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ABSTRACT 

To estimate selected quantiles of the response of a 
finite-horizon simulation, we develop statistical meth- 
ods based on correlation-induction techniques for 
variance reduction, with emphasis on antithetic vari- 
ates and Latin hypercube sampling. The proposed 
multiple-sample quantile estimattor is the average of 
negatively correlated quantile estimators computed 
from disjoint samples of the response, where nega- 
tive correlation is induced between corresponding re- 
sponses in different samples while mutual indepen- 
dence of responses is maintained within each sam- 
ple. The proposed single-sample quantile estima- 
tor is computed from negatively correlated responses 
within one overall sample. We establish a central 
limit theorem for the single-sample estimator based 
on Latin hypercube sampling, showing that asymp- 
totically this estimator is unbiased and has smaller 
variance than the comparable direct-simulation esti- 
mator based on independent replications. We also 
show that if the response is monotone in the simula- 
tion’s random-number inputs and if the response sat- 
isfies some other regularity conditions, then asymp- 
totically the multiple-sample estimator is unbiased 
and has smaller mean square error than the direct- 
simulation estimator. 

1 INTRODUCTION 

In this paper we formulate and analyze statistical 
methods for estimating selected quantiles of the re- 
sponse Y of a finite-horizon stochastic simulation ex- 
periment based on the variance reduction technique 
of correlation induction. Let F(.) denote the (un- 
known) cumulative distribution function (c.d.f.) of Y .  
For any r with 0 < r < 1, the r th  quantile E,. of the 
random variable Y is the smallest value t such that 
F ( t )  G Pr{Y 5 t }  2 T (Serfling 1980). Most of 
the literature on simulation output analysis is con- 

cerned with estimating the mean (expected value) of 
the response Y or the mean of some appropriately 
chosen function of Y ;  unfortunately the problem of es- 
timating quantiles is fundamentally different from the 
problem of estimating means (see Schmeiser 1990, p. 
315). Quantiles provide additional information about 
the distribution of Y, and in certain cases they may 
be of more interest than the mean. For example, to 
meet the scheduled completion date 5 of a large con- 
struction project with a specified degree of confidence 
(say, 95%), the project manager may use a simulation 
model of the project to obtain an estimator & 95  of 
the 95th percentile (0 .95 of the project duration Y ;  
and then the ftequired project starting time is esti- 
mated by 5 - (0 95  (Wilson et al. 1982). 

The direct-simulation method for estimating the 
rth quantile E,. of the response Y is based on the 
order statistics of a sample of independent identi- 
cally distributed (i.i.d.) observations of Y. Variance 
reduction techniques seek to restructure the simula- 
tion experiment to improve the efficiency of the es- 
timation procedure-that is, to reduce the estima- 
tion error for a fixed simulation budget. The problem 
of variance reduction for quantile estimation has re- 
ceived relatively little attention in the simulation lit- 
erature. To address this problem, Lewis and Ressler 
(1989) extended the method of control variates to al- 
low for nonlinear transformations of the control vari- 
able. Starting from an auxiliary response that is 
observed in the simulation experiment and that has 
known quantiles, Lewis and Ressler proposed using 
as a control variable the direct-simulation estimator 
of the rth quantile of the auxiliary response. How- 
ever, these authors did not implement or test their 
method. Hsu and Nelson (1990) also used a control 
variable with known quantiles, although the estima- 
tors they developed are not classical linear control- 
variate estimators. Hsu and Nelson reported vari- 
ance reductions of about SO%, but they considered 
very simple simulations in which analytical expres- 
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sions can be obtained for the inverse c.d.f.’s of the 
control variables. In practice the main drawback 
of the above quantile-estimation methods seems to  
be the difficulty of identifying control variables with 
known quantiles (as opposed to identifying control 
variables with known means) that are strongly corre- 
lated with the response variable. 

The objective of this work is to develop practi- 
cal, effective variance reduction techniques for esti- 
mating selected quantiles of the response in large- 
scale, finite-horizon simulation experiments. The rest 
of this paper is organized as follows. In Section 2 
we begin by discussing quantile estimation via direct 
simulation; and we establish some basic results on 
correlation-induction techniques for variance reduc- 
tion, with emphasis on the methods of antithetic vari- 
ates and Latin hypercube sampling. In Section 3 we 
formulate and analyze multiple-sample quantile es- 
timators wherein negative correlation is induced be- 
tween the corresponding simulation responses in dis- 
joint samples while mutual independence of the re- 
sponses is maintained within each sample. Section 4 
treats quantile estimators resulting from correlation 
induction within a single sample. Finally in Sec- 
tion 5 we recapitulate our main findings, and we make 
recommendations for follow-up work. Although this 
paper is based on Avramidis (1993), precursors of 
the multiple-sample techniques discussed in Section 3 
appeared in Avramidis (1992). See Avramidis and 
Wilson (1995b) for a detailed justification of the re- 
sults presented in this paper together with a Monte 
Carlo study illustrating the application of these re- 
sults to estimate quantiles of the completion time of 
a stochastic activity network. 

