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ABSTRACT 

Batch-means algorithms have long been used to estimate the 
standard error of sample means from stationary simulation output. 
We discuss the extension of batching algorithms from sample 
means to more-general estimators. We provide  assumptions 
sufficient for unbiasedness and convergence and provide computa- 
tionally efficient algorithms for variances and quantiles. Although 
the definitions, discussion, and examples generalize to general 
batching estimators, we consider only the completely overlapping 
version. 

1. INTRODUCTION 

One purpose of stochastic simulation experimentation is to 
estimate the (possibly multivariate) performance measure, 0, of the 
model of interest. The simulation experiment produces an output 
sequence {Yi] ~=l = Y t ,  Y2 ..... Yn, from which the point estimator, 
0, is computed. Ofltput analysis is the process of estimating the 
sampling en~or of 0. Often the sampling error is measured by the 
variance of 0, var(0), or by its square root, the standard error. The 
estimate of the standard error has a variety of uses, including 
confidence intervals, tolerance intervals, methods for comparing 
systems, or as a stand-alone indication of sampling error. 

The extensive literature for estimating the standard error of 0 is 
reviewed in most graduate-level simulation textbooks. Most of the 
attention is focused on 0 = Y, the sample mean of the output pro- 
cess. In the simplest case, independent identically distributed (iid) 
output processes, the square root of the ratio of the sample variance 
and the sample size, [ ~  .(Yi - I7)2/ (  n (n - l ) ) ]  t;2, is well accepted. 
A variety of methods ha~,~'been proposed for output analysis for the 
sample mean of stationary processes. Most do not extend directly 
to the more-general setting where 0 is not the sample mean. 

In Section 2 we discuss the straightforward extension of over- 
lapping batch means [Meketon and Schmeiser 1984] to overlapping 
batch statistics (obs), estimation of standard errors for estimates of 
performance measures that are not sample means. Schmeiser 
[1990] contains a general discussion of obs estimators. We special- 
ize the discussion to sample variances in Section 3 and to sample 
quantiles in Section 4. 

2. STATISTICAL BEHAVIOR OF OVERLAPPING BATCH 
STATISTICS 

The variance of 6 can be estimated by the (obs) estimator 

t l - - m + l  ^ 

V(m)= - ~ -  ( n - r e + l )  " 

where 0j is defined analogously to 0 but is a function of only 
Yj, Yj+I ..... Yj+,n-1, the data in the jth batch of size m. In the spe- 
cial case of overlapping batch means (obm), 0j - , , - t  x~y+,n-1 y. 

- -  , . .  Xl~i==i " / "  

That V(rn) is a reasonable family of estimators of the variance 
of the sample mean is well established. Computation is O(n) ,  as 
discussed in Meketon and Schmeiser [1984] and Schmeiser and 
Song [1987]. Statistical properties depend upon the batch size m, 
with bias decreasing and variance increasing with m, but asymptoti- 
cally the bias of ohm is that of the nonoverlapping-batch-means 
estin~tor (nbm) and has two-thirds the variance of nbm. 

V(m) is also a reasonable family of estimators of the variance 
of nonmeans. Nonmeans include all point estimators that are not 
the sample mean of the process Y. Typical examples include vari- 
ances, standard deviations, higher-order moments especially skew- 
ness and kurtosis, and quantiles. Probabilities are means. In 
estimating nonmeans, we usually use an estimator commonly used 
for iid data. Such point estimators of marginal-distribution proper- 
ties remain applicable with dependent data, although often with the 
burden of asymptotically negligible bias. 

Unlike for the point estimator, large sample size does not 
alleviate all problems with estimating the standard error, where bias 
and variance are affec[ed fundamentally by dependence. In Section 
2.1 we study bias of V(m),  in Section 2.2 we study the variance of 
V(m), and in Section 2.3 we discuss our assumptions on 0 and the 
data process. 

2.1 Bias of OBS Est imators  

Ideally, V(m) should be unbiased; that is, EV(rn)= var(0). We 
provide here three assumptions that are sufficient for unbiasedness. 
Often these assumptions hold only in the limit as batch size m 
and/or sample size n grow large, as discussed in Section 2.3. 

Assumption 1. E0 = E01 = E0 2 . . . . .  E0n-ra+l = 0. 
Assump!ion 2. For some positive constant c, 

var(0~) = var(02) . . . . .  var(%-m+t) = con  and 
vat(0) = c/n. 

Assumption 3. cov(0j, 0) = var(0). 

