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ABSTRACT 

In this paper we examine several procedures for using path 

control variates to improve the accuracy of simulation-based 

point and confidence-interval estimators of the mean completion 

time of a stochastic activity network (SAN). Because each path 

control variate is the duration of the corresponding directed path 

in the network from the source to the sink, the vector of selected 

path controls has both a known mean and a known covariance 

matrix. This information is incorporated into control-variates 

estimation procedures that do not require normally distributed 

responses. The simulation-generated observations are split into 

three groups, and control-variates procedures applied within 

each group are combined in such a way that the overall point 

estimator and the associated variance estimator are always 

unbiased. To evaluate the performance of these procedures 

experimentally, we examine the bias, variance, and mean square 

error of the controlled point estimators as well as the average 

half-length and coverage probability of the corresponding 

confidence-interval estimators for some selected SANs that are 

typical of large-scale PERT applications. The experimental 

results show that in comparison to standard linear control- 

variates procedures, the proposed procedures can yield substan- 

tial improvements in point-estimator accuracy and confidence- 

interval coverage while achieving almost the same magnitude of 

variance reduction. 

1. INTRODUCTION 

Stochastic activity networks (SANs) are widely used in the 

scheduling and management of large projects. However, the 

analysis of such networks is greatly complicated by stochastic 

dependencies among network components that arise, for exam- 

pie, when some activities are common to several paths or when 

several actMty durations are correlated. Conventional analysis 

techniques are based on restrictive assumptions about the proba- 

bility distributions of the acthrity durations or about the topology 

of the network [Grubbs 1962, Littlefield and Randolph 1987, 

MacCrimmon and Ryavec 1964, McBride and McClelland 1967]; 

and these assumptions generally yield approximations of 

unknown accuracy. Because of its ability to represent faithfully 
the dependencies among the components of a stochastic activity 

network and to yield estimates of desired performance measures 

with controllable accuracy, Monte Carlo simulation is frequently 

the method of choice for the analysis of such networks. 

In the simulation of a SAN, the usual objective is to obtain 

point and confidence interval estimators for the mean comple- 

tion time 0 of the network. Let the random variable Y denote 

the completion time of a given SAN. Direct simulation simply 

computes the sample mean response Y from n independent 

replications of the network to yield an unbiased estimator of 0 

with var(Y) = var (Y ) /n .  Since the variance of Y declines as 

the inverse of the sample size, a large number of replications will 

usually be required to achieve acceptable precision (for example, 

see Table 2 below). Computing costs can then become prohibi- 
• A 

tire, and we naturally seek to derive an alternative estimator 0 

with E (0) _~ 0 and E [(~-  0 )2] < var(Y). 

Several variance reduction techniques have been proposed 

for improving the efficiency of activity network simulations, 
including cortditional Monte Carlo [Burt and Garman 1971, Kul- 

karni and Provan 1985], stratified sampling [Burt et al. 1970, 

Loulou and Beale 1976], antithetic sampling [Sullivan et al. 

1982], control variates [Burt et al. 1970], and combinations of 

these techniques [Burt et al. 1970, Loulou and Beale 1976]. 

Some of our recent work [Bauer et al. 1987, Venkatraman and 

Wilson 1985] has led us to the conclusion that in comparison to 

the other commonly used variance reduction techniques, the 

method of control variates is more easily adapted to a wide 

variety of network configurations and has greater potential to 

yield large efficiency increases in general applications. To esti- 

mate the target parameter 0 using the method of control vari- 

ares, we identify a set of auxiliary variables C = ( C 1 , . . . ,  Cq)" 

that are generated by the same stochastic system, have a known 

expectation #¢, and are strongly correlated with the response E 

We then try to predict and counteract the unknown deviation 

Y - 0 by subtracting from Yan appropriate linear function of the 

known deviation C - t t c .  The objective then is to determine a 

vector of control coefficients b _= (bl  . . . .  , bq)" that will minim- 

ize the variance of the controlled estimator Y ( b )  = Y -  

b "(C - tsc). Lavenberg, Moellfr, and Welch [1982] presented 
a comprehensive analysis of the control variate method for 
univariate responses. 

