudakov form (9.28) but with the repla
ement �! CF�s.Thus, one 
an say that the problem of obtaining the ultraviolet and the infrared �niteradiative 
orre
tions to the 
ross-se
tions of the physi
al pro
esses is solved in two steps: �rst,with the help of the renormalization pro
edure one gets rid of the ultraviolet divergen
es,whi
h is under full 
ontrol in renormalizable theories; se
ond, de�ning the 
orre
t physi
alpro
ess in
luding the emission of the soft quanta, the 
an
ellation of the infrared divergen
estakes pla
e.As we will see below, this is not suÆ
ient in non-Abelian gauge theories with masslessgauge �elds. They 
ontain additional divergen
es whi
h require some ads-inn to the des
ribedpro
edure. We will 
onsider this question in the last le
ture.
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10 Le
ture X: Collinear Divergen
es10.1 The 
ollinear divergen
es in massless theoryThe obtained result (9.28) for the 
ross-se
tion of 
reation of the muon pair in the pro
essof e+e�-annihilation with emission of additional soft photons is typi
al of the theories witha massive fermion and massless photons. It 
an be generalized to non-Abelian theorieswith massless gluon, though the gluon intera
tions 
ause some problems in proving the
an
ellation of the IR divergen
es. Note, however, that eq. (9.28) 
ontains the logarithmi
singularity with respe
t to the fermion mass, and if the latter tends to zero, one has thenew divergen
e. This would not 
ause any problem sin
e all the fermions are massive butthe masses of the ele
tron and the light quarks are so small 
ompared to the 
hara
teristi
energies of the s
attering pro
ess that with good pre
ision it is reasonable to negle
t them. Asfor the QCD, 
onsidering the pro
esses with gluons in initial states due to the self-intera
tionof the gluons we fa
e this problem for the gluon amplitudes.Let us analyse what is the reason for the appearan
e of the new divergen
e after the IRdivergen
e at small photon momenta if regularized by introdu
ing the photon mass. Considerfor this purpose eq. (9.17) for the 
ontribution of the real or virtual photons. The di�eren
eis that in one 
ase the integration goes over the four-momentum of the virtual photon; andin the other 
ase, over the three-momentum of the real photon, but what is essential thatfor the massless ele
tron its propagator takes the form12pk = 12(p0k0 � ~p~k) ' 12(j~pjj~kj � j~pjj~kj 
os �) = 12j~pjj~kj(1� 
os �) ; (10.1)where � is the angle between the ele
tron and photon momenta. (In the 
ase of a virtualphoton we use the fa
t that the 
ontribution to the singularity 
omes from the region ofphoton momentum 
lose to the mass shell.)Thus, the divergen
e appearing in the massless 
ase 
omes from the integration overthe angles and not over the modulus, as in the 
ase of the IR divergen
e, and is relatedto the 
ollinearity of momenta of two parti
les. For this reason it is 
alled the 
ollineardivergen
e. To get rid of these divergen
es, one 
an introdu
e the angular sensitivity of thedete
tor analogously to the IR divergen
e. This would re
e
t the fa
t that two masslessparti
les having almost parallel momenta are not distinguishable from a single parti
le withthe same total momentum. Hen
e, the observed 
ross-se
tion should in
lude besides themain pro
ess the pro
ess of emission of the soft photons and the pro
ess of emission of the
ollinear photons with the kinemati
ally allowed absolute values of momenta.However, in real life the quarks and leptons are massive though their masses are verysmall; therefore, the problem of 
ollinear divergen
es o

urs for the pro
esses with the gluon�elds. Sin
e the gluons are not free parti
les but exist inside hadrons, any pro
ess with thegluons has a similar pro
ess with quarks and it is reasonable to 
onsider them together. Forthis reason, one usually speaks about the in
lusive pro
esses where besides the parti
les ofthe main pro
ess one in
ludes the 
reation of all kinemati
ally allowed parti
les, in parti
ular82



the gluons. In this 
ase, we do not impose any restri
tion on the gluon energy, we do notintrodu
e any dete
tor sensitivity to the energy or the angle, but sum over all the possibilities.It happens, however, that this is not suÆ
ient to get the �nite answer. It is ne
essary totake into a