2 BACKGROUND 

2.1 Quantile Estimation via Direct 
Simulation 

We consider finite-horizon simulation experiments in 
which the response has the form Y G y ( U ) ,  where 
U E (U1, . .  . , Ud) is composed of d independent ran- 
dom numbers-i.e., random variables that are uni- 
formly distributed on the unit interval (0, 1). The 
dimension d of the random-number input vector U is 
a finite constant. In terms of the (unknown) inverse 
c.d.f. of Y ,  

F-’(u) = min{t : F ( t )  2 U} for all U E [o, 11, 

the quantile of order r of the distribution of Y is 

Throughout the rest of this paper, we assume that 
a single value of r is specified; and we suppress the 
dependence of ( on r for notational simplicity. 

In a direct-simulation experiment, we perform n 
independent replications that yield i.i.d. observations 
{yi : i = 1, .  . . , n }  of the target response. Sorting 
these observations in ascending order, we obtain the 
order statistics 

The direct-simulation estimator of 5 based on n inde- 
pendent replications is defined as 

?is($, n) $(Yl,n, Yz,n,. . ., yn,n) ,  

where we will consider several choices for the function 
$(.). To express (os as a function of the unordered 
observations, we introduce the order functions 

f 2 i , n ( t ~ , . .  . , tn)  the ith smallest number 
in {t l ,  . . . , tn} 

for i = 1, . . . , n; and the vector-valued function 

dn(t1, .  . . , tn) 
- = [nl ,n( t l , .  . . A),  . . . ,  a n , n ( t l , .  . ‘A)]  

so that we can write 

$os($, n) = 1 ~ ,  0 dn(Y1, ~ 2 ,  . . ., Yn), (1) 

where the symbol “0” denotes function composition. 
The most natural choice for estimating < is to use 

(DS = min{t : Fn(t) 2 r } ,  where Fn(.) is the empiri- 
cal c.d.f. of Y .  The usual definition of Fn(.) is 

h 

( 0, if t < y1,n 1 

i /n,  if X,n 5 t < X+l,n 
and l < i < n - l ,  

Fn(t) 

and this choice for Fn( . )  corresponds to taking +(.) = 
$I(.) in the general definition (1) of the direct- 
simulation quantile estimator, where 

$ l ( t l , . . . , t n )  ~ t r n . 1  

and rz1 denotes the smallest integer that is greater 
than or equal to z. See David (1981) for properties 

A second quantile estimator that is used, for exam- 
ple, in the S statistical package (Becker and Cham- 
bers 1984) results from taking the empirical c.d.f. 
Fn(t) to  be a piecewise linear function in the range 
Y I , ~  ( i  - O.S)/n for 

off^DS($l,n). 

t < Yn,n such that F n ( x , n )  
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i = 1, .  . . , n and such that Fn( t )  G 0 for t < Y I , ~  and 
F,(t) 1 for t > Y,,,. This choice for F,(.) corre- 
sponds to  taking $(.) = Gz(.) in the general definition 
(1) of the direct-simulation quantile estimator, where 

$ 2 ( t 1 , .  . . , i n )  2 ant rnr t0 .51-1  -t (1 - ~ n ) t “ + . ~ ]  

Y as follows. Let I y  G (1,. . . , d }  and let L y  denote 
an arbitrary subset of IY consisting of the indices of 
the random-number inputs to the simulationresponse 
function y(.) that are used for correlation induction. 
We perform k dependent replications yielding outputs 

Y ( ~ )  = y(uj i )  : j E I.> for i = I,. . . , k  (2) 

by sampling the column vectors of input random 
numbers, 

with 

N, 2 [ n T  + 0.51 - ( n r  + 0.5) for n = 1 , 2 , .  . . , 

T provided 0.5/n < r < ( n  - 0.5) /n .  To complete the 
definition of $9(.), we add that U. 3 4  = U(*), 3 . . .,U:”’] for j E IY , (3) 

according to  a scheme satisfying the following 
conditions- 

SC1 For every index j € L y ,  the random vector 

SCZ For every index j E Iy - L y ,  the random 

sc3 The column vectors U1, . . . , Ud are mutually 

2.2 A General Scheme for Correlation 
Induction Uj has distribution G(’)). 

To provide a general framework for correlation induc- vector Uj has the distribution G,, (k) . 
tion, we introduce the notion of negative quadrant 
dependence, which was defined by Lehmann (1965). independent. 
Definition 1 The bivariate random vector 
(AI , A z ) ~  is negatively quadrant dependent (n.q.d.) 
if 

Pr(A1 5 a ~ ,  AZ I a 2 }  5 Pr(A1 5 a ~ } .  Pr(A2 i a z }  

for all a l ,  a 2  

Equivalently, we will say that the distribution of 
(Al ,A2)T is n.q.d. We will exploit this concept in 
Result 2 below to provide the desired sufficient con- 
dition for negatively correlated simulation responses. 
Moreover, we use the concept of‘ negative quadrant 
dependence to define a special claijs G of distributions 
for the random-number inputs. Every distribution 
G E G must have the following correlation-induction 
properties: 

Sampling condition SC1 specifies that we induce de- 
pendence between the outputs 
by arranging a negative quadrant dependence be- 
tween the j t h  random numbers sampled on each pair 
of replications, provided j E L y  . Sampling condition 
SC2 specifies that for each j 6 L y ,  the j t h  random 
number should be sampled independently on differ- 
ent replications. Finally sampling condition SC3 re- 
quires mutual independence of the random numbers 
used within the i th replication to  generate the output 
Y ( i ) ;  and together with property CI1 , this guarantees 
that each Y(i) has the correct distribution. 

k ,  Y ( i )  : i = 1,. . . , { 

Definition 2 The sample ( Y ( i )  : i = 1 ,...,k} is 
called a (G,Ly) -sample  of Y if it is generated as 
in ( 2 )  and ( 3 )  subject to conditions SC1-SC3. 

CI1 For some k 2 2, G is a k-variate distribution 
with univariate marginals that are uniform on 
the unit interval (0, 1). 

The next two results provide the justification for 
using correlation-induction techniques to reduce the 
variance of simulation-generated statistics. 

CIz Each bivariate marginal of G is n.q.d. 

When it is desirable to indicate explicitly that a dis- 
tribution in G is k-variate, we will write “G(‘) E G” 
rather than “G E G.” Throughout this paper, we let 
Gik) denote the distribution of k independent random 
numbers. It is clear that Gik) satisfies conditions CI1 
and C I 2  so that G!;) E 6. 

Using a k-variate distribution G ( k )  selected from 
the special class of distributions, we induce nega- 
tive quadrant dependence between k replications of 

Result 1 If G satisfies condition CI2, if 
{Y(’) : i x 1, .  . . , I C }  is  a ( G ,  Ly) - sample  of Y ,  a n d  
if y(.) is a monotone function of each argument with 
index in L y ,  then [Y(i) ,  Y(‘)IT is n.q.d. for i # 1. 
Result 1 is essentially Theorem l(ii) of Lehmann 
( 19 66). 

Result 2 If the bivariate random vector (A1 , A z ) ~  is  
n.q.d., then Cov(A1, A2) 5 0, with equality holding if 
and only if A1 and A2 are independent. 
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Result 2 is Lemma 3 of Lehmann (1966). 
For an elaboration of the general framework for 

correlation induction presented in this section, see 
Avramidis and Wilson (1995a). In the next subsec- 
tion we give examples of correlation-induction tech- 
niques that are special cases of the general scheme 
described above, and in each case we prove that the 
relevant distribution G belongs to the class 6. 

2.3 

2.3.1 Antithetic Variates (AV) 

To generate two correlated replications by the method 
of antithetic variates, we sample the random numbers 
{ Uj” : j = 1, . . . , d }  independently and compute the 
column vectors of (3) according to the relation 

Special Cases of Correlation Induction 

T U j = ( U j * , l - U ? )  for j = l , 2  , . . . ,  d 

We let Gf$ denote the distribution of Uj. It is 
straightforward to check that Gf$ satisfies conditions 
CI1 and CI2 so that GfJ E 6. The method of anti- 
thetic variates is clearly a special case of the general 
correlation-induction scheme described by (2) and (3) 
with L y  = Iy. 

2.3.2 Latin Hypercube Sampling (LHS) 

To generate IC correlated replications via Latin Hyper- 
cube Sampling (LHS), we compute the input random 
numbers according to the relation 

T I ( . ) ,  . . . , 7 r d ( . )  are permutations of the inte- 
gers { 1, . . . , IC} that are randomly sampled 
with replacement from the set of I C !  such per- 
mutations, with 7 r j ( i )  denoting the ith ele- 
ment in the j t h  randomly sampled permuta- 
tion; and 

{ U .  : j = 1, .  . . , d ,  i = 1, .  . .,k} are random 
numbers sampled independently of each other 
and of the permutations TI ( . ) ,  . . . , 7 r d ( . ) .  

23 

We let GrJ denote the distribution of each k- 
dimensional column vector of input random numbers 
generated in this way so that 

‘ (5) 
~j = [~jl), . . . , uj’)lT is } 
generated according to (4) 

uj - G ~ J  if 

The key property of LHS is that for each j ( j  = 
1 , .  . . , d ) ,  the components of the column vector Uj 
form a stratified sample of size k from the uniform 
distribution on the unit interval (0, 1) such that there 
is a single observation in each stratum and the obser- 
vations within the sample are negatively quadrant de- 
pendent; moreover, different stratified samples of size 
k are independent. Since 7r j ( . )  is a random permu- 
tation of the integers (1,. . . , k } ,  each element 7 r j ( i )  

for i = 1,. . . , k has the discrete uniform distribu- 
tion on the set (1,. . . , k } ;  and thus in the definition 
(4), the variate ~ j ( i )  randomly indexes a subinter- 
val (stratum) of the form (l - l ) / k ,  e l k ]  for some 
l E { 1, . . . , k } .  Since U$ is a random number sampled 
independently of 7 r j ( i ) ,  we see that U:i) is uniformly 
distributed in the subinterval indexed by 7 r j ( i ) ;  and it 
follows that U:i) is uniformly distributed on the unit 
interval (0,  1). Moreover, since 7rj(.) is a permutation 
of { 1, . . . , k } ,  every subinterval (stratum) of the form 
( ( e  - l ) / k ,  e / k ]  for e = 1, . . . , IC contains exactly one 
of the negatively quadrant dependent random num- 
bers { so that the components of 
Uj constitute a stratified sample of the uniform distri- 
bution on (0, 1). Finally, we notice that the column 
vectors U1, . . . , Ud are independent since the random 
permutations { ~ j ( . )  : j = 1 , .  . . , d }  and the random 
numbers {U$ : i = 1, . . . , k ;  j = 1, . . . , d }  are all gen- 
erated independently. We formalize this discussion in 
the following result. 

Proposition 1 For any k 2 2, the distribution GFA 
defined in ( 5 )  is in the class 6. 

( 

: i = 1 , .  . . , k } 

In view of Proposition 1, we can take G ( k )  = GPA 
and L y  = {l, .  . . , d }  in (2) and (3); and thus we 
see that LHS is a special case of correlation induc- 
tion. First devised by McKay, Beckman, and Conover 
(1979), LHS was subsequently studied by Stein (1987) 
and Owen (1992a, b). 

3 CORRELATION INDUCTION ACROSS 
SAMPLES 

Motivated by the need to obtain an estimate of the 
variance of a quantile estimator, Schafer (1974) sug- 
gested using k independent samples, each consisting 
of m = n / k  independent observations. To simplify 
the exposition, we assume throughout this paper that 
n is an integral multiple of k .  Letting f$J($,  m)  de- 
note the direct-simulation estimator of €, based on 
the ith sample (i = 1, .  . . , k ) ,  we define the direct 
simulation-multiple sample estimator of €, based on IC 
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samples and a total of n observations to be the aver- 
age of the direct-simulation estimators based on the 
k samples of size m = n /k ,  

where we have substituted n /k  for m on the right- 
hand side of (6) to show the exact dependence of 
&~-Ms($J ,  k ,  n )  on the function $(.), the parameter 
k ,  and the total sample size n. Although the di- 
rect simulation-multiple sample estimator does not 
use any variance reduction techniques, we introduce 
it because it will simplify the statement of some of 
our results. 

At the expense of having a variance estimator as- 
sociated with the quantile estimator, we can improve 
upon the direct simulation-multiple sample quantile 
estimator by inducing negative correlation between 
the direct-simulation estimators computed from the 
k disjoint samples each of size m = n / k  that consti- 
tute the overall n-run experiment. Consider the fol- 
lowing scheme for generating dependent replications 
{?$?,($, n / k )  : i = 1,.  . . , k } .  Let G ( k )  be a k-variate 
distribution selected from G.  Let L y  denote an arbi- 
trary subset of { 1, . . . , d }  consisting of the indices of 
the random-number inputs to y(,) that are used for 
correlation induction. Generate m “column” samples 
{Cj : j = 1, . . . , m} with the following properties: 

CI-MS1 The column sample 

is a (G(’), Ly)-sample of Y for each j = 
1, .  . . , m; and 

CI-MSa The column samples {Cj  : j = 1,. . . , m} 
are mutually independent. 