This paper is organized as follows. In Section 2 we summar- 
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ize the necessary statistical framework for applying (a) some 

standard linear control-variate procedures based on the assump- 

tion of normal responses, and (b) distribution-free variants of 

the standard control-variates procedures based on splitting the 

simulation-generated sample into three subsamples. This split- and 
ting technique enables us to construct controlled point and 

confidence-interval estimation procedures that are robust 

against nonnormality. In Section 3 we summarize some basic 

results about the moment structure of path control variates in 

stochastic activity networks. Section 4 details the results of an 

extensive experimental investigation of the performance of the 

various estimation procedures based on path control variates. In 

Section 5 we discuss the significance of the experimental results, 

and we summarize the main findings of this research in Section 

6. This paper is partially based on results that were originally 

presented in Venkatraman and Wilson [1985], Bauer et al. 

[1987], and Awamidis et al. [1990]. 

2. STATISTICAL FRAMEWORK 

The following notation is used throughout this paper. Let 

try = E [ ( Y  - 0) 2] denote the variance of the completion time Y 

for the target network, let at3- = E [ ( C  - t t c ) ( Y  - 0)] denote 

the q x 1 vector of covariances between the control vector C and 

the response Y, and let X~c = E [ ( C  - t t c ) ( C  - t s c ) ' ]  denote 

the q xq  covariance matrix of the controls. The variance of the 

controlled response 

var[Y(b)] = o'~ - 2b "acy + b "I~cb 

is minimized by the optimal vector of control coefficients 

/~ = ~ I o ' c y  , (1) 

yielding the minimum variance 

var[Y(#)] = o~,(1 - R~c) ,  (2) 

where R y e  is the coefficient of multiple correlation between Y 

and C. In practice, fl must be estimated became at least a c y  is 

generally unknown; and in many applications Ec  is also 

unknown so that both terms on the right-hand side of (1) must 

be estimated from simulation-generated data. Estimation of 

results in some loss of precision for the controlled point estima- 

tors of 0 described below. 

2.1 Control-Variates Procedures for Normal Reponses 

First we summarize the conventional method for applying 

control variates to the estimation of 0. Let {[Yu, C~] : u = 1, 

. . . ,  n} denote the results observed on n independent replications 

of a simulation of the target network. Let Y and C respectively 

denote the sample means of the response and the control vector 

computed over all n replications; and let S~,, Scy, and Sc  respec- 

tively denote the sample analogs of cry, a c t ,  and Ec .  

Specifically we compute 

Sc = (n - 1) -1 ~ (c. -E)(c. - E)" 

see = (n - D -t ~ (C,, - ~ ) ( Y .  - Y )  
U = I  

so that the sample analog of (1) is 

= s ~ l S c r ;  (3) 

and the conventional controlled point estimator of 0 is 

Y(~) = Y - ~ ' ( C  - / z c ) .  (4) 

In general, "Y(~) is a biased estimator of 0 because ~ and C are 

dependent so that E [ f l ' ( C - t ~ c ) ]  #0. However, in many 

large-scale simulation experiments, the response and the con- 

trois are (approximately) jointly normal because these statistics 

are simultaneously accumulated over the duration of each run 

and thus are subject to a central-limit effect (see Cbeng [1978]). 

Thus it is often reasonable to assume that Y and C have a joint 

multivariate normal distribution 

- Nq +~ , . (5) 

/.~c tcrcY ~c 

If (5) holds, then Y(fl) is an unbiased estimator of 0; and an 

exact 100(1 - a )% confidence interval for 0 is given by 

Y ( ~ )  ± t l - a / 2 ( n  - q  - 1 )DSy .c ,  (6) 

where 

0 2 = n -1 + (n - 1) -1 (C - ~ ¢ ) ' S ~  1 ( C  - l , c ) ,  

s~ , .c  = (n  - q - 1) -1  (n  - 1 ) ( s~ ,  - s b y s ~  1 s o . ) ,  

and t l - a / z ( n - q -  1) is the quantile of order 1 - a  f 2  for 

Student's t-distribution with n - q  - 1 degrees of freedom (see 

Lavenberg et al. [1982]). 