From these three assumptions, we obtain two intermediate 
results. First, from Assumption 2 we have 

vat(0) c /n  m 

var(0j ) c/m n 

Second, for an arbitrary batch j the expected squared deviation is 

E(6~ - ~)2 = Z ( ( 6 ~ - 0 )  - (6 -O))  z 

= E(0j-0)  2 - 2E(0j-0)(0-0)  + E(0-0)  2 

= var  j) - 20ov  j, 6) + var( ) 
= ( n - m  )var(0j) , 

n 

where the third equality follows from Assumption 1 and the fourth 
equality follows from Assumptions 2 and 3. 
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Combining these two intermediate results yields 

n - m + l  E(6j- 6) 2 

E P(rn) = - ~ -  (n-re+l) 

[ var(0j) j 

= var (~ ) .  

2.2 Variance of OBS Estimators 

Having established assumptions under which the obs estima- 
tors are unbiased, we now add one additional assumption sufficient 
for convergence. The discussion here parallels the usual discussion 
for obm estimators. 

By Assumption 2, var(0) goes to zero as n increases, so we 
hope for a s}ronger result than var(^V(m)) going to zero with n. We 
focus on nV(ra) to estimate nvar(0), which by Assumption 2 is a 
constant. We show here that under weak conditions, var(n V(m)) 
goes to zero. 

For any process and any point estimator 

I~ (o J-°) 2 
n var(nV(m)) = n 3 var m j= '  

[ l ~ j  ~ - m + l  

E COV((OJ -~)2 '  (0/C'0)2) 
= (n_m+D(n_m)2 [ i=I ~=I n-m+l 

I 

We now make 

Assumption 4. The sequence of squared differences of 
the batch statistics and the point estimator is a covariance 
stationary process having a finite sum of autocorrelations. 

Let Rh denote cov((0j-0) 2, (0j+h--0)2), the lag-h eovariance of the 
squared-differences process. Then for a fixed batch size m and 
fixed sample size n we have n var(nl~(m)) equal to 

(n - rn+~n-m)  a ar ( (0 i -0 )2)+2  h=lN (1------:---:-)Rh/n_m+l J 

and for large sample sizes' 

lira nvar(nV(m))=m 2 ~ Rh , 
n - - - ~  h ~  

assuming that the batch size m is controlled so that 
l i m n o ,  n ~(n-m) = 1. Therefore vat(nit(m)) goes to zero. 

2.3 Discussion of the Four Assumptions 

The four assumptions of Sections 2.1 and 2.2 arc sufficient to 
provide obs estimates that are unbiased and converge in a meaning- 
ful way to the variance of the point estimator." Here we restate the 
assumptions in words and briefly discuss their implications and 
interpretations. 

Assumption 1 states that the point estimator and each batch 
statistic are unbiased estimators of 0. 

Assumption 2 states t h~  the variances of the point estimator 6 
and of the batch statistics 0j. decrease proportionally with sample 
size. This ^ assumption is the usual limiting behavior 
limn~,nvar(O)=c, which also holds for the batch statistics since 
they are defined analogously to 0. 

Assumption 3 states that the covariance between each batch 
statistic and the point estimator equals the variance of the point esti- 
mator. When As^sun2ption 2 holds, Assumption 3 is equivalent to 
stating that corr(Oj, O) = (rain)V2; that is, the squared correlation is 
the ratio of the number of observations in a batch to the number of 
observations in the entire sample.. For intuition about this assump- 
tion, consider the regression model 0 = 1~o + [~10j + e for an arbi- 
trary batch ~. Then the squared correlation is the fraction of the 
variance of 0 explained by 0j. Since 0j is a function of m of the n 
observations, it is reasonable that 0j explains m/n of the variance of 
0. When autocorrelation is present, the m observations in the batch 
contain information about the other n-m observations, causing 
some error. For very early and very late batches, this error is about 
half of that incurred by the middle batches. 

Assumptions 1, 2 and 3 seldom hold for finite sample sizes. 
However, for all the classical estimators these assumptions hold in 
the limit as batch size grows large. 

Assumption 4 requires distant observations to be weakly corre- 
lated. This ensures that additional observations contain new infor- 
mation. 

In the special case of 0 being the sample mean of iid observa- 
tions, the obs (overlapping batch means, ohm) estimator is unbiased 
and converges with run length, since the four assumptions hold 
even for finite batch and sample sizes; 

Note that although the bias of V(m) decreases with the batch 
size m, the variance of V(m) decreases with sample size n for any 
batch size m. 

3. OVERLAPPING BATCH VARIANCES 

In this section we specialize the obs estimator to estimate the 
variance of the sample variance. The problem is to estimate the 
marginal-disn-ibution variance o ~ = E(Yi-I.t) 2, where B = EYi, and 
to obtain an estimate of the variance of the associated estimator. 

The point estimator is the sample variance, 

n 
(rj-Y) 2 

$2 = j=l 
n--1 

David [1985] notes that the expected value of S 2 is 
n(fla - var(17))/(n-1) under any dependence structure. In the spe- 
cial case of stationary data, the expected value is 
fin(1 -(2/n)E:',((n-h)/~n-1)corr(Y,, YD. Therefore, if the sum 
of correlations is finite, S is an asymptotically unbiased estimator 
for the marginal variance fla. 

Our problem is to estimate the variance of S 2. To this end, we 
specialize the obs estimator to variances to obtain the overlapping 
batch variances (obv) estimator 

~ [  n-m+1 2 227 
Vo~(rn)= "n-ml +I h~=, (Sh. ,n-S) J , (3-I) 

where ra (satisfying 2 ~ ra ~ n - 1) is the batch size and S~rn i s t he  
sample variance of {Yh ..... Yh+m-, }- We will simply write Vobv 
when the batch size is implied or of no importance. 

Schmeiser and Song [1987] give a Fortran subroutine for com- 
puting the overlapping batch means estimate Vob m of the variance 
of the sample mean that requires 0 (n) time. In fact the computa- 
tion is Performed in one pass through the data. The same approach 
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can be used for lTobv. After expanding the squares in Equation (3- 
1), we obtain 

(n - m  + l n - m + 1  "~ 
Qobv(m)= trl[ j=~l (Sy'm)2-S2[2 j=l ~ S~m-(n-m+l)S2]J 

( n - m )  (n -m +1) 
(3-2) 

Appendix A contains a Fortran subroutine that, given a batch size 
m, computes Vobv (m) in O (n) time, based on Equation (3-2). 

4. OVERLAPPING BATCH QUANTILES 

We now specialize obs estimators to quantiles, obq. The qth 
quantile of the marginal-distribution of Y is the smallest constant y 
satisfying P(Y_<y) p q. We consider the point estimator 0 = Yffqn]), 
where Yq) is the jm order statistic and [ .] denotes the ceiling, the 
sm.allest 1.nteger less than or equal to the argument. Other quantile 
point estimators, such as linear combinations of order statistics 
could be used, in which case the algorithms of this section would 
undergo straightforward modifications. 

The objective of this section is to provide a computationally 
efficient method for estimating quantiles and at the same time 
obtain an estimate of the resulting standard error. Two obq algo- 
rithms are introduced to deal with this problem and a comparison 
between these algorithms regarding both their time and space com- 
plexities is also provided. 

Algorithm (A) 
This algorithm is fairly simple and straight forward. The given 

set of n observations is sorted, then the [qn] ~ smallest element is 
used to estimate the q th quantile. The same process is repeated for 
each batch and the [qm] th smallest element is used as an estimate of 
the qth quantile within the batch. 

The initial sorting of the n data points requires 0 (nlogn) time, 
while locating the qn th smallest element can be done in O(1)< 
dine. Thus obtaining the grand estimate requires 0 (nlogn) time. 
Similarly, for each batch 0 (mlogm) time is needed. Hence, Algo- 
rithm (A) requires O (nlogn+nmlogm) time. 

It can be easily shown that Algorithm (A) requires Os(n) space. 

Algorithm (B) 
To obtain a faster run time, both phases of Algorithm (A) will 

be attacked. First, the initial sorting of the n observations to find 
the k th order statistic will be replaced by the selection procedure 
SELECT with parameters k = [qn I and S the set of observations. 

Procedure SELECT (k,S); 
i fn  < nc then 

sort S; 
return the kth-smallest element in S; 

else 
partition S into [n/5J sequences of 5 elements each with 

up to four left-over elements; 
sort each of the 5-element sequences; 
let M be the set of the medians of the 5-element sets; 
d~--- SELECT ( [  IMI/2], g ) ;  
let S 1, $2, and $3 be the sequences of elements in S 

less than, equal to, and greater than d, respectively; 
if IS l] __. k, then 

return SELECT (k,S 1) 

elseif (IS t [ + IS 21 ~ k), then 
return d 

else 
return SELECT (k-IS t I-I S 21, s3)  

endif 
endif 

Here n c is a machine-dependent constant, possibly about 50, that 
determines whether n is so small that a complete sort is appropriate. 

This procedure takes O(n)  run time and hence it is more 
efficient than the initial sorting used in the first phase of Algorithm 
(A), which takes O (nlogn) time. A complete analysis of the above 
procedure is given in Aho et al. [1974]. 

The second enhancement over Algorithm (A) is to replace the 
repeated sorting used in estimating the qth qnantile for each batch 
by the following procedure: 

i. Construct a balanced 2-3 tree [Aho et al. 1983] with the m 
observations of the first batch. On each vertex that is not 
a leaf we store the number of leaves in every subtree 
rooted at a son of this vertex. 

it. Find the kth-smallest element in the 2-3 tree for the first 
batch. 

iii. Update the 2-3 tree by deleting the first observation in the 
first batch and inserting the extra observation found in the 
second batch. Now the 2-3 tree holds the data points of 
the second batch, hence obtain the kth-smallest element of 
the second batch. 

iv. Repeat step iii for the remaining batches and hence obtain 
the required estimate of the standard error. 

The time complexity of Algorithm (B) is of O (nlogm) and that 
its space complexity is Os(n). Algorithm (B) is better than Algo- 
rithm (A) when comparing their relative time complexities for any 
choice of m. Since m = O(n 1~) is the optimal batch size for obm 
estimators, of particular interest is to choose m to be O (nC), where 
0 _<c _< 1. Then the time complexity becomes O(ni+Clogn) for 
Algorithm (A) and O (nlogn) for Algorithm (B). 

5. DISCUSSION 

The idea of batch statistics can be applied to completely over- 
lapping (as here), partially overlapping, adjacent nonoverlapping 
(classical batching), and spaced batches. (Song and Schmeiser 
[1989] discuss the general family of batch-means estimators having 
two parameters: batch size and distance between the the first obser- 
vations of each batch. Welch [1987] studies the statistical costs of 
partial overlapping.) Although we discuss only completely over- 
lapped estimators here, generalization t 9 general batching estima- 
tors is direct by substituting the general 0 for I~ No other family of 
estimators enjoys such direct extension beyond sample means. 

An open issue is the choice of batch size m to balance bias and 
variance. Schmeiser [1982] discusses the trade-off in the context of 
confidence intervals for nonoverlapping batch means. Song and 
Schmeiser [1988a,b] consider estimator variances and covariances 
of variance estimators for the standard error of sample means. Lim- 
iting behavior for sample means is discussed by Goldsman and 
Meketon [1986] and Schmeiser and Song [1990]. But we have lit- 
tle information about choosing batch size for nonmeans. A con- 
venient result would be that the optimal batch size for sample 
means are nearly optimal for general statistics, since this would 
allow the known results for means to be used for other statistics. 
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APPENDIX A. SUBPROGRAM FOR OVERLAPPING 
BATCH VARIANCES 

s u b r o u t i n e  obv  ( x , n , m ,  x v a r , v x v a r )  
c . . . . .  t h a n o s  a v r a m i d i  s 
c p u r d u e  u n i v e r s i t y  
c j u l y  1989.  
c . . . . .  o v e r l a p p i n g - b a t c h - v a r i a n c e s  e s t i m a t o r  
c o f  t h e  v a r i a n c e  o f  S ^ 2 ,  w h e r e  S^2 i s  
c t h e  e s t i m a t o r  o f  t h e  p r o c e s s  v a r i a n c e .  
c . . . . .  p a r a m e t e r  d e f i n i t i o n s  
c . .  i n p u t  
c n:  number  o f  o b s e r v a t i o n s  
c x:  v e c t o r  o f  o b s e r v a t i o n s  
c . . o u t p u t  
c v x b a r :  e s t i m a t e d  v a r i a n c e  o f  t h e  
c s a m p l e  mean  
c v x v a r :  e s t i m a t e d  v a r i a n c e  o f  t h e  
c s a m p l e  v a r i a n c e  

r e a l  x ( n )  
c . . . .  p r o c e s s  t h e  f i r s t  m o b s e r v a t i o n s  

sumx = 0 , 0  
sum2x = 0 . 0  
do 10 i = l , m  

sumx = sumx + x ( i )  
10 sum2x = sum2x + x ( i )  * x ( i )  

s b v a r  = ( s u m 2 x -  sumx*sumx/m)  / ( m - l )  
s 2 b v a r  = s b v a r  * s b v a r  

c . . . . .  p r o c e s s  o b s e r v a t i o n s  m+l t h r o u g h  n 
sumd = 0 . 0  
surn2d = 0 . 0  
do 20 i = m + l , n  

sumd = surnd + x ( i - m )  
sum2d = sum2d + x ( i - m )  * x ( i - m )  
sumx = surnx + x ( i )  
sum2x = sum2x + x ( i )  * x ( i )  
b s u m  = sumx sumd 

bsum2 = sum2x - sum2d 
b v a r  = (bsum2 - b s u r n * b s u r r g m ) / ( m - 1 )  
s b v a r  = s b v a r  + b v a r  

20 s 2 b v a r  = s 2 b v a r  + b v a r  * b v a r  
c . . . . .  c a l c u l a t e  g r a n d  v a r i a n c e  

x v a r  = ( sum2x - surnx*sumx/n ) / (n -1 )  
c . . . . .  c a l c u l a t e  t h e  obv  e s t i m a t o r  

v x v a r  = ( s 2 b v a r  - 
+ x v a r * ( 2 . * s b v a r - ( n - m + l ) * x v a r ) )  
+ ( ( n - m + l . ) * ( n - m ) / m )  

r e t u r n  
end  
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