The total set of Y-observations can be arranged in k 
“row” samples, 

~i [Y:‘), . . . , Y:)] for i = I ,  . . . , k .  

Condition CI-MS2 guarantees that each row sam- 
ple consists of m independent observations of Y, 
and condition CI-MSI suggests that we have in- 
duced dependence bet,ween the row vectors {Xi : i = 
1, .  . . , k } .  From this sampling scheme we can com- 
pute &~--MS ($, G(‘), n) ,  the correlation induction- 
multiple sample estimator of [ based on the k-variate 
distribution G ( k ) .  Specifically, [CI-MS ($, G(‘), n)  is 

obtained by choosing LY = { 1, . . . , d } ,  computing the 
direct-simulation estimator of ( from each row sample 

and then averaging these k (dependent) estimators to 
obtain 

i= l  

We have substituted n / k  for m in the right- 
hand side of (7) to show the exact dependence of 
[CI-MS ($, G(’), n )  on the function $(.), the distri- 
bution G ( k ) ,  the parameter k ,  and the total sample 
size_ n. We will occasionally suppress the dependence 
of FCI-MS on some or all of its three arguments when 
no confusion can result from this usage. 

We have opted to take L y  = (1,. . . , d } ,  mean- 
ing that we use all d random-number inputs to in- 
duce dependence between the observations in each 
of the column samples. This was done to sim- 
plify the notation and t? eliminate extra param- 
eters when formulating [CI-MS. We_ also remark 
that the direct-simulation estimator [DS($, n)  is a 
special case of (CI-MS (4, G(‘), n) in which we take 
G ( k )  = U ( 0 ,  l),  the uniform distribution on the one- 
dimensional space ( 0 , l )  so that k = 1. In this case 
each column sample reduces to a single observation 
of Y ,  and the row sample becomes a sample of n i.i.d. 
observations of Y. 

We compare the mean square error (MSE) 
of the copelation induction-multiple sample es- 
timator (CI-MS ($, G(’), n )  versus the MSE of 
ihe direct simulation-multiple sample estimator 
IDS-MS($, k ,  n ) .  

Theorem 1 If y(.) and $(.) are monotone functions 
o f  each of their arguments, then 

MSE[&I-MS (4, ~ ( ‘ 1 ,  n ) ]  I MSE [ L s - M s ( $ ,  k ,  n )]  

for  any k-variate distribution G ( k )  E 
ple  size n. 

Remark 1. Typically the function $(.) satisfies the 
monotonicity requirement in Theorem 1. We observe 
that $I(.) and $2(.)  satisfy this requirement. 

Remark 2. If y(.) is only a monotone function of 
the arguments with index in a proper subset M y  of 
{ 1, . . . , d } ,  then the conclusion of Theorem 1 remains 
true if we use Ly = M y  to generate the column Sam- 
ples as in property CI-MS1. 

h 

A 

and any sam- 
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Next we wish to compare JCI-MS ($, G ( k ) ,  n) with 
the direct-simulation estimator <DS($, n).  Without 
any assumptions about the distribution of Y, it is 
difficult to compare the bias, variance, and MSE of 
these two estimators for finite n because there are no 
closed-form expressions for the bias and variance of 
the relevant order statistics. However, under some 
regularity conditions on the inverse c.d.f. of Y,  the 
asymptotic behavior of the bias and variance of the 
order statistics can be characterized by the next re- 
sult. 

Lemma 1 Let {Yl,n,. . . ,Yn,n} denote the order 
statistics of a random sample of size n from a dis- 
tribution having inverse c.d.f. &(.). Let {in} and 
{jn} denote sequences of positive integers such that 
in /n  = r1 + O ( l / n )  and j n / n  = r2 + O ( l / n ) ,  where 
r1 and r2 are constants such that 0 < r1 5 7-2 < 1. 
Suppose that the following regularity conditions hold: 

h 

RC 1 

RC2 

Then 

and 

There exist nonnegative integers a and b such 
that Q(u)u"( l -  u ) ~  is bounded for 0 5 U 5 1. 

There exists a set S c [0, 13 such that: (2) S 
contains all except a finite number of points in 
[0,1]; (ai) the constants r1, r2 belong to S ;  (iii) 
the inverse c. d.f .  &(.) and its first and second 
derivatives &'(.) and &"(.) are bounded and 
continuous in S ;  and (iv) the third derivative 
& " I ( . )  exists and is bounded in S. 

Cov(X,,n, yjn,n) 
1 
n 

= - r l ( l -  T Z ) & ' ( T I ) & ' ( T ~ )  + O ( l / n 2 ) .  

Asymptotic expressions @r the bias and_ variance 
of the quantile estimators (DS($l, n)  and < ~ s ( $ 2 ,  n)  
are readily obtained via Lemma 1. If conditions RC1 
and RC2 hold with Q(.) = F-'(.) and r1 = r2 = r ,  
then applying Lemma 1 for in = Cnrl and j ,  = rn.1, 
we have 

Bias [E^DS($I, n)] = O(l /n )  (8) 

and 

and 

Now we are able to make an asymptotic comparison 
of the MSEs of the single- and multiple-sample direct- 
simulation quantile estimators. Let IC be fixed. Com- 
bining (8) and (9) (respectively, (10) and (ll)), we 
see that for $(.) = $I(.)  (respectively, $(.) = $ a ( . ) ) ,  

This result is of some intrinsic interest-it states tkat, 
in an asymptotic MSE sense, the dkect estimator (DS 

and the multiple-sample estimator JDS-MS are equiva- 
lent. Zelterman (1987) has pointed out this property. 

Finally we compare, in an asymptotic MSE sense, 
the c_orrelation induction-multiple sample estima- 
tor JCI-MS (4,  G ( k ) ,  n)  with the direct estimator 
E^DS($, n) .  

Theorem 2 If y(.) is a monotone function of each 
of its arguments and if conditions RC1 and RC2 of  
Lemma 1 are satisfied for &(.) 1 F-'(.) and r1 = 
r2 = r ,  then 

n-oo 

r l l  - r )  

for  any distribution G ( k )  E and for  both $(.) 
$I(.) and $(.I = $ 2 ( . ) .  

4 CORRELATION INDUCTION WITHIN 
A SAMPLE 

Multiple-sample estimators are more prone to  suf- 
fer from bias than single-sample estimators. If the 
bias component of MSE is expected to  be dominant 
(see Avramidis and Wilson (1995b) for a discussion 
of such situations), then using a multiple-sample es- 
timator might actually increase MSE by increasing 
bias, even if it reduces variance. This is the moti- 
vation for considering correlation induction within a 
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sample-we use a single-sample estimator based on a 
sample of dependent observations. In Subsection 4.1 
we discuss the general estimator based on correlation 
induction within a sample; and in Subsection 4.2 we 
study a special case of this estimator based on Latin 
hypercube sampling. 

4.1 Correlation Induction-Single Sample 
Estimators 

Consider the following scheme for generating n (de- 
pendent) replications of the simulation. We se- 
lect an n-variate distribution G(") E 4,  and we let 
L y  C { 1, . . . , d} denote the set of indices of the 
random-number inputs to the response function y(.) 
that _are used for correlation induction. We com- 
pute (c1-s~ ($, G(")) , the c o r r e l a t i o n  i n d u c t i o n - s i n g l e  
s a m p l e  estimator of E based on the function $(.) and 
the n-variate distribution G("),  by choosing L y  = 
(1, . . . , d } ,  generating a (G("), Ly)-sample of Y ,  and 
taking the usual quantile estimator based on this sam- 
ple, 

where 

{Y(l) ,  . . . ,Y(")} is a (G("),{l , .  . .,d})-sample of Y .  

The dependence of E c 1 - s ~  on the sample size n is 
implicit in the distribution G(").  

We emphasize the requirement that the distribu- 
tion G(") used for inducing dependence must have 
dimznsion equal to the sample size n. Thus, in order 
for (c1-s~ to be well-defined for all sample sizes, we 
must use subclasses of distributions in that are de- 
fined for any given dimension. This is not the case 
for the distribution Gf?, which is defined as a two- 
dimensional distribution and cannot be extended to 
higher dimensions. On the other hand, the distribu- 
tion G@ is defined for all n and thus is appropri- 
ate for use with Ec1-s~.  For other exampJes of dis- 
tributions that are suitable for use with tc1-s~~ see 
Avramidis and Wilson (1995b). 

The estimator (c1-s~ is fundamentally different 
from the estimators discussed previously-it is com- 
puted as a function $(.) of the order statistics of a 
sampAe of depende_nt observations, while the estima- 
tors [DS-MS and ECI-MS discussed in Section 3 are 
computed by applying the function $(.) to the order 
statistics of a sample of i n d e p e n d e n t  observations. In- 
tuitively, we expect that if we induce negative corre- 
lation between each pair of Y-observations, then we 
should obtain a beneficial compensating effect: if one 

?-. 

h 

observation of the pair falls in the upper tail of F ( . ) ,  
then the other observation of the pa.ir will tend to 
fall in the lower tail of F( . ) ;  and thus the tails of F ( . )  
should be estimated more precisely than with i i d .  
sampling. More generally we show that for each cut- 
off value b ,  the estimator F,(t) has smaller variance if 
we induce negative quadrant dependence (and hence 
negative correlation) between each pair of observa- 
tions in the sample {Y(i) : i = 1 , .  . . , n}. We have 

and since l ( Y ( i )  5 t }  is a monotone function of Y(i) 
for each fixed t and for i = 1, . . . , n ,  we can apply Re- 
sults 1 and 2 of Subsection 2.2  to conclude that each 
covariance on the right-hand side of (12) is nonposi- 
tive if each pair of Y-observations is n.q.d. Now when 
the Y-observations are i.i.d., the variance of F,(t) is 
given by the first term on the right-hand side of (12); 
and thus we see that inducing a negative quadrant de- 
pendence (and hence a negative correlation) between 
each pair of observations in a single sample will yield 
an empirical c.d.f. F,(.) that is everywhere a more 
accurate estimator of the underlying theoretical c.d.f. 
F( . )  than could be obtained with random sampling. 
Since all of the quantile estimators discussed here are 
ultimately based on the inverse of the empirical c.d.f. 
(or a piecewise-linear approximation to the inverse of 
the empirical c.d.f.), it is plausible that inducing neg- 
ative correlation between the observations in a single 
sample will yield a more accurate quantile estimator 
than a single- or multiple-sample estimator based on 
a comparable number of independent observations. 

4.2 Latin Hypercube-Single Sample 
Estimators 

We define the L a t i n  hypercube-single  s a m p l e  estima- 
tor of ( as 

Thus &H-ss($,~) is a function $(.) of the order 
statistics of a GPi,  (1,. . . , d})-sample of Y ;  and we 
will refer to such a sample as a L a t i n  hypercube  s a m -  
p l e  o f  s i z e  n. By Proposition 1 in Subsection 2 . 3 . 2  
and by Results 1 and 2 in Subsection 2.2, any pair 

( 
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of Y-observations in a Latin hypercube sample of 
any size is n.q.d. and hence negatively correlated if 
y(.) is a monotone function of each of its arguments; 
and in such a case, the intuitive motivation discussed 
in the last paragraph of the previous subsection ap- 
plies. However, we will see that monotonicity of 
y(-) is not necessary to guarantee improvement, at 
least for the special case of Latin hypercube sam- 
plin_. We will derive the asymptotic distribution 
of JLH-SS ($1, n)  under appropriate conditions on the 
Fsponse Y;  and as a by-product, we will see that 
[LH-ss($~, n)  is asymptotically more efficient than 

We start with some preliminary notation and def- 
initions. Let U = (u1,. . . , u d )  denote the vector 
of random-number inputs to the simulation and let 
U (u1 , . . . , ud) denote a realization of U .  Given 
an arbitrary real-valued, square-integrable function 
p(.) defined on the d-dimensional unit cube [0, lldl 
we decompose (p( .) as in Stein (1987). We define the 
following functionals of (p(.): (U) the mean of (p(.), 

f D S ( d 1 ,  n)  and fDS($2, n).  

P p  5E E[v(U)I = J v(u> du  ; 
[a,  1ld 

( 6 )  the j t h  main eflect of (p(.), 

P j h )  = E[P(U)IUj = 9 1  

for uj E [O, 11 and j = 1 , .  . . , d; (e )  the addztzve p a r t  
of d.1, 

d 

(padd(U) E c ( p j ( u j )  - (d -  I)& for U E [o, 
j=1 

and (d) the residual from additivity of (p, 

(pres(U) (p(u) - (padd(U) for U E [oi 
w e  observe that E[(pj(Uj)] = E[(padd(U)] = pp for 
each j ,  and E[(pres(U)] = 0. Moreover, 

E [~;es(U)] = Var[(~res(U)I (13) 
d 

= Var[L?(U)I - var[cpj(Uj >I , 
j = 1  

where the last equality follows by observing that 
Cov[p(U), pj(Uj)] = Var[cpj(Uj)] for each j. 

Recalling the representation of the simulati n re- 
sponse Y = y(U) as a function of the input random 

\ 

~ 
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vector U ,  we define 

and we let xj(.),  Xadd(.), and xres(.) respectively 
denote the j t h  main effect, the additive part, and 
the residual from additivity of x(.). The asymp- 
totic distribution of &,H-ss($~ , n)  is given by the fol- 
lowing limit theorem in which - denotes conver- 
gence in distribution (Billingsley 1986, pp. 338-339) 
and N ( p ,  g2) denotes a normal random variable with 
mean fi  and variance a2.  