As the basis for a similar statistical-estimation procedure 

that exploits the known covariance matrix of the control vector, 

we have previously proposed the following alternative estimator 

for the control coefficient vector 

= E ~aScy (7) 

[Venkatraman and Wilson 1985]; and this leads to a controlled 

point estimator for 0 with the form 

Y(h) = Y - ~ ' ( C  - ~c) -  (8) 

Under  the assumption of joint multivariate normality in (5), 

Bauer [2] proved that Y(~) is an unbiased estimator of 0. Furth- 

ermore, an approximate 100(1 - ~)% confidence interval for 0 is 

given by 
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Y(#) t1-~/z(n-q I) [----~--~S~. + ,,/2 -- '" ± - ,n~- 2., S2r.c[ . (9) 
[ nt  n - 0 n~nn - U J 

A comprehensive analysis of the controlled estimator Y(fl) is 
given in Bauer [ 1987]. 

2.2 Control-Variates Procedures for Nonnormal Responses 

In Avramidis et al. [1990] we observed that nonormality of 

the network completion time and the path controls can induce a 

substantial bias in the point estimators (4) and (8), and this bias 

can lead to severe degradation of coverage probability for the 

associated confidence intervals (6) and (9). We also observed 

that although jackknifing alleviates these problems, most of the 

potential variance reduction is lost with this approach. As an 

alternative to jackknifing for nonnormal responses, we propose a 

variant of what is sometimes referred to as "splitting" [Nelson 

1989]. The complete sample {[Yu, C~] : u = 1 , . . . ,  n} is split 

into three groups or subsamples; thus from the gth group (g = 1, 

2,3) 

rg ~_ { [ Y ~ , C : ] : u e % }  

composed of observations whose indices belong to the index-set 

U s ~ { u  :u  = [ ( g - 1 ) n / 3 J + l  . . . . .  [gn/3J}, 

we compute the control coefficient estimates analogous to (3) 

and (7) 
^ A 
#g = 0s(rg) and ~g = ~g(rs). 

Next we define the circular group-assignment function 

r(g) ~ g(mod 3)+ 1 (g = 1, 2, 3) 

so that for each group rg, the control coefficient vector to be 

applied to the observations in that group is computed from the 

assigned group r ~ ) .  Thus the uth controlled response in the gth 

group is given by 

Y.[O~(s)] = Y.  - /~ f s ) (C.  - I z c )  for u E U ,  

and g = I, 2, 3. Similarly we can define Yu [~(g)] for all u and g. 

Since simulation-generated observations from different groups 

are stochastically independent, the uth observation [Yu, C~] in 

group rg and the estimated control coefficient vector Or(g) are 

stochastically independent. It follows that the controlled obser- 
^ 

rations {Yu[f,(g)] :u E Ug} are pairwise uncorrelated with 

expected value 0. A similar argument shows that the 

{Yu[~(g)]:u E Ug} are also pairwise uncorrelated with expected 

value 0. 

For simplicity in the following development, we only discuss 

our proposed extension of the standard linear control-variate 

estimator (4). From the properties cited in the preceding para- 

graph, it can be shown that the point estimators 

and 

Yg ~ /Ig I E Yu[fl.r(g)] with ngE lug[ 
u~e~ 

1 ^ }2 
s~ -: (ng- l)-  E / r - t 0 ~ ) l - g  

. e u ,  I. 
A 

are respectively unbiased estimators of 0 and var{Yu[0~.(g)]}. 

Thus the analogue of (4) based on splitting is 

1 3 
Y . ( ) )  = - E rg ;  (lO) 

3 g ~ 1  

and the analogue of (6) is 

2 ^ 
• ~,(~) + ^ S,(O) (11) 

- t1-~/2(voD ~ , 

2 ^ where: (a) the pooled variance estimator S .  (0) is the average of 

the three variance estimators {Sg z :g = 1, 2, 3); and (b) the so- 

called "effective degrees of freedom" ~'eff in (11) is equal to two 

divided by the squared sample coefficient of variation of the 

4 8  
A v~ = (12) 

Note that the analogues of (10) and (11) for linear control- 

varime procedures based on a knowa E c  will be respectively 

denoted by 

. . . . . .  S2"(~) (13) Y,(/~) and Y,(0)  ± tl-a/2(I)eff) ~ , 

where i;e~ is given by the right-hand side of (12) when S~ (fl) is 

replaced with S{ (~). 

3. ESTIMATION WITH PATH CONTROLS 

The graph-theoretic structure of a given SAN is described 

by the pair (@, A), where the set of all nodes (vertices) in the 

network is ~ _= {1, 2, . . . .  ¢}, and the set of all activities 

(directed lines) in the network is A ~ {(ui, vi) : activity i has 

start node ui E ~  and end node vi E~,  i = I, . . . ,  6}. We assume 

that the network is acyclic with a single source node and a single 

sink node. The probabilistic structure of the network is 

described by the given joint distribution function F ( a  b . . . ,  a6) 

of the random vector (A 1 . . . .  , A6) whose ith element Ai  is the 

duration of the ith activity (ui, v i )E&.  Thus for i = 1, 2, . . . ,  6, 

the activity durat ionA/has a known marginal distribution Fi(ai) 

whose mean ~i and variance a/2 can at least be evaluated numer- 

ically. Moreover for h, i = 1 . . . .  ,6,  the covariance ahi between 

the activity durations Ah and A i is also known or can be 

evaluated numerically. (In many SANs the activity durations are 

assumed to be stochastically independent so that ahi = 0 for 
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h ~i.) 
The path controls and the overall network completion time 

depend on the path structure of the network as follows. Let 

denote the number of directed paths from the source to the sink. 

Corresponding to the fth directed path 7rj is the index-set of 

component ares l ( j )  _= {i : activity (ui, vi) is on path ~rj} for 

] = 1, . . . ,  ~. The duration of path 7rj is the random variable 

Pj ~ ~ i E l ( j ) A i  

with mean and variance 

E(Pj)  = ~ tti and var (P j )=  ~ (7/2 + ~ ~ ohi (14) 
iEl(j) iEl(]) h, i~l(j) 

hi=i 

respectively. Note also that for j, I = 1 . . . .  , ~, the covariance 

between the path durations Py and Pt is 

Cov(Pj ,  PI) = ~ 0"i2 + ~ ~E~ (Thi" (15) 
i ~ I(j) fqr(t) h et(j) 

ie1(0 
hM 

The overall project completion time is Y -= max{P1 .... , PC}, 

and the desired estimand is 0 = E (Y). 

From the set {Pj : j = 1 . . . . .  ~} of all path durations for the 

stochastic activity network (~, A), we must select the control 

vector C that is to be applied to point estimators of 0 with the 

form (4), (8), (10), or (13). For simplicity in the experimental 

evaluation of all of these controlled estimators, we employed the 

following control-variate selection rule. Ranking the expected 

path durations {E (Pj) : j = 1 . . . .  , ~} in ascending order so that 

E [P(1) l LS E [e(2) ] < . - .  _< E [P(o ], (16) 

we chose the last q paths in this list to build the control vector 

C = [P(,~_q+l),e(,~_q+2) . . . . .  e(¢- l ) ,e (e)] ' .  

(In all of the experimentation described in the next two sections, 

we took q = 3 for reasons that are detailed in Avrarnidis et at. 

[1990].) The mean vector Pc  and the dispersion matrix E¢  of 

the resulting q-dimensional control vector were then computed 

from (14) and (15). Of course in general applications the user 

would need some guidance in determining q and in selecting the 

appropriate set of q controls from the set of available path con- 

trois, but this is a separate issue that is not addressed in this 

paper. For controlled estimators of the form (4) and (8), Bauer 

and Wilson [1989] have devised some control-variate selection 

criteria that are based on minimizing the mean square volume of 

the delivered confidence region and that appear to be effective 

when the normality assumption (5) holds; however a more 

extensive Monte Carlo study is required to support any general 

conclusions about the performance of these selection pro- 

cedures. 

4. EXPERIMENTAL EVALUATION 

We conducted an extensive Monte Carlo study to evaluate 

the performance of the following controlled estimators for 0: 

Y(~) (estimator 1, also denoted ~(1)); Y(h)  (estimator 2, also 

denoted ~(2)); Y , (~ )  (estimator 3, also denoted 0(3)); and 

Y . (~ )  (estimator 4, also denoted 0(4)). This study involved the 

simulation of a set of three SANs in which the following 

characteristics were systematically varied: (a) the size of the 

network (the number of nodes and acti~ties); (b) the topology 

of the network; (c) the percentage of activities with exponen- 

tiaUy distributed durations; and (d) the relative dominance (criti- 

caiity index) of the critical path. All efficiency gains were 

reported relative to the direct simulation estimator Y (estimator 

0, also denoted ~(0)). Table 1 shows the range in the number of 

nodes and act~,ities for the three networks used in the study. 

Note that (a) network 1 was taken from page 275 of Elmaghraby 

[1977], (b) network 2 was taken from page 190 of Antill and 

Woodhead [1982], and (c) network 3 was taken from page 324 of 

McKenney and Rosenbloom [1969]. 

Table 1. Stochastic Activity Networks Used 
in the Experiments 

Network Nodes Activities 

1 9 13 
2 24 42 
3 51 65 

For each activity dura t ionA/in  a selected network, the asso- 

dated distribution Fi(ai) was taken to be either (a) a normal 

distribution with the specified mean/-~i and standard deviation 

oi = # i /4  whose tail was truncated below the cutoff value zero; 

or (b) an exponential distribution with mean #i- We chose the 

exponential distribution as the nonnormal alternative because it 

has a higher coefficient of variation (equal to 1) than the beta 

and triangular distributions commonly used in the simulation of 

SANs [Loulou and Beale 1976], and this property partially coun- 

teracts the central-limit effect described in Section 2. Sullivan, 

Hayya, and Schaul [1982] used a similar approach in their exper- 

imental study. For each of the three networks, we varied the 

percentage of exponentially distributed activity durations over 

the five levels {0%, 25%, 50%, 75%, 100%}. For each network 

and for each specified percentage of exponentially distributed 

activities, we assigned appropriate exponential distributions to 

the activities in the network according to a series of independent 

Bernoulli trials with success probability equal to the specified 

percentage of exponential activities; moreover, this assignment 

was made prior to performing any simulations of the network. 
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Relative dominance of a given path 7rj is defined as the pro- 

bability Pr{Y = Pj} that path 7rj has the longest duration in a 

single realization of the network. For each network and for each 

selected percentage of exponentiaily distributed activities, we 

rescaled the expected duration of each activity on the so-called 

"critical path" (that is, the path with the longest expected dura- 

tion) to achieve a prespecified level of relative dominance for 

that path. In view of (16), the critical path is r(O with mean 

duration E [P(o]; and the associated index-set of activities on the 

critical path is denoted I[(5)] = {i : activity (ui, vi) is on path 

7r(O }. For every i E I[(~)], a common scale factor ~b was multi- 

plied by the nominal mean p~ to yield the actual mean t~i = ~bp7 

that was used when sampling Ai. For each network to be simu- 

lated, we determined empirically values of ~b that achieved levels 

of relative dominance for the critical path in the following 

ranges: {20%-40%, 50% - 70%, 80% - 100%}. 

For a given configuration of a target activity network (that 

is, for a selected SAN with a given level of relative dominance 

and a given percentage of exponentially distributed activities), 

we determined the corresponding mean completion time 0 to 

within ± 0.2% of its true value by a preliminary Monte Carlo 

experiment involving direct simulation of the target network; 

and the final number of replications N* in this preliminary 

experiment was determined by a relative-precision stopping rule. 

To estimate 0 by a 100(1 - c0% confidence interval of the form 

Y ± "rlYI that is asympotically consistent and efficient as the 
percentage error tolerance ~ 0 ,  we employed a variant of 

N~idas's [1969] sequential confidence-interval estimation pro- 

cedure thai was proposed by Law, Kelton, and Koenig [1981]• 

For a fixed number of replications n of the target network, let 

Y(n) and St(n) denote the corresponding sample mean and 

standard deviation of the observed network completion times• 

Given prespecified values of the percentage error tolerance 7, 

the confidence coefficient a, and the preliminary sample size no, 

we determined the final number of replications according to the 

stopping rule 

N* = m i n { n  : n_>n0, n = 0(mod 10), Sy(n) > O, and 

1) Sv(n) LS 7[Y(n)[}, (17) 
t 1 - ~ / z ( n  - 

and the "true" value of 0 was taken to be Y(N°). In the prelim- 

experimentation with the selected networks, we took 

n 0 = 1000, - /=  0.002, and ~ = 0•01. Table 2 summarizes the 

results of the preliminary experimentation to determine 0 for 

each network configuration in which 50% of the activities were 

assigned an exponentially distributed duratioru The results for 

other percentages of exponentially distributed activity durations 

are not displayed because they were not used in the final analysis 

of the controlled estimation procedures as explained in Section 5 

below. To simulate each network configuration as efficiently as 

possible, we developed a general simulation program for sto- 

chastic activity networks that uses the discrete-event component 

of the SLAM II simulation language [Pritsker 1986] and that is 

available from the authors on request. 

Inspection of Table 2 reveals that the true value of 8 for each 

selected network configuration has been determined to at least 

two significant figures; but for some configurations, the third 

significant figure is in question. Throughout the rest of this 

paper, the estimates of # in Table 2 are taken to be the "true" 

values of 0 for each selected network configuration. 

In the main experimental evaluation of the proposed estima- 

tion procedures for each selected network configuration, we 

conducted a metaexperirnent composed of m = 2048 basic exper- 

iments that were executed separately and independently. A 

basic experiment involved n = 96 simulation runs (independent 

replications) of the target activity network; and from each basic 

experiment we computed point and confidence-interval estima- 

tors of 0 using q = 3 selected path controls. To provide a fair 

assessment of the efficiency gains achieved in the simulation of 

each network, we estimated the bias, variance, and mean square 

error for each of the four controlled point estimators; moreover, 

for each of the four controlled confidence-interval estimators, 

we estimated the actual coverage probability of a nominal 90 

percent confidence interval as well as the percentage reduction 

in confidence-interval half-length relative to direct simulation. 

Properties of the controlled point estimators of 0 were 

evaluated as follows. From the n simulation runs comprising the 

wth basic experiment (w = 1 . . . .  , m), we computed the kth 
• • A 

point estimator Ow(k) (k = 0 ..... 4). Across the entire metaex- 

periment~we computed the grand mean ~(k) and the sample 

variance V(k) of the replicates {0~(k) :w = 1 . . . . .  m } 

~(k) = m -1 ~ Ow(k)_ t 
~ , - 1  . ( 1 8 )  

= ^ ~ ( k )  2 (=_ 1) ] 

Thus for the kth controlled point estimator 0w(k) of the mean 

completion time 0, the corresponding bias was estimated by 

~ ( k ) -  0, the variance was estimated by V(k), and the mean 

square error was estimated by 

- 1  m r ^  a 2  

MSE(k) = rn w~__ 1 [0w(k) - 0] . (19) 

Properties of the controled confidence-interval estimators 

of 0 were evaluated as follows. From the n simulation runs 

comprising the wth basic experiment (w = 1 . . . .  , m), we com- 

puted not ort~ #~,(k) but also Vw(k), the estimator of 

var[0w(k)]; see (22) below. Thus in the wth basic experiment, 
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Estimates of # with Relative Precision ± 0.2% at the 
99% Confidence Level 

Relative Final Estimate Final Sample Size 
Network Dominance of 7r(O of 0 N* 

20% - 40% 57.00 232970 
1 50% - 70% 88.31 287410 

80% - 100% 164.78 362310 

20% - 40% 981.37 194060 
2 50% - 70% 1616.98 252640 

80% - 100% 2733.76 271200 

20% - 40% 68.39 122230 
3 50% - 70% 81.43 93590 

80% - 100% 141.79 81960 

the kth controlled confidence-interval estimator of # has the gen- 
eral form 

^ [ ,  ^ ^ 
o~,(k) =_ o~(k) - H~(~), O~(k) + ~ ( k  (20) 

with half-length 

~ ( k )  ~ t~ _ . /2 [~k) l  • p~/2(~),  (21) 

where: v(k)_=n - 1 if k = 0, 3, or 4; v(k)=-n - q  - 1 if k = 1 

or 2; and 

S ~ l .  ifