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ABSTRACT 

In this paper we develop strategies for integrating cer- 
tain well-known variance reduction techniques to es- 
timate a mean respoinse in a finite-horizon simulation 
experiment. Our building blocks are the techniques 
of conditional expectation, correlation induction, and 
control variates. Under some mild assumptions, we 
explain how each integrated strat,egy yields a smaller 
response variance than its constituent variance re- 
duction techniques yield individually. We also pro- 
vide asymptotic variance comparisons for integrated 
strategies involving the correlation-induction tech- 
nique of Latin hypercube sampling. Our Monte Carlo 
results show that in the simulation of stochastic activ- 
ity networks, large efficiency gains can be achieved by 
using these integrated variance reduction strategies. 

1 INTRODUCTION 

A diversity of variance reduction techniques (VRTs) 
have been developed to improve the efficiency of 
simulation-that is. to reduce the computing effort 
necessary to obtain some specified precision. For a 
survey of VRTs, see Wilson (1984) and Nelson (1987). 
There has been relatively little work on integrating 
these well-known VlETs into an overall variance re- 
duction strategy that, can exploit various sources of ef- 
ficiency improvement simultaneously. Moreover, few 
attempts have been made either to quantify the ef- 
ficiency improvement resulting from integrated vari- 
ance reduction strategies or to  establish general con- 
ditions under which these integrated strategies are 
preferable to  direct simulation or standard VRTs used 
alone. See Avrainiclis and Wilson (1992) for a re- 

view of the literature 011 integrating variance reduc- 
tion techniques. 

This paper is organized as follows. In Section 2 we 
define our notation, formulate the variance reduction 
problem, and review some basic VRTs. In Section 3 

we develop and study some integrated strategies for 
variance reduction. In Section 4 we provide asymp- 
totic variance comparisons for integrated strategies 
involving the correlation-induction teclinique of Latin 
hypercube sampling. Section 5 contains the results 
of a Monte Carlo study designed to  gauge the effi- 
ciency gains due to  the integrated variance reduction 
strategies in the contest of activity network simula- 
tion. In Section G we summarize the main findings 
of this work, and we recommend directions for future 
research. 

2 NOTATION A N D  BACKGROUND 

The problem is to  estimate the expected value 0 of 
a target response variable Y .  This includes esti- 
mating noncentral moments and probabilities, but 
it does not include estimating, for example, central 
moments or quantiles. We assume throughout that  
E[Y2] < 00 so that  6 F E [ Y ]  and U$ E Var(Y) 
are both finite. T h e  response is assumed to  have the 
form Y = f( VI, . . . , V,), where the function f( .) has 
a fixed number of inputs; and the znput random uarz- 
ales  { VI, . . . , V,} have a known probabilistic struc- 
ture. By this we merely mean that  we have a way 
of generating the random vector V E (VI, . . . , V,) so 
that it has the correct distribution. The  input ran- 
dom variates are generated as V = H(U),  where: 
U E (U1 , . . . , U d )  is composed of d independent ran- 
doin n u m b e r s  that  are uniformly distributed on the 
unit interval (0, 1); and H ( . )  is a samplzng  p lan ,  cor- 
responding to the random-variate generation scheme 
used. In  some parts of this paper, it is convenient to  
view Y as a function of the input random variates, 
whereas elsewhere we prefer to  view Y as a function 
of the input random numbers. In the latter situation, 
we write I’ = f [H(U) ]  E y(U). Throughout this pa- 
per, the word functzoii will mean a Bore1 measurable 
function, taking either real scalar values or real vec- 
tor values. Vectors and matrices will be denoted by 
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Figure 1: A Directed Network 

boldface type. 

EXAMPLE 1. Consider the directed network i n  Figure 
1. T h e  input random variates are { Vl , . . . , V5}, where 
V ,  is the (random) dura.tion of arc i for i = 1 , .  . . ,5 .  
Thus p = 5 in this example. Let 

T = max{V1 + V2, VI + 14 + V5, V4 + V5} 

be the longest directed path from node 1 to node 4, 
and suppose the response is Y = l{T<t}l  the indicator 
function of the event {T 5 t }  for a giien cutoff time t .  
We assume tha t  the random va.riates VI, V4, and V-, 
are mutually independent with known distributions 
and tha t  the random vector (Vz, V3) is independent 
of VI, V4, and V5 with a known bivariate distribution. 
Consider the following sa.mpling plan: 

vl = Hl(UliU2)i v2 = H2(U3)r v3 = H3(U3,Lr4), 

v4 = H4(U5), v5 = H5(US),  (1) 
where { U1 , . . . , U,} are random numbers and 
HI( . ) ,  . . . , H5(.) are given functions tha t  can be eval- 
uated readily. Here we do not. use t,he method of 
inversion to generate all input va.riates; instead Vl is 
generated by some other method that requires two 
random numbers. Moreover, V3 is generated condi- 
tional on V2; and thus V3 is also a function of two 
random numbers. With the sampling plan above, we 
have d = (3, and 

In a direct simulation experiment, we perform ii 

independent replications tha t  yield independent and 

identically distributed (i.i.d.) observations of the tar- 
get response {x : i = 1, .  . . , n} .  T h e  direct simu- 
lation estimator is the corresponding sample mean 
?(n) ,  which is unbiased and has variance n-'g$. 
T h e  aim of varia.nce reduction techniques is to iden- 
tify an  alternative estimator i(n) based on ?i replica- 
tions (which are not necessarily i.i.d.) such tha t  

E[e(n)]  = 0,  Var[e(n)] < Var[Y(n)]. 