ount the possibility of existen
e of 
ollinear gluons in the initial state, and onlyafter this one 
an get the �nite answer for the 
ross-se
tion of the observable pro
ess.The multiloop analysis in this 
ase is mu
h more 
ompli
ated and is the subje
t of theKinoshita-Lee-Nauenberg theorem whi
h states:The infrared and 
ollinear divergen
es in a massless theory are 
an
elled in the 
ross-se
tion of any pro
ess if one takes into a

ount the existen
e in the initial and �nal states ofan arbitrary number of the soft quanta as well as the parti
les having the parallel momentawith the same total momentum. The probabilities of these pro
esses integrated over the phasespa
e of these additional soft (
ollinear) quanta in the initial and �nal states should be addedto the probability of the initial pro
ess.As an illustration we 
onsider the model example of the ele
tron-proton (quark) s
atteringand put all the masses equal to zero. We will be interested in the radiative 
orre
tions in the�rst order with respe
t to the strong 
oupling �s. The 
orresponding diagrams are shownin Fig.40.

Figure 40: The pro
ess of ele
tron-quark s
attering in the �rst order in �s: à) the Borndiagram, b)-d) the 
orre
tions due to the virtual gluons, e)-f) the 
orre
tions due to the realgluonsWe have already 
al
ulated the matrix elements 
orresponding to these diagrams, butnow we pro
eed in a di�erent way. Sin
e the ultraviolet divergen
es whi
h appear in thediagrams b)-d) are 
ompensated due to the Ward identity in QED (Z1 = Z2), all the arisingdivergen
es are solely infrared and 
ollinear. To extra
t them we will use the dimensionalregularization. Then both the divergen
es are manifested in the form of the poles over "and, sin
e we have both of them, there will be poles of the �rst and the se
ond order.We start with the virtual 
orre
tions. The diagrams of self-energy 
) and d) in themassless 
ase are identi
ally zero due to the above-mentioned property of a massless integraldepending on one argument equal to zero (p2 = 0 on the mass shell). As we explained, hereone has the 
an
ellation of the UV and the IR divergen
es. Therefore, all divergen
es inthe vertex diagram b) may be 
onsidered as infrared. (The UV divergen
es should 
an
elwith the UV ones from the self-energy diagrams and the latter in their turn 
an
el with theIR). The integral for the vertex part is de�ned by two form fa
tors F1(q2) and F2(q2) (9.1).Taking the expression for the vertex fun
tion (3.22) as the starting point, we put m = 0 and83



go to the mass shell. The result isF1(q2) = �CF �s4�  �2�q2!" ( 2"2 + 3" + 8); (10.2)F2(q2) = 0; (10.3)where instead of the logarithm of the photon mass as the IR regulator we have the poleover ". In order to avoid the trans
endental numbers, we used the helpful de�nition of theangular measure in the spa
e of 4�2" dimensions and multiplied the standard expression by�(1�")=(4�)". Then the 
onstants like 
E; log(4�) and �(2) disappear from the intermediateexpressions. Due to the 
an
ellation of divergen
es in the �nal expressions, this rede�nitiondoes not in
uen
e the answer.Thus, the 
ross-se
tion for the diagrams with virtual gluon has the form d�d
!virt =  d�d
!0 "1� 2CF �s4�  �2�t!" ( 2"2 + 3" + 8)# ; (10.4)where the di�erential 
ross-se
tion in the Born approximation is given by d�d
!0 = �22E2  s2 + u2 � "t2t2 ! �2s !" : (10.5)In the 
.m. frame s = E2; t = �E2=2(1� 
os �); u = �E2=2(1 + 
os �), where the angle � isthe ele
tron s
attering angle.Consider now the diagrams with the emission of the real gluons e) and f). Besides thesquares of ea
h of the diagrams one should also take into a

