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ABSTRACT

We propose correlation induction techniques for re-

ducing the variance of quantile estimators in a finite-

horizon simulation experiment. Both single-sample

and multisample estimators are considered. If the

response is monotone in the random-number inputs

that drive the simulation and haa a smooth distribu-

tion, then the multisample estimators are guaranteed

to have asymptotically smaller mean squared error

than the direct-simulation estimator. The results of

a Monte Carlo study suggest that significant variance

reductions can be achieved when estimating quantiles

of the completion time of stochastic activity networks.

1 INTRODUCTION

The purpose of many simulation experiments is to

estimate the quantile of order p of a target response

variable Y, having an unknown cumulative distribu-

tion function (CDF) F(y) = P[Y < y]. That is, we

wish to estimate

& ~ inf{y: ~(y) > P} for SOme P ~ (0, 1)

A single replication of the simulation is driven by a

random vector U = (UI, . . . . Ud), where {U~ : i =

1 , . . . . d} are independent random numbers-that is,

random variables uniformly distributed on the inter-

val (O, 1). The response of interest is Y = f(U),

where the function j(. ) is defined by the simulation

code.

In a direct simulation experiment, we perform n

independent replications that yield independent and

identically distributed (IID) observations {Yi : i =

1 ,.. ., n}. of the target response. In terms of the

order statistics

y(l) < Y(2) < “ “ “ < %?),

the direct estimator of ~ based on n replications is

defined as

fDI(n) ~ Y([np]+l).

(See David (1981) and Juritz, Juritz and Stephens

(1983) for properties of this estimator.) Since &I(n)

is, in general, biased, we define variance reduction

in terms of the mean squared error (M SE) criterion;

that is, we seek an alternative estimator $(n) based

on n replications such that

MSE[~(n)] S ~[(<(n) – <)2] < E[(/DI(n) – <)2].

We will suppress the dependence on the sample size

n when it is not essential in the discussion.

The problem of variance reduction for quantile es-

timators has received relatively little attention in the

simulation literature. Lewis and Ressler (1989) con-

sider the method of control variates, extended to al-

low for nonlinear transformations of the control vari-

able. Having identified a random variable C that is

observed in the simulation experiment and has known

quantiles, they propose using C[ [n~] +1), the direct es-

timator of the pth quantile of C, as a control variable

for &l(n). Hsu and Nelson (1990) also use a control

variable with known quantiles, even though the esti-

mators they develop are not classical control-variate

estimators.

This paper is organized as follows. In Section 2 we

discuss correlation induction techniques across mul-

tiple samples. Section 3 cent sins some ideas on cor-

relation induction within a sample, In Section 4 we

report the results of a Monte Carlo study that was

used to gauge the variance reductions achieved by

the proposed techniques.

2 CORRELATION INDUCTION ACROSS

SAMPLES

Motivated by the need to obtain an estimate of the

variance of the quantile estimator, Schafer (1974) sug-

gests using k independent samples, each consisting of

m = n/k independent observations (to simplify the

exposition, we assume throughout the paper that n
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is an integral multiple of k). Denote the direct es-
“(i ) Thetimator of & based on the ith sample by (Dl[.

rnultisample estimator of [ based on k samples and a

total of n replications is then defined as

i=l

Although the multisample estimator is not aimed

at variance-reduction, we introduce it because it sim-

plifies our subsequent discussion. We propose new

multisample estimators, where we induce dependence

across the samples, while we maintain independence

within each sample. The key to the development is

the notion of negative quadrant dependence, which

was proposed by Lehmann (1966).

DEFINITION 1. The pair (X, Y) is negatively quadrant

dependent (NQD) if

In section 2.1 we induce negative quadrant depen-

dence by using Latin hypercube sampling (LHS), and

in section 2.2 by using antithetic sampling (A!;).

2.1 Latin Hypercube Sampling

We begin with

DEFINITION 2. The sample {Yl, . . . . Yb} is a Latin

hypercube sample if it is generated as

l’l=f (7rl(i)– 1 + Uil ~d(i) – 1 + U:d

k
,. ...

k- )

~ori= l,..., k, where (a) {ml(.),..., red(.)} ,zre in-

dependent random permutations of {1,..., k]t; and

(b) {Uij : j = 1,. ... d, i = 1,..., k} are in-

dependent random numbers that are independent of

{~,(.), . . .,=d(.)}.

Our definition of LHS is more general than the stan-

dard definition, introduced by McKay, Beckman, and

Conover (1980) and followed by Stein (1987). These

authors assume that the nonuniform random viwiates

that drive the simulation are independent, and each

of these variates is generated by the method of inver-

sion. We do not make either of these assumptions.

Note that (a) each ~ has the distribution of Y,

since it is generated by arguments that are uniformly

distributed on [0,1] and are independent of each other;

and (b) the pairs (Y;, Yj ) are dependent for all i, ~.

Now we have a basic result in

PROPOSITION 1. If f (.) is monotone in each coor-

dinate and {Yl, . . . , Yk} is a Latin hypercube sample,

then (~, Yj) iS NQD for i # ~.

PROOF. Define

(V~j, V~j) = (~j(l)–l+Ulj mj(2)–l+Uzj

k’ k )

forji= l,..., d. It is straightforward to check that

(~j (l), ~j(2)) is NQD, so it follows from Theorem

l(iii) of Lehmann (1966) that (Vlj, V2j ) is NQD for

each j= l,... , d. Moreover, the pairs {(Vlj, V2j ) :

j= l,..., d} are independent. Since $(,) is mono-

tone in each coordinate, Theorem 1(ii) of Lehmann

(1966) implies that (YI, Yz) is NQD. Finally, we ob-

serve that all pairs (Yi, Yj) with i # j have the same

distribution, ❑

Now we describe a new quantile estimator based

on Latin hypercube sampling. Let m = n/k. Obtain

ksamples {Y~i):j =l,..., m} fori= 1,..., ksuch

that ~j s {Y~i) : i = 1,..., k} is a Latin hypercube

sample for each j and ~1, Y2, . . . . Ym are independent.

Observe that each sample consists of m independent

observations, but we have induced dependence across

the respective observations of samples. Let ~~~ de-

note the direct estimator of& based on the ith sample.

Define the Latin hypercube estimator of< based on k

subsamples and a total of n replications as

Note that the direct estimator ~D1(n) is a special case

of ~LH(k, n) for k = 1. Our main result is

THEOREM 1. If f(.) is monotone in each coordinate,

then var[&H(k, n)] < var[&(k, n)] for all k, n.

PROOF. It follows from Proposition 1 that the pair

(~(1), ~(2)) is NQD for each j = 1,.. .,rn. Let 1 =

[mpj +1. Define

g(q, ..c, z~) = the lth smallest in {xl, . . . . t~}

and observe that g(.) is increasing in each coordi-

Y(i)) for i = 1,2 andnate. Since ~~’ = g(Y$), . . . . m

the pairs {(Y/l), Y/2)), . . . . (Y:), Y~2))} are indepen-

dent, Theorem l(ii) of Lehmann implies that the pair

(%i, f%) iS NQD ‘Y Lemma 3 Of Lehmann (1966),

Cov(% , &~) <0. Thus

Var[/&k, n)]

[
= k-l Var(&) + (k – l)COV(/#~ z%J) 1
< k-lVar(&)

= var[&(k, n)]. ❑
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Clearly

E[&(k, n)] = E[&(n/k)] = E[:M(k, n)].

Since ~he mean squared erro} of an estimator ~ is

MSE(~) = (E[~] – .$)2 + Var(f), it follows that

MSE[&H(k, n)] < MSE[&(k, n)] for all k, n. (1)

Next we wish to compare &H(k, n) with the di-

rect estimator ~D1(n). A comparison of the bias and

variance of these two estimators for finite n seems im-

possible in general, However, as n becomes larg~, the

asymptotic beAhavior of the bias and variance of &D1(n)

(and thus of &(k, n) for fixed k) is well-known. Let

Q(z) = inf{y : F’(y) ~ z} for z E (O, 1) be the quan-

tile function of Y, and assume that Q(,) is continuous

at p and has three continuous derivatives at p. De-

note the first derivative of Q(.) by Q’(.). Zelterman

(1987) proves that “for p not near O or 1“,

~~1 nMSE[~~l(n)] = /~iI nMSE[~M(k, n)]

= p(l – p) Q’2(p) (2)

for any fixed k. (Under conditions given in van Zwet

(1964), (2) holds for all p E (O, 1); it follows easily

from Lemmata 3,2.2 and 3,2.3.) Combining (1) and

(2) we get

lim sup rzMSE[&H(k, n)] < ~~~ ~MsE[/DI(~)l
n-+co

for any fixed k. That is, for any fixed k, &H(k, n) has

asymptotically (as n becomes large) no larger MSE

than &l(n). An unresolved problem is how to choose

k in order to minimize MSE[&H(k, n)]; some rough

guidelines are given in section 4.

2.2 Antithetic Sampling

Obtain two antithetic samples Y1 - {Y~l) :i=

1 ,.. .,2}and~2={ Y~2):i= 1,1, n.., n/2} as fol-

lows:

Y/l) = f(uil, . ~, uhf),

I’p=.f( l–uilj..., uid)d)

fori= l,..., n/2, where {Uij : j = 1,. ... d, i =

1 ,. ... n/2} are independent random numbers. Let

~~~, &? denote the direct estimators of ~ based on
samples Y1 and Y2 respectively. Define the antithetic

variate estimator of t based on a total of n replica-

tions as

1 ~:~ + (YJ ,&V(n) ~ ;
( )

In analogy with Theorem 1, we have

THEOREM 2. 1~.f(c) is monotone in each coordinate,

then var[fAv(n)] < var[&(2, n)] for (L// n.

PROOF. It is straightforward to check that if U is

a random number, then (U, 1 – U) is NQD. Since

j(”) is monotone in each coordinate, Theorem l(ii) of

Lehmann (1966) shows that (~.l), Y~2)) is NQD for

each i = 1 ,..., n/2. By reasoning as in Theorem 1,

we see that (jov(/~~, ~f~) < 0, which in turn implies

Var[/AV(n)] < Var[~M(2, n)]. ❑

As in section 2.1, we get

MSE[i$Av(n)] < MSE[$M(2, n)] for all n,

and, under the conditions mentioned in section 2.1,

limsup nMSE[~Av(n)] < ~~~ nMSE[&l(n)].
n+ce

That is, ‘&v (n) haa asymptotically no larger MSE

than &)~(n).

3 CORRELATION INDUCTION WITHIN

A SAMPLE

Multisample estimators are usually more biased than

single-sample estimators; and bias can be the domi-

nant factor of MSE when the size of each subsample

is small, especially when we estimate extreme quan-

tiles (Juritz, Juritz and Stephens 1983). In this case

a single-sample estimator may be desirable.

Let ~ ❑ {Yl, . . . . Yn} be a Latin hypercube sam-

ple. Define ~s,LH(n), the singte-samp~e Latin hyper-

cube estimator of ~ based on n replications as the

direct estimator of & based on the sample Y—that.
is, &s, LH(n) is the ( [rip] + l)st smallest observation

in Y. This estimator is fundamentally different from

those discussed so far: it is an order statistic from a

sample of dependent observations. In contrast, so far

we have considered order ~tatistics from samples of

independent observations (.&D1), and averages of inde-

pendent (FM) or dependent (~LH, ~Av) observations of

such order statistics. The idea is that a Latin hyper-

cube sample is more representative of the underlying

distribution of the response Y than a random sam-

ple, because the marginal distribution of each input

random number is sampled more thoroughly. Thus

the appropriate order statistic from a Latin hyper-

cube sample should better approximate the quantile

of interest.

4 MONTE CARLO RESULTS

We performed a Monte Carlo experiment to esti-

mate the MSE reductions (with respect to the direct-

simulation estimator /D1) achieved by the estimators
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~LH, (AV, and I&,LH in the context of stoch~tic activ-
ity network simulation. Stochastic activity networks

(SANS) are often used to model projects whose activi-

ties have precedence constraints. Thegraph-theoretic

structure ofastochastic activity network is described

by the pair (~, d), where M = {1,..., v} is the set of

nodes (vertices) inthenetworkandd = {(aj, bj) :ac-

tivity ~ has start node aj E Af and end node bj EN,

j=l, o.., p}. The network is assumed to be acyclic,

with source node r E N and sink node s E JV. Each

activity j has a random duration Vj, so the input ran-

dom variates are {~ : j = 1, , . . . p}, and the lprob-

abilistic structure of the network is described b,y the

joint distribution of the random vector (Vl, . . . . VP).

Let a denote the number of directed r-to-s paths, and

let A(l) denote the index set of activities on the lth

path, so A(t?) = {j : activity j’ is on the l?th directed

r-to-s path} for t = 1, ..., cr. The duration of the lth

path is the random variable Pe = ~j ~A(ll Xj, and

the network completion time is T ~ max{P1, . . . . Pa}.

We consider the problem of estimating selected qpan-

tiles of the network completion time.

The SAN we used aa an example represents the con-

struction of a rock-fill dam and was taken from An-

till and Woodhead ( 1982), Figure 8.5(b), page 189.

For each activity duration K, the associated distri-

bution was taken to be either (a) a normal distribu-

tion with a specified mean pi and standard deviation

Ui = pi/4 whose tail was truncated below the value

O; or (b) an exponential distribution with a specified

mean pi. We chose the exponential distribution as

the nonnormal alternative for reasons elaborated in

Avramidis, Bauer, and Wilson (1991), The set of ac-

tivities with durations as in (a) was taken to be {(1,3),

(2,6), (2,4), (8,11), (10,13), (12,18), (16,17), (17,21),

(17,23), (17,19), (18,19), (23,24)}. In addition, we

assumed that the activity durations are independlent;

and we generated all these durations by inversion.

As a result, the response function $(.) is monotone in

each coordinate, and thus the results of the previous

sections apply here.

Table 1 shows the resulting MSE ratios when lesti-

mating the quantile of order p of the network com-

pletion time, A? expected from the results of the pre-

vious sections, <LH and ~Av achieve MSE reductions

with respect to &. Note, however, that &H(k, n)

performs significantly better than &v(n) for k ;> 2,

This behavior was observed in several experiments

(not reported here), so we would recommend&~ with

h >2 ov@r &.

TO use &LH(k, n), a practitioner would probably

have to choose k given the total number of replica-

tions n. For fixed n, variance is typically decreasing

in k (due to the more complete stratification), while

Table 1: Estimated MSE[&l(n)]/MSE[/( n)] for Var-

ious Estimators $(n) and n = 2048

Order p

0.05 0.25 0.50 0.75 0.95

~AV(Ti) 1.05 1.20 1.24 1.02 1.06

<LH(2, n) 1.07 1.27 1.22 1.06 1.05

<LH(41 n) 1.25 1.43 1.43 1.16 1,15

$LH(8, n) 1.21 1.60 1.82 1.47 1.26

<LH(16, n) 1.25 1.66 2.03 1.99 1.41

~LH(32, n) 1.21 1.66 1.96 2.32 1.91

<LH(64, n) 0.77 1.34 1.91 2.33 1.84

& T,H(n) 1.36 1.80 2.48 2.41 2.34

bias is typically increasing in k (due to the smaller

subsample size m = n/k). The net effect is that

MSE[&H(k, n)] is typically decreasing for k < ko and

increasing for k > k., with the critical value k. being

an increasing function of n. For example, from Table

1 we see that k. H 16 for p = 0.50. As a first-order

heuristic, we recommend using k = 0(nl/2), which

we have experimentally found to be a fairly robust

strategy for a wide range of values of n and p.

Although no t heretical guarantee for ~s,LH is cur-

rently available, the results shown here and further

Monte Carlo experiments suggest that .&,LH not only

yields significant MSE reductions, but also dominates

both /AV and ~LH. AThe development of the asymp-

totic properties of <S,LH is the subject of ongoing re-

search,
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