,-. 
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Theorem 3 Suppose that the following continuity 
conditions hold: 

CC1 The function y(.) has a finite set of discon- 
tinuities V ,  with ’Dj denoting the set of j t h  
coordinates of points i n  2, f o r  j = 1, .  . . , d. 

CC2 There exists a neighborhood N ( ( )  of such 
that given Uj = uj E [O ,  11 - Vj f o r  any j = 
1 , .  . . , d, the response Y = y(U) has a density 
in N ( [ ) .  

If F ( . )  has a bounded second derivative in  a neighbor- 
hood of €, and i f  F ‘ ( 0  # 0 ,  then 

as n -+ 00, where 

To facilitate a comparison of JLH-ss($~, n) ,  the 
Latin hypercube-single sample quantile estimator, 
2 i th  the direct+mulation single-sample estimators 
&($I, n )  and cDS($2, n) ,  we establish results anal- 
ogous to Theorem 3 for the direct-simulation estima- 
tors. If F ( . )  is differentiable at with F’(J)  # 0, then 
&($1, n)  is asymptotically Normal: 

(Corollary 2.3.3.A of Serfling 1980). A similar re- 
sult, proved in Avramidis and Wilson (1995), holds 
for &s ($2, n) .  
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Proposition 2 If F ( . )  has a probability density 
function (p ,d . f . )  f(.) that is continuous and nonzero 
at E ,  then 

n1/2[E^DS(&,n)-E] %V(O,a;,) as ??,+Co. 

(15) 

It follows immediately from (13) applied to the 
function x(.) that 

&-SS 5 0;s 
Hence Theorem 3 and results (14) and (15) tell us 
that JLH-ss ($J~ ,  n )  is asymptotically more efficient 
than &s($l ,n)  and & s ( $ J ~ , n ) .  In Avramidis and 
Wilson (1995b) we quantify the efficiency increases 
that are achievable with the various single- and 
multiple-sample quantile estimators based on Latin 
hypercube sampling and antithetic variates. 

A 

5 CONCLUSIONS A N D  
RECOMMENDATIONS 

The theoretical results presented in this paper pro- 
vide substantial evidence that some of the proposed 
correlation-induction techniques for estimating quan- 
tiles can yield worthwhile improvements in estimator 
accuracy relative to direct simulation. Avramidis and 
Wilson (1995b) also provide experimental evidence 
supporting this conclusion. In particular, the Latin 
hypercube-single sample estimator appears to be ef- 
fective for estimating the upper extreme quantiles of 
the network completion time of a stochastic activity 
network. 

Although several issues require follow-up investi- 
gation, perhaps the most urgent need is for a more 
extensive experimental evaluation of the proposed 
quantile estimators. An important unresolved issue 
is the performance of these quantile estimators when 
the assumptions underlying the main theoretical re- 
sults (namely, Theorems 1, 2, and 3) are violated. 
Moreover, it is unclear whether the efficiency im- 
provements observed for the Latin hypercube-single 
sample quantile estimator are typical of the gains that 
can be anticipated in practice. In the spirit of Nel- 
son (1990) and Avramidis, Bauer, and Wilson (1991), 
a comprehensive experimental evaluation is required 
for the correlation-induction quantile estimators de- 
veloped in this paper. 

Follow-up work is also required to extend the the- 
oretical development to cover a larger class of sim- 
ulation experiments. Although our development is 
limited to simulations for which the dimension d of 
the vector of random-number inputs is fixed, we be- 
lieve that much of this development can ultimately 

1 
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be extended to simulations where d is random. Such 
a complication naturally arises in the following situa- 
tions: ( U )  a finite-horizon simulation involving, for 
example, the acceptance-rejection method for gen- 
erating random variates; and ( b )  an infinite-horizon 
simulation potentially involving the generation of an 
unlimited number of random variates. Moreover, we 
believe that all of our results can be extended to mul- 
tiresponse simulations. 

In light of the demonstrated effectiveness of Latin 
hypercube sampling (LHS), we believe that emphasis 
should be given to this technique in future research. 
Theorem 3 shouldke extended to apply to the single- 
sample estimator [LH-SS(&, n)  and to the multiple- 
sample estimator (CI-MS G$, n )  for .t = 1 , 2 .  It 
would also be highly desirable to have an analogue of 
LHS for infinite-horizon simulations. Another direc- 
tion along which LHS can be generalized is to stratify 
the marginal distributions of subvectors of the vector 
of input random numbers, where the dimension of 
the subvectors is higher than one (Owen 1992b). Fi- 
nally, practical methods should be developed for con- 
structing asymptotically valid confidence regions for 
a vector of selected quantiles under Latin hypercube 
sampling. 

* (  
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