ount the interferen
e term. The
al
ulation in fa
t repeats that in QED but instead of the photon mass we again use thedimensional regularization and do not restri
t the integration region over the momentum ofadditional gluon. The 
al
ulation is a bit tedious, after 
ontra
ting all the indi
es the phaseintegral takes the formd�2!3 = 12�E2 Z dDp3Æ+(p23) Z dDk(2�)D Æ+(k2)Æ+((p4�k)2)jM j2p4=p1+p2�p3 (10.6)jM j2 = e4g24 8M0 + �M1 + �2M2t(s+ t + u) ;M0 = 4s� 8p1k � 4p2k + �8(p1k)2 + 4(2s+ t)p1k � (3s2 + t2 + u2 + 2st)p2k ;M1 =�4(s+u)+8p1k+8p2k+8(p1k)2�4(s+t+u)p1k+2(s+t+u)2�2(u+s)tp2kM2 = 4(s+ t + u)� 4p2k � (s+ t+ u)2p2k = �(s + t+ u+ 2p2k)2p2k :It is useful to pass to the spheri
al 
oordinates and use the 
.m. frame. After the integrationover the phase volume the result 
an be represented in the form d�d
!real =  d�d
!0"2CF �s4�  �2�t!"( 2"2+3"+8)#+ CF �2E2 �s4�  �2s!" �2�t!" (f1" +f2); (10.7)84



where the fun
tions f1 and f2 in the 
.m. frame are (x = 
os �)f1 = �2(1�x)(x3+5x2�3x+5) log(1�x2 )�(x�1)2(x+1)(x�11)=4(1� x)2(1 + x)2 ; (10.8)f2 = � 1(1� x)2(1 + x)2 �(1� x)(x3 + 5x2 � 3x + 5) log2(1� x2 )+ 12(1� x)(3x3+15x2+77x�31) log(1� x2 )+(1 + x)2(x2+5x+3)�2�12(9x2+2x+5)Li2(1 + x2 )+12(1� x)(1 + x)(5x2�42x�23)� : (10.9)As one 
an see from the 
omparison of the 
ross-se
tions of the pro
esses with the virtual(10.4) and the real gluons (10.7), in the sum the se
ond order poles 
an
el. However, thetotal 
an
ellation of divergen
es does not happen. The remaining divergen
es in the form ofa single pole have a 
ollinear nature. As was already mentioned, for their 
an
ellation onehas to de�ne properly the initial states. The point is that the massless quark 
an emit the
ollinear gluon whi
h will 
arry part of the initial momentum and in this 
ase, it is impossibleto distinguish one parti
le propagating with the speed of light from the two 
ying parallel.10.2 The quark distributions and the splitting fun
tionsTo take into a

ount this possibility, let us 
ome ba
k to the s
attering pro
ess and assumethat the initial quark has emitted the parallel gluon (see Fig.41). The two parti
les 
an bealmost parallel with small relative transverse momentum. The three four-momenta 
an be
Figure 41: The diagram 
orresponding to the splitting of the quark into the quark and thegluon
hosen in the form:p = (p; 0; 0; p); q � (zp; p?; 0; zp); k � ((1� z)p;�p?; 0; (1� z)p);so that all of them obey the 
ondition p2 = q2 = k2 = 0 with the a

ura
y up to p2?. Itis helpful, however, to use another method, namely to 
hoose the momenta in su
h a waythat they obey the mass shell 
ondition with the a

ura
y up to p4?, but to give up theenergy 
onservation in the order of p2?. The advantage of this approa
h 
onsists in the useof formulas for the spinors and the polarization ve
tors on mass shell. Therefore, we 
hoosethe momenta as follows:p = (p; 0; 0; p); q � (zp + p2?2zp ; p?; 0; zp); k � ((1�z)p+ p2?2(1�z)p ;�p?; 0; (1�z)p):The square of the matrix element 
orresponding to the pro
ess of splitting on mass shell inthis 
ase 
an be written in the standard formjM(q ! qG)j2 = g22 ÑFTr(
�p̂
� q̂)Xpol �����; (10.10)85



where the fa
tor 1=2 
omes from the averaging over the spin states. Here we must take intoa