Even when the estimator e(n)  is based on n depen- 
dent simulation runs,  typically a central limit theo- 
rem (CLT) holds so tha t  

V 
? ~ ' / ~ [ i ( n )  - 01 - N ( O ,  g2) as 11 --f 00, (2) 

where - denotes convergence in distribution and 
N ( p ,  U ' )  denotes a norma.1 random variable with 
mean p and variance U'. We then say that &n) has 
a s y m p t o t i c  m e a n  B and asyniptotac varaaiice p a r a m e -  
t e r  u2.  

Suppose we have two estimators e l ( n )  and e,(n) 
satisfying CLTs of the form (2)  with respective vari- 
ance parameters U: and n: such tha t  U; 5 U:.  We 
then say that  81 asyn ip to t i ca l l y  d o m i n a t e s  8 2 .  For any 
given finite replica.tion count n ,  this does not guaran- 
tee that  either the bias or the variance of i l ( n )  has 
smaller magnitude than the corresponding character- 
istic of &(n) .  However, asymptotic dominance is a 
reasonable criterion for comparing estimators when 
it is difficult to obtain exact expressions for the bias 
and variance of each estimator at each sample size n. 
For simplicity, we will occa.sionally suppress the ar- 
gument 12 i n  the discussion of alternative simulation- 
based estimators e l ,  4 2  when no confusion can result 
from this usage. 

V 

2.1 Coiiditioiial Expectat ion 

Suppose we can identify an auxiliary random vec- 
tor X such that, we can evaluate t.he conditional ex- 
pectation h(x) = E[YIX = x] analytically or numer- 
ically for each possible d u e  of x .  Thus  the ran- 
dom variable 2 = h ( X )  is an alternative estima- 
tor of 6' based 011 a single replication. From the re- 

sults {Xi : i = 1 , .  . . , n} of 72 independent simulation 
runs, we compute the corresponding random sample 
{Z i  = h ( X i )  : i = l , . .  . , n } ;  and the condaizonal- 
expec ta t ion  (CE) estimator of 6' is 

n 

Since 
E[Z] = E[E(YIX)] = 0 
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and 
U; E Var(Z:l= - E [ V ~ ~ ( Y ~ X ) ] ,  

we see immediately (,hat &(n) is an unbiased esti- 
mator of 0 and that V a r [ i c ~ ( n ) ]  5 Var[Y(n)], with 
equality holding if arid only if Y is a function of X. 

EXAMPLE 1 (CONTINUED).  To evaluate the condi- 
tional expectation of Y = 1 { ~ < ~ )  analytically, we 
condition on X E (.Xl,Xz) E (Vi,&). If Fz,3(*,*)  
denotes the joint cumulative distribution function 
(c.d.f.) of the  input random vector (Vz,V3), and if 
F4(-) denotes the c.d.f. of h, then it is easy t o  check 
that 

h(x1,cz) = 
= 
= 

Pr{T 5 tlX1 ~i VI = c1,XZ 

PI{& _< t - 21,V3 5 t - 21 - z 2 , h  5 t - z2} 
Vs = c2} 

= F2,3(t - “ 1 , t  - 21 - “ 2 ) .  F q t  - “2) .  I (3) 

2.2 Correlation Induction 

We give a general method for obtaining negatively 
correlated observations of an arbitrary random out- 
put W observed in the simulation. (Since we will 
apply the following development not only t o  the tar- 
get response Y but  ab;o t o  other simulation-generated 
outputs, we let the symbol W denote a “generic” sim- 
ulation output to  which a correlation-induction strat-  
egy will be applied.) We view W as a function of the 
input random numbers: 

W = W(V, : j E Iw), 

where IW is a subset of (1 , .  . . , d } ,  and the function 
w(.) is defined by the simulation code. In the sequel, 
we assume that  the arguments of the function w(Uj : 
j E I w )  always occur in increasing order of the index 

An easy-to-check condition that  guarantees nega- 
tive correlation induction is based on the notion of 
negative quadrant delpendence proposed by Lehmann 
(1966). We say that  the distribution of the bivariate 
random vector (AI ,  A2) is negatively quadrant depen- 
dent (n.q.d.) if 

j -  

W A 1  5 U l ,  A2 5 fi!Z} 

5 Pr(A1 5 ul} . Pr(A2 5 u z }  for all u l ,  ug. 

We exploit this concept in Result 1 below to provide 
the desired sufficient condition for induced negative 
correlations. Moreov14r, we use the concept of nega- 
tive quadrant depend.ence t o  define a special class 17 
of distributions for the random-number inputs. Every 
distribution G E G must have the following proper- 
ties: 

CI1 For some k 2 2, G is a k-variate distribution 
with univariate marginals that  are uniform on 
the unit interval (0, 1). 

CI2 Each bivariate marginal of G is n.q.d. 

C13 All bivariate marginals of G are equal. 

Throughout this paper, we let Go(k) denote the dis- 
tribution of k mutually independent random num- 
bers. I t  is clear that  Go(k) satisfies conditions CI1- 
c I 3  so that Go(k) E G.  

Using a k-variate distribution G selected from G, 
we induce negative correlations between k replica- 
tions of the simulation output W according to  the 
following scheme. Let LW denote an arbitrary subset 
of Iw consisting of the indices of the random-number 
inputs to w( .) that  are used for correlation induction. 
We perform k dependent replications yielding outputs 

(4) w ( ~ )  = w ( u j i )  : j E I W ) ,  

where the input column vectors 

i = 1, .  . . ,IC, 

, up] , j E Iw , 

are sampled as follows: 

(U) For every index j E L w ,  the random vector Uj 
has distribution G;  

( b )  For every index j E Iw - Lw , the random vector 
Uj has distribution Go(k); and 

(c) The column vectors U1,.  . . , U d  are mutually in- 
dependent. 

Condition (a )  specifies that  we induce dependence 
between the outputs {W( i )  : i = 1,.  . .  ,k} by ar- 
ranging a negative quadrant dependence between the 
j t h  random numbers sampled on each pair of replica- 
tions, provided j € L w .  Condition ( b )  specifies that  
for each j $! L w ,  the j t h  random number should be 
sampled independently on different replications. Fi- 
nally condition (c) requires mutual independence of 
the random numbers used within the i t h  replication 
to  generate the output W(i); and this guarantees that  
each W ( * )  has the correct distribution. We then de- 
fine the average across the k replications 

k 

Wcr(G, L w )  3 k-’ W(Z), (5) 
i = l  

where we make explicit the dependence of WCI on the 
distribution G and the index set Lw where G applies. 
The  dependence of WCI on k is not shown explicitly, 
but is implicit through G. 
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T h e  mean and variance of WCI(G, L w )  are easily 
derived. Clearly, for any G E G and Lw C_ Iw, the  
statistic Wc1(G1Lw) is an unbiased estimator of B 
with variance 

where 

The  next result follows easily from Lemma 3 of 
Lehmann (1966). 

RESULT 1. If G sa t i s f i e s  c o n d i t i o n  CI? a n d  w(.) is 
a m o n o t o n e  f u n c t i o n  of  each  a r g u m e n t  wiih i n d e x  in 
L w ,  t h e n  C O V [ W ( ~ ) ,  W ( j ) ]  5 0 fori # j ,  w i t h  equal i ty  
ho ld ing  i f  a n d  o n l y  i f  W ( i )  a n d  IW(j) are i n d e p e n d e n t .  

Thus WCI(G,  L w )  has smaller variance t1ia.n I,%'(k), 
the  average of k independent replications of W ,  when- 
ever tu(.) is a monotone function of each random- 
number input Uj with index j E L w ;  no assumption 
is needed with respect to the behavior of w(.) as a 
function of U,  for e L w .  

Using definit,ions (4) and ( 5 ) ,  we formulate 
BcI(G, n), the  correlatioii-iiaductioii (CI) est,imator of 
B based on the k-va.riate distribut.ion G and 11. sini- 
ulation runs. Specifically, d c ~ ( G ,  1 1 )  is obtained by 
averaging 772 = i z / k  i.i.d. replications of the st,atistic 
YcI(G, Ly) ,  where we take 151, = 11, = (1,. . . , d } :  

711 

j = 1  

l i d  
where m = n/k and {%}r=l - Y ~ I ( G ,  { 1, .  . . , d } ) .  
To obtain a single observat,ion of Ycl(G, { 1, .  . . , d } ) ,  
we average k negatively correlated responses, where 
all d random-number input,s are used for correlation 
induction. To simplify the exposition, we assume 
throughout the paper that  n is an integral multiple 
of 6. Next we review two important special cases of 
the method of correlation induction. 

2.2.1. A n t i t h e t i c  V a r i a t e s  (AV). Here k = 2, and 
correlation is induced by using complementary ran- 
dom numbers so that  we have 

We let GAV denote the distribution of [U,'", 
we observe that  GAV E G.  

and 

2.2.2. L a t i n  Hypercube  S a m p l i n g  (LHS). Here 
we sample in a stratified scheme from each of the 
marginal input distributions so tha t  we have 

U. - , i = l ,  . . . ,  k ,  j = 1 ,  . . .  , d ,  (i) - 7 r j ( i )  - 1 + uij  

3 k 
( 7) 

where 

( U )  T I ( - ) ,  . . . , ~ d ( . )  are independent random permu- 
tations of the integers { 1 , .  . . , k } ;  and 

( b )  { Ui, : j = 1 , .  . . , d ,  i = 1 , .  . . , I C }  are random 
numbers sampled independently of each other 
and of the permutations TI( . ) ,  . . . , ~ d ( . ) .  

We let G L H ( ~ )  denote the distribution of each IC- 
dimensional column vector of input random numbers 
generated in this way-that is, Uj - G L H ( ~ )  if and 

only if Uj = . . . , U:")] is generated accord- 
ing to (7). In Avramidis (1993) it is shown that  
G L H ( ~ )  E G for any k 2 2. 

Our definition of LHS is more general than the 
usual one, introduced by McKay, Beckman, and 
Conover (1980) and followed by Stein (1987). These 
authors assume t.1ia.t. the  input random variates are 
independent, and ea,ch of these vxia tes  is generated 
by the method of inversion. We do  not require either 
of these assumptions. For any X C (1 , .  . . , p } ,  we 
say that  strid L H S  is used O I L  K if the input random 
variates {I$ : i E K }  are sampled using the method 
of inversion. 

T 

2.3 Control Variates 

Suppose we can identify a 1 x q vector of concomitant 
random variables C = (Cl, . . . , C,) having known, fi- 
nite expectat.ion pc E E [ C ]  and a strong linear as- 
sociation with E'. We try to predict the unknown 
deviation Y - 0 as a linear combination of the known 
devia.tion C - pc in order t o  adjust the response ac- 
cordingly; this yields the LLcontrolled" response 

Ycv Y - b(C - p L C ) T .  

For any constant 1 x q vector b, the  controlled re- 
sponse YCV is a.n unbiased estimator of B .  Let 
uyc E Cov(Y, C )  be the 1 x q vector of covariances 
[Cov(E', Cl), . . . , Cov(E', C,)] and let C C  E Cov(C) 
be the q x q covaria.nce matrix of C ,  where we assume 
that  X c  is positive definite. T h e  variance of Ycv is 
minimized by the optimal control coefficient vector 
b' = a y c X , ' .  Even though in some applications 
X c  may be known, a y c  is almost always unknown, 
and therefore b" must be estimated. 
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Suppose we have available 17, i.i.d. observa.tions 
{ (Y i ,C i )  : i = 1, .. . , n } .  T h e  most commonly 
used control coefficient vector is the sample analog 
of b*, b = SycS, ' ,  where Syc is the 1 x q vector 
of sample covariances [c;~(Y, cl),. . . C;~(Y, c')] 
and Sc is the sample covariance matrix of C. The 
control-variate  (CV) estimator based on the sample 
{(XI Ci) : i = 1, .  . . , n }  is t,hen defined as 

&(n) =: Y - b(C - pc)  T , 

where Y and C are the sample means of {I< : i = 
1, .  . . , n }  and {Ci : i := 1, .  . . , n }  respect,ively. 

Although the basic variance-reducing properties of 
8cv have been established under relatively stringent 
assumptions about  the joint distribution of the re- 
sponse Y and t,he control vector C ,  Nelson (1990) 
pointed out that  irrespective of the distribution of 
(Y,  C ) ,  

V n'12[8c,(n) - Q] -+ N[O, oZ(1  - R;,,)] as 17 + m, 

where R$,c = a , , c X ~ ; ' a ~ c / a ~ .  is t#he squared coefE- 
cient of multiple correlation between I' and C.  Thus 

n )  a.symptotically dominates ?( 1 1 ) .  

3 INTEGRATED STRATEGIES FOR 
VARIANCE R:EDUCTION 

3.1 Coiiditioiial E,xpectatioii aiid Correlation 
Ixiduc t ion 

We begin by expressing the conditioning vector X as 
a function of the input random numbers: 

X = z ( l i j : j ~ Z x )  forsome Ix c{l,  . . . ,  d } ,  (8) 

where Zx is the set of indices of the random numbers 
on which X depends. As seen i n  52.1, the random 
variable 2 z E[YIX] h ( X )  is an alternative esti- 
mator of Q based on a single replication of the sim- 
ulation; and Z has no larger variance than Y. Thus 
we may view 2 as the new response of interest, and 
we can obtain an  even more precise estimator by all- 
plying the technique of correlation induction to  the 
random variable Z .  For this purpose, we express Z 
as a function of the input random numbers 

Z = h ( X )  = / i [ x ( q ,  : j E Zx)] E z(UJ : j E I x ) .  

Given an arbitrary k-dimensional distribution G E 
G,  we perform k dependent replications of the simu- 
lation using the distribution G to sample the random 
numbers with indices in Zx. T h e  random numbers 
with indices in { 1, . . . , d }  - Ix need not be sampled, 
since Z does not depend on them. Following the no- 
tation in (5), we define the condatzonal e q e c t a t i o n -  
corre la f ion  i n d u c t i o n  (CE+CI) estimator based on 
the distribution G and n replications as 

m 

l i d  
where 171 = n / k  and {Z2}rLl - Zcr(G, ZX). 

\Vilson (1992). 

PROPOSITION 1 For  a n y  G E G ,  t h e  estznzator 
Q C E + C I ( G , I I )  1s a n  riiibzased e s tamator  of e ,  wzth 
Var[icE+cI(G, I ? ) ]  5 Var[@c~(G,  n)]. If z ( . )  as a 
i i i ono fo i i e  fui ic t ioi i  of each of i ta arguniei i ts ,  t h e n  
Var[dcE+cI(G, 1 1 ) ]  5 Var[OcE(iz)]. 

The  following result is proved in Avramidis and 

3.2 Coiitrol Variates aiid Correlatioii Iiiduc- 
tioii 

Our approach t,o the joint application of the methods 
of control variat.es and correlation induction is based 
on the observation that  the control vector C usually 
depends only on a proper subset (U ,  : i E I C )  of the 
input random numbers ( U ,  : i = 1 , .  . . , d ) ,  so that  we 
may write 

C = c ( l i j : j ~ I c . )  forsome I ~ C { I ,  . . . ,  d } ,  (9) 

where I;. E { I ,  . . . , d }  - IC  # 0. 
EXAMPLE 1 (CONTINUED).  Suppose C = V s  + V5 = 
H 4 ( U 5 )  + H 5 ( U t j ) ,  a scalar. Then ZC = {5,6}, 1; = 
{1,2 ,3 ,4} ,  and c (u5 ,  U , ? )  = H ~ ( . U S )  + H ~ ( U G ) .  I 

Our development is in the same spirit as the ap- 
proach of Tew and Wilson (1993) for integrating the 
Schruben-Margoliii strategy with the method of con- 
t,rol variat.es. The  key idea is t,o induce the desired 
negative correlat,ion bet.ween the responses by sam- 
pling dependently only on the coordinates that  do not 
affect the control vect,or, thus preserving the depen- 
dency structure between the response and the control 
vector on each simulation run. 

Given an arbitrary k-dimensional distribution G E 
G l  we perform k dependent replications of the simu- 
lation using the distribution G to sample the random 
numbers with indices in  Z,&. The random numbers 
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with indices in IC are sampled independently accord- 
ing to Go(k). Following the notation in ( 5 ) ,  we define 
the auxiliary quantities 

Y E YcI(G, I & ) ,  

2: E [Ci ,c i (G,  I & ) , . .  . , Cq,ci(G, I & ) ] .  (10) 
To simplify the notation, we will take p(G) E 

p y ( G ,  I & ) ,  where p y ( G ,  I & )  is defined as in (6). We 
define 0cv+cI(G,  n) ,  the  control  variate-correlat ion 
i n d u c t i o n  (CV+CI) estimator based on the distribu- 
tion G and n replications, as the control variate esti- 
mator 

i i d  
with m = n / k ,  {(R,  Ci)}zl (?, C) as in dis- 
play ( lo) ,  and b = S -  - S T ' ,  where Spe denotes the 
1 x q vector of sample covariances between E'- and the 
components of C in (10) and Se tlenot,es the q x q 
sample covariance mataris of C .  

The  following result is proved in Avramidis and 
Wilson (1992). 

PROPOSITION 2 .  S u p p o s e  tha t  C is of ihe  forin (9) ,  
G E 6, a n d  y(.) is a m o n o t o n e  f u n c t i o i ~  of each 
a r g u m e n t  w i t h  i n d e x  in I&.  I f  each of ( Y , C )  and  
(p, e) h.as a m u l t i v a r i a t e  N o r m a l  d i s t r ibu t ion ,  t h e n  
6cv+cI(G,n)  is a n  unbiased est inaator  of 8 ;  a i id  ig- 
nor ing  t e r m s  of order  O(l/n.), we have  

- 
yc c 

Moreover ,  zrrespecizve of t h e  disirzbuiions of (I.,  C )  
and (P, C),  O c v + c r ( ~ )  asy?t?pioi lcn/ ly  dolllzllaies 
e e V  . 

Unfortunately, a variance comparison between 
&v+cI(G, n )  and &I(G, n )  is not possible in gen- 
eral. With e c ~ ( G ,  n)  we sample dependently on all 
the coordinates, which might induce more correla- 
tion between replications of E' than when we only 
sample dependently on some of the coordinates, as 
with 8cv+cI(G, 1 1 ) ;  and this extra  correlation might 
outweigh the benefit of the term -RTrc that  arises 
from the use of control variates. 

3.3 Conditional Expectation and Control 
Variates 

To combine the methods of conditional expectation 
and control variates, we must select a control vec- 
tor C and an auxiliary random vector X such that  

we can evaluate the conditional expectations h(x) E 
E[YIX = x] and g(x) E E[CIX = x] analytically or 
numerically for every possible value of x. Define the 
auxiliary random variables Z G h ( X )  and D g(X), 
and note tha t  E [ Z ]  = 0 and E[D] = pc. 

EXAMPLE 1 ( C O N T I N U E D ) .  With the previously de- 
fined vectors X = (,Y,,Xz) z (VI ,  Vs) and C = 
V4 + Vs, we have 

g ( X i , X z )  E[v4 -k vslvi = 21, v5 = X z ]  

= qv4 + 2 2 .  I 
We view Z and D as the new response and con- 

trol vector respectively, and we use the control-variate 
technique t o  furt,lier reduce the variance of 2. By 
analogy with the standard cont rol-variate method- 
ology, we assume tha t  the vector D has a positive 
definite (p.d.) cova.riance ma.trix ED.  Moreover, we 
assume that  

(11) 
There is no 1 x q vector d # 0 such that  

dCT is a function of X alone. 

Let {X, : i = 1, .  . . , n }  be i.i.d. observations of X. In 
terms of the auxiliary observations 

Zi = h(X;), Di = g(Xi), i = 1 , .  . . , n ,  (12) 

we define Qc,+c" ( 1 2 )  , the condi t ioi ial  expectat ion-  
conlrol  var ia t e  ( C E S C V )  estimator based on n repii- 
cat ions 

T 
e,E+c"(?z) 2 - b (0 - pc)  , 

where: 2 and D are the sample means of {Zi : i = 
1 , .  . . , I ? , }  and {Di : i = 1 , .  . . , n} respectively; 

b SZDS, '  ; 

S Z D  denotes the 1 x q vector of sample covariances 
between Z and the component,s of D in (12);  and So 
denotes t.he q x q sa,mple covariance matrix of D. 

Let R ~ D  denot,e t.he coefficient of multiple correla- 
tion between Z and D. T h e  following result is proved 
in Avramidis and Wilson (1992). 
PROPOSITION 3 .  Suppose  t h a t  C D  is pos i t i ve  defi- 
n i t e  and  (11) holds.  I f  each o f ( Y ,  C) a n d  ( Z ,  D) has  
a n iu l t i var ia t e  Normal  d i s t r ihu t zon ,  t h e n  e c ~ ~ c v ( i z )  
is are uribiased es2irnator of 8 ,  a u d  Var[Qce+cv(n)] 5 
min{Var[6~v(ii)], V a r [ j c ~ ( n ) ] }  for 12 2 q/R;. + 2.  
Moreover ,  irrespect ive  of t h e  distributions of (Y, C) 
a n d  (2, D),  e,,+," asympto t i ca l l y  d o m i n a t e s  
and  BCE. 

EXAMPLE 2. Suppose tha t  (Y,C,X) is nonsingular 
multivariate Normal. Then each of (Y, C) and (2, D) 
is multivariate Normal, C O  is positive definite, and 
(11) holds. I 
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4 SOME ASYMPTOTIC COMPARISONS 

In this section we show that  Latin hypercube sani- 
pling, a special case of correlation induction, is 
asymptotically more efficient than the method of 
control variates when a certain class of controls is 
used. We also establish sonie general conditions un- 
der which a combined variance reduction strategy 
based on the methods of Latin hypercube sampling 
and conditional expectation is asymptotically more 
efficient than many of the other strat,egies discussed 
in this paper. 

Suppose the cont(ro1 vector C has the following 
form in terms of tlie input rantlotn variates: 

.i€ Jc 

for some J c  E { 1,. . . , p } ,  and where 

(a) For each j E J c ,  q5i,J(.) is an arbitrary univariate 
function ; 

where F-'(.) is the inverse c.d.f. of V,, I& E 

{ 1 , .  . . , d {  - IC as in (9), and the functions { H j ( . )  : 
j E J & }  are the remaining par t  of the sampling plan, 
whose form we do not need to make explicit. 

The  following result is proved in Avratiiidis and 
Wilson (1992). 

PROPOSITION 4 .  I f  t he  re sponse  1 .  zs bounded and  
t h e  control u e c f o r  C has c o m p o n e n t s  o f t h e  f o r m  (13), 
t h e n  nsymptotzcnl ly  don i zna te s  ~ C V .  

In the rest of this section we esamine tlie asymp- 
totic efficiency of a combined variance reduction 
strat.egg based 011 the methods of Latin hypercube 
sampling and conditional especthtion. Our result de- 
pends on the observation that  usually the condition- 
ing vector is a subset of the input random variates, 
so that  we may write 

X = (b; : j E Jx- ) for sonie Jx { 1, . . . , y } .  (14) 

\Ve define the condit,ional expectation-Latin hy- 
percube sampling est.imat.or BCE+LH( n.) to  be 
OcEtc,(G121i(ii), 7 7 ) ,  wlicre strict LIIS is used on the 
intles-set Jx- n J(- .  , and again ivt? may a.ssunie with- 
out loss of gt;ll(:r:l]it.y t l l a t  ,Ix- n .I(.. Ix- n I C .  For 
concrct.cncss, wc' st.at.c that t , l i e  sanipling plan corre- 

( 6 )  The input random variates { \ $  : j E J c }  are 
mu t.ually inde pen den t, ; an tl 

(c) The  remaining input. variat.es ( \ >  : j E J ; . ) ,  
where 51- E { 1 , .  . . ~ p }  - . Jc - ,  are  in~lopendc~nt of 
(5 : j  E Jc) .  

That  is, each compclnent Ci of the control vector C 
is a separable function of a set of independent. input, 
variates; and although the remaining set of input vari- 
ates may be stocliaslically interdependent., t.he latt.er 
set is independent of t,he former set. This set.up oft.eu 
occurs in practice since many input, variat.es are gew 
erated independently of each ot.lier and cont.rol vari- 
ates are usually taken t o  he sittiis of selected input, 
variates. For example, i n  queueing simulat,ions, sunis 
or averages of servicla times obscrved at selected ser- 
vice centers are frequently used as controls (\\'ilson 
1984); and in simulations of stochastic activi1.y net- 
works, sums of activity times along selected paths are 
often used its controls. 

EXAMPLE 1 (CONTINUED) .  Using a.gain C = 1/4+\,'5, 

we see that  (13) holds with J C  = { 4 , 5 } , q  = 1, and 
&,4(z) E 4l,s(.c) E ;c for aII real .I,. 

We define the Latin hypercube sampling estinia- 
tor &,,(n.) to  be &(GLII(IL), I ? ) ,  wliere st,rict, LlIS is 
used on Jc; and for ;siniplicit,y i n  t l i e  following tlevel- 
opment, we may assume that. IC. = .IC. without. loss 
of generality (recall the definit.ion of IC in (9 ) ) .  To 
be explicit, we use the following sampling plan for 

I 

h( n):  

FJF :I (Uj  ) , E Jc 

Hj (Ui  : i € I ; ) ,  j E .I;', 
L $ =  

sponding to O C E + L I * ( n )  is 

where I,y is defined i n  (ti),  and t,he funct,ions { H j  (.) : 
j E J,y  - Jc.}  are t.he remaining part. of the sampling 
plan, whose form WI: do not noed to niake esplicit. 

The  followiiig rcsult is provcd iti Avramidis and  
Wilson (199'2). 

PROPOSITION 5 .  I f  t he  re sponse  1,' is bounded,  if t h e  
control r~ector C has c o m p o n e n t s  of the  f o r m  (13), if 
t h e  coiidifzoiizi iy uecior  X 2s of t h e  f o r m  (14) ,  zf ED 
is posi t ive  def ini te ,  arid if (11) holds,  then ~ C E + L H  

asyi i iptoi ical ly  doni i i iates  eCE+,\l, SCE,  ecv ,  a n d  
OLH . 

ti A N  A P P L I C A T I O N  

5.1 Integrated Strategies for Variance Re- 
diic t ion 

The graph-theoretic structure of a st,ocliastic ac- 
tivit.y net.work ( S A N )  is described by tlie pair 
(n / ,A) ,  where N- = { 1 , .  . . , U }  is the set of nodes 
(vertices) in the network and A = { ( a j ,  b j )  : 
act,ivit.y j has st.art, node cij E N and end node bj E 
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N ,  j = 1, .  . . , p } .  T h e  network is assumed to be 
acyclic, with source node r E n/ and sink node 
s E N .  Each activity j has a random duration V,, 
so the input randoin variates are { V, : j = 1, . . . , U } ,  
and the probabilistic structure of the network is de- 
scribed by the joint distribution of the random vec- 
tor ( V I , . .  . , Vp) .  Let < denote the number of di- 
rected r-s paths, and let A(t) denote the index 
set of activities on the Cth path, so A(!) = { j  . 
activity j is on the Cth directed T-s path} for C = 
1,.  . . ,<. T h e  duration of the t t h  path is the random 
variable 

pe= v,, 
3 E A ( t )  

and the n e t w o r k  conipletzon t i i i ie IS 

T E max{P1,. . . , Pt}  

We consider the problem of estimating the cutnula.- 
tive distribution funct,ion F T ( . )  of the network com- 
pletion time. Let 7 be the set of cutoff values a t  
which the c.d.f. is to be estimat,ed. Then,  for each 
t E 7, the  response of interest is 1’ E l i T < t )  E 

f(V1,.  . . , Vp) ,  where 1~ denotes the indicator-func- 
tion of the event B. Here we view t,he overall es- 
timation problem a.s a set of univariat,e est.ima.t.ion 
problem-that is, each value in 7 corresponds to  a 
single estimand of interest. 

We assume tha t  the activity durations {V, : j = 
1, .  . . , p }  are independent, each with a known distri- 
bution. We use the method of inversion to  genera.te 
all random variates, so the sampling plan is 

Thus,  in t,he previously established not,at,ion, d = p ,  
Ix = Jx ,  and I,-: = Jc. T h e  variance reduct,ion t.ec1i- 
niques discussed in the previous sections are applied 
as follows. 

As a conditional-expectation est.imator, we use a.n 
adaptation of an  estimator developed for stochas- 
tic shortest route problems by Sigal, Pritsker, and 
Solberg (1980). A unifornzly directed cutset (UDC) 
C is a set of activities such tha t  any directed PS 
path contains exactly one activit,y in C. See Sigal, 
Pritsker, and Solberg (1980) for propert,ies of a, UDC 
and the derivation of their estimator of E [ Y ] ;  and see 
Provan and Kulkarni (1984) for an efficient algorithm 
to identify a “good” UDC. For our purposes, we only 
need to note tha t  (i) the  conditioning vector is of the 
form (14) with JX = (1,. . . , p }  - C, where C is the 
selected UDC; and (ii) the  conditional-expectation 
estimator Z EE E [ Y I X ]  h ( X )  is nonincreasing in 
each component of X. 

To form a control-variate estimator, we use the 
same approach as in Avramidis, Bauer, and Wilson 
(1991). Ranking the directed r-s paths in decreas- 
ing order of expected duration, we let t l , t ~ , &  be the 
first three such paths. We use as control variables the 
durations of these three paths: 

3 w e - 1  

Observe that  for i = 1 ,2 ,3 ,  E[C,] can be computed as 
sums of mean activity durations, which will either be 
known as part of the input to  the simulation, or will 
have to  be evaluated from the known distributions of 
activity durations. Also note that  the controls are of 
the form (13), with Jc = U:=lA(t,) and 

z if j E A(t‘i) 
0 ot,lierwise. 41,J (x) 

We consider two correlation-induction techniques: 
(U) antithetic variates (see 32.2.1); and ( b )  Latin hy- 
percube sampling (see 32.2.2).  Note tha t  since we use 
inversion, we are in fact using strict LHS on the entire 
set of input random variates (VI ,  . . . , Vp) .  

5.2 Monte Carlo Results 

T h e  SAN we used for this study wa.s taken from El- 
maghraby (1977), page 275; and it is depicted in 
Figure 2.  For ea.ch x t i v i t y  duration Vi, the asso- 
ciated distribution was taken to  be either (U) a nor- 
mal distribution with a specified mean pi and stan- 
dard deviation oi = p i /4  whose t,a.il was truncated 
below the value 0;  or ( b )  an exponential distribu- 
tion with a specified mean p i .  We chose the ex- 
pone n t i a1 d is t r i b u t ion a.s the non normal a1 t er iia t ive 
for reasons elabora.t.ed in Avramidis, Ba.uer, and Wil- 
son (1991). The  set of activities with durations as 
in ( a )  was ta.ken to  be { (1 ,2) ,  (1 ,3) ,  (2 ,4) ,  (6,9), 
(7,8) } .  As a uniformly directed cutset, we chose 

T h e  purpose of the Monte Carlo study was to es- 
timate t,he varia.nce reductions achieved by the fol- 
lowing estimators: (i) d, , (~.) ,  the  conditional ex- 
pecta.tion estimator; ( i i )  i a v ( n )  == B ~ I ( G ~ V ,  n ) ,  
the antithetic variate estimator; (iii) SLH(~) E 
~ , , (GLH(~z) ,  n) ,  the La.tin hypercube sampling esti- 
mator; (iu) Ocv(n), the control variate estimator; 
( U )  OCS+CV (n), the  conditional expectation-control 
variate estimator; and (ui) O C E + L H ( n ) ,  the condi- 
tional expectation-Latin hypercube sampling estima- 
tor. 

Table 1 shows the resulting variance ratios with 
respect to the direct-simulation estimator Y ( n )  for 

c = { ( 3 , 6 ) ,  (216))  (5, (9, (5 ,8) ,  (4 ,7)1 .  
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/Ls = 16.5, ~ ( 6  = 14.7, /.i, 6.0 /A8 10.3, 

pg = 20.0, =4.0, cc11 ~ 3 . 2  Cc12 33.2, cc13 = 16.5 

Figure 2: Network used in the Monte Carlo study. 

Table 1: Estimated Variance Ratios 
~ a r  [ P  ( n ) l / ~ a r  [i( n )I 

for various estimators 8 and sample sizes n. 

Estimator F ~ ( 3 0 )  F ~ ( 5 0 )  F ~ ( 7 0 )  F ~ ( 9 0 )  

jCE(32) 11.1 4.7 4.2 4.4 

&H(32) 1.2 2.2 2.9 2.2 
ecv (32) 1.2 1.4 1.3 1.2 

Estimand 
_. 

kV(32) 1.0 1.2 1.1 1.0 

eCE+CV(32) 16.4 19.9 11.0 7.7 
jCE+LH(32) 42.0 74.0 51.7 18.2 
g c ~ + ~ ~ ( 6 4 )  40.7 83.G 75.7 4G.2 
& j ~ ~ + ~ ~ ( 1 2 8 )  46.5 87.4 77.9 54.3 

network 1. The C E  technique appears to be the most 
effective of the individual VRTs, followed by LHS and 
CV. The  AV technique was of little benefit, so LHS 
was investigated more thoroughly as the correlation- 
induction technique of choice. With the exception 
of $AV, as expected from the results of Section 4, 
~CE+L,  is the best of the six estimators considered 
here. (No asymptotic comparison of 8AV against the 
other estimators seemis possible in general.) Thus we 
chose to  include results for several sample sizes for 
BCE+LH. Observe the large improvement that  the in- 
tegrated variance reduction strategies yield over the 
individual VRTs. 

6 CONCLUSIONS A N D  RECOMMENDA- 
TIONS 

Both our theoretical and experimental results 
strongly suggest that  integrated variance reduction 
strategies have the potential t o  be highly effective in 
a large class of simulation esperiments. Although our 
development is limited to finite-horizon simulations 
with a fixed-dimensional vector of random-number 
inputs, we believe that much of this development 
can ultimately be extended to  infinite-horizon simula- 
tions with an infinite-dimensional vector of random- 
number inputs. 

In light of the demonstrated effectiveness of the 
joint application of Latin hypercube sampling (LHS) 
and the method of conditional expectations (CE) ,  we 
believe that particular emphasis should be given to  
this combined variance reduction strategy in future 
research. Currently the key properties of LHS are 
limited to  the case of a bounded simulation response; 
these properties should be extended to handle an 
unbounded simulation response. Moreover as men- 
tioned in the previous paragraph, a version of LHS 
should be developed for infinite-dimensional random- 
number inputs. 

Finally, we observe that all of the results presented 
in this paper are limited to independent replications 
of a univariate simulation response. These results 
should be extended to  multiresponse simulations. In 
addition, the combined variance reduction strategies 
should be adapted to responses generated within a 
single replication of a simulation model in steady- 
state operation-that is, covariance-stationary sim- 
ulation output processes. 

We believe that our development provides a frame- 
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work for effective application of combined variance 
reduction strategies in many contexts. Beyoiid the 
theoretical comparisons of the asyinptot,ic efficiencies 
of the various combined strategies, our experimen- 
tal results for moderately complex stochastic activity 
networks provide substantial evidence of the practi- 
cal value of using this approach to improving the ef- 
ficiency of large-scale simulations. 
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