ount the physi
al polarizations of the gluon only, i.e.Xpol ����� ! Æij � kikj(~k)2 ;whi
h gives jM(q ! qG)j2 = 4g2ÑF 24p0q0 � (~p~k)(~q~k)(~k)2 35 ; (10.11)or, substituting the values of momenta,jM(q ! qG)j2 = CF 2g2p2?z(1� z) 1 + z21� z ; z < 1: (10.12)The obtained expression does not depend on the 
hoi
e of momenta and has a universal
hara
ter.Now one 
an 
al
ulate the 
ross-se
tion of the pro
ess of interest. Graphi
ally, it willbe the same diagram Fig.40 å); however, the additional gluon will be referred not to the�nal state but to the initial one. Here we use the standard Feynman rules when the energy
onservation law is not violated, but the massless parti
le is slightly o� shell. Sin
e in the
ase of interest the quark with momentum q is virtual, it is useful to 
hoose the momentalike p = (p; 0; 0; p); q � (zp� p2?2(1�z)p ; p?; 0; zp); k � ((1�z)p+ p2?2(1�z)p ;�p?; 0; (1�z)p):In this 
ase, q2 = � p2?1� z : (10.13)Then the 
ross-se
tion of the pro
ess 
an be written in the fa
torized formd�(p) = 1(2�)3 Z d3k2k0 jMq!qGj2( 1q2 )2(p0zp0 )d�(pz); (10.14)where the fa
tor (p0zp0 ) is due to fa
t that the 
ross-se
tion is normalized to the energy ofinitial parti
les, and we have repla
ed the quark with the energy p0 by the quark with theenergy zp0.Rewriting the di�erential d3k in terms of the new variablesd3k = pdzd2p? = pdz�dp2?;and substituting the value of the matrix element (10.12) and q2 from (10.13), we getd�(p) = CF å216�2 Z pdzdp2?(1� z)p (1� z)2p4? 2p2?z(1� z) 1 + z21� z zd�(pz)= CF �s2� Z dzdp2?p2? 1 + z21� z d�(pz): (10.15)The integral over the transverse momentum is divergent at zero and this is nothing else butthe manifestation of the 
ollinear divergen
e. The upper limit is not of great importan
e, it86



is restri
ted by kinemati
 
onsiderations. We assume that the integration over p2? goes fromzero to some s
ale Q2. Later, we will see that one 
an 
hange this s
ale analogously to the
hange of the ultraviolet s
ale �2.To extra
t the divergen
e we use the dimensional regularization. Changing the dimensionof transverse integration from 2 to 2� 2" one getsd�(p) = CF �s2� Z 10 dz1 + z21� z Z Q20 (p2?)�"(��2)"dp2?p2? d�(pz)= CF �s2� Z 10 dz1 + z21� z 1"  � �2Q2!" d�(pz): (10.16)At �rst sight the obtained expression still 
ontains the pole in the integrand as z ! 1.However, it only looks like a singularity. It 
ame from the matrix element (10.12), whi
h wehave 
al
ulated only for z < 1 and it needs to be rede�ned for z ! 1. We will 
ome ba
k tothis question below and, at �rst, dis
uss the interpretation of relation (10.16).Let us introdu
e the notion of distribution of the initial quark with respe
t to the fra
tionof the 
arried momentum z: q(z). Then the initial distribution 
orresponds to q(z) = Æ(1�z),and the emission of a gluon leads to the splitting: the quark 
arries the fra
tion of momentumequal z, while the gluon - (1 � z). The probability of this event is given by the so-
alledsplitting fun
tions Pqq(z) and PqG(1 � z). In the lowest order of perturbation theory in �sthe quark and gluon distributions 
an be written in the formq(z; Q2) = Æ(1� z) + �s2� 1"  �2Q2!" Pqq(z); (10.17)G(z; Q2) = �s2� 1"  �2Q2!" PqG(1� z); (10.18)where the splitting fun
tions are de�ned by the 
orresponding matrix elements one of whi
hfor Pqq(z) has been 
al
ulated in the leading order in �s earlier (see (10.12)). The result hasthe following form: Pqq(z) = CF  1 + z2(1� z)+ + 32Æ(1� z)! ; (10.19)PqG(z) = z2 + (1� z)22 : (10.20)Note that eq. (10.19) 
ontains the rede�nition of the fun
tion Pqq(z) at the point z = 1mentioned above, namely the sign " + " should be understood as the following integrationrule: Z 10 dz f(z)(1� z)+ � Z 10 dzf(z)� f(1)(1� z) ;and the 
oeÆ
ient of the Æ-fun
tion is de�ned from the requirement of 
onservation of thenumber of quarks Z 10 q(x;Q2)dz = 1 ) Z 10 Pqq(z)dz = 0:Thus, eq. (10.16) together with the Born diagram 
an be written asd�(p) = Z 10 dz q(z; Q2) d�(pz); (10.21)87



where the quark distribution q(z; Q2) is given by (10.17).It seems strange at �rst sight that the answer depends on the s
ale Q2 whi
h de�nesthe quark distribution. However, it has the physi
al interpretation. This is the measure of
ollinearity of the emitted gluons that 
an be distinguished, i.e., it refers to the de�nitionof the initial state. In fa
t, in the massless 
ase one 
annot de�ne the initial state that
ontains just the quark, it exists together with the set of 
ollinear gluons. (The same istrue for the massless ele
tron with 
ollinear photons.) This s
ale is sometimes 
alled thefa
torization s
ale, at this s
ale the s
attering 
ross-se
tion (10.21) takes the fa
torizedform. The fa
torization s
ale 
an be varied. The dependen
e of the quark and the gluondistributions on the s
ale is governed by the so-
alled DGLAP equations well known in QCD.10.3 The �nite answersThus, besides the two 
ontributions to the 
ross-se
tion from the virtual and the real gluonsthere is one more 
ontribution related to the splitted initial state (10.16). In the lowest orderof perturbation theory in �s it 
an be written as d�d
!split = 1" �s2� Z 10 dz  �2Q2f !" Pqq(z)d�0d
 (pz); (10.22)where the Born 
ross-se
tion is given by (10.5) with the repla
ement of the initial quarkmomentum p by pz, and the fa
torization s
ale Q2f is an arbitrary quantity asso
iated withthe quark distribution fun
tion. Note that the s
ale Q2f may depend on z. It is quite naturalto 
hoose the fa
torization s
ale equal to the 
hara
teristi
 s
ale of the pro
ess of interest.Thus, in our 
ase this 
hoi
e 
orresponds to Q2f = �t̂, where t̂ is the Mandelstam parametert for the pro
ess where p is repla
ed by pz. One has t̂ = t 2z(z+1)+(z�1)x . This leads to thefollowing result:  d�d
!split = CF �22E2 �s2�  �2s !"  �2�t!" (�f1" + f3); (10.23)where f1 is given by (10.8) andf3 = � 1(1� x)2(1 + x)2 �2(1� x)(x3 + x2 � 33x+ 7) log(1� x2 )+12(9x2 + 2x + 5)Li2(1 + x2 )� (1 + x)2(x2 + 5x+ 3)�2�12(1� x)(1 + x)(11x2 � 19)� : (10.24)Comparing the obtained expression with (10.4) and (10.7) we see that the last divergen
e
an
els and the �nal expression for the 
ross-se
tion of the ele
tron-quark s
attering witha

ount of possible 
reation of the gluon in the initial and �nal states takes the form (x =
os �)  d�d
!íàáë =  d�d
!virt +  d�d
!real +  d�d
!split (10.25)= �22E2 (x2 + 2x+ 5(1� x)2 � �s2� CF(1� x)(1 + x)2 �(x3 + 5x2 � 3x + 5) log2 1� x2+12(7x3 + 19x2 � 55x� 3) log 1� x2 � (1 + x)(3x2 + 21x+ 2)�� :88



This expression is our �nal answer for the 
ross-se
tion of the physi
al pro
ess of ele
tron-quark s
attering where the initial and the �nal state in
lude the soft and 
ollinear gluons.It in
ludes also the de�nition of the initial state and 
an be re
al
ulated for the alternative
hoi
e of the fa
torization s
ale similar to what happens to the ultraviolet s
ale whi
h de-�nes the 
oupling 
onstant. Thus, we pra
ti
ally deal with the s
attering not of individualparti
les but rather with 
oherent states with a �xed total momentum. Only this pro
esshas a physi
al meaning.In Fig.42, we show the di�erential 
ross-se
tion of this pro
ess as a fun
tion of theele
tron s
attering angle: E2�2 d�d
(
os �). We have 
hosen here the strong 
oupling �s = 0:2,and CF = 4=3. As one 
an see, the in
lusion of the radiative 
orre
tion � �s pra
ti
ally

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4

0,2

0,7

1,2

1,7

2,2

2,7

3,2

3,7

4,2

4,7

E2/ d /d

cos 

 Born Term
  + sCorrection

-0,5 -0,4 -0,3 -0,2

0,8

1,0

1,2

1,4

1,6

1,8E2/ 2d /d

X Axis Title

 Born Term
 + s correction

Figure 42: The di�erential 
ross-se
tion of eq s
attering in the Born approximation and withallowan
e for the �s 
orre
tion. On the right plane the same plot is shown in the biggers
aledoes not 
hange the result, the di�eren
e from the Born approximation is less than a per
ent, that justi�es the use of perturbation theory.Let us stress on
e more that the obtained answer for the 
ross-se
tion of the observablepro
ess depends on: a) the ultraviolet subtra
tion s
heme that manifests itself, in parti
ular,in the appearan
e of the ultraviolet s
ale �2 (
an
eled in our 
ase in the lowest order ofperturbation theory) and b) the de�nition of the initial 
oherent state, whi
h manifests itselfin the appearan
e of the fa
torization s
ale Q2f . The universality in the des
ription of thephysi
al pro
esses is based on the fa
t that 
hoosing the UV and the IR s
ale one way oranother and �tting the experimental data of some pro
ess, one 
an then re
al
ulate theobtained values of the running 
oupling and of the quark (lepton) distribution for any other
hoi
e of the s
ales. This way the result for the observable quantities does not depend on aparti
ular 
hoi
e of these s
ales and is universal.
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11 AfterwordLo
al quantum �eld theory, being the mathemati
al basis of elementary parti
le physi
s, isthe logi
al 
ontinuation of quantum me
hani
s. It exploits the same basi
 ideas, but de-s
ribing the system with an in�nite number of degrees of freedom permits the 
reation andannihilation of parti
les in the 
ourse of the intera
tion. The modern formulation is basedon the intera
tion representation whi
h assumes the existen
e of the asymptoti
 states ofthe free �elds. In the S-matri
 approa
h we presume that these �elds intera
t in a lo
alway in the spa
e-time, and 
al
ulating the S-matrix elements one 
an �nd the probabilitiesof various pro
esses. The most developed and reliable method of these 
al
ulations is theperturbation theory in the 
oupling 
onstant whi
h is similar to the one in quantum me
han-i
s. However, due to a mu
h more 
ompli
ated stru
ture of the �eld theory, the methodsof perturbation theory en
ounter problems whi
h have no analogy in quantum me
hani
s,namely the divergen
e of the appearing integrals for the radiative 
orre
tions. We haveshown in these le
tures how one 
an deal with these divergen
es whi
h have the ultravioletand the infrared nature and how to get the �nite answers for the probabilities of the physi-
al pro
esses. We did not aim to prove the main theorems like the Bogoliubov-Parasiuk orthe Kinoshita-Lee-Nauenberg theorem, but have exempli�ed how they work. The expli
it
al
ulations allow one to 
onvin
e himself in the validity of the �nal 
on
lusions.It should be noted that the formalism of quantum �eld theory 
ontains the physi
al prin-
iples whi
h we have to follow sometimes not realizing it. Thus, for example, the ultravioletdivergen
es restri
t the type of the intera
tion and, 
ontrary to quantum me
hani
s, thereare only a few types of allowed Lagrangians. Not without reason the renormalizability playedsu
h an important role in the formation of the Standard Model. The other example is thenotion of the asymptoti
 states. Even starting with the free �elds within the perturbationtheory, from the requirement of the 
an
ellation of the infrared divergen
es we 
ome to thede�nition of the physi
al initial and �nal states whi
h are essentially the 
oherent states.The very fa
t that the gravitational intera
tion does not �t to the general s
heme proba-bly means that lo
al quantum �eld theory has a limited appli
ability and should be repla
edby a more general 
onstru
tion. It might be nonlo
al like in the string theory, or multidi-mensional one like in the brane-world theory. However, in any 
ase, in the low energy limitone has the lo
al quantum �eld theory though possibly going beyond the Standard Modelthat we 
onsidered here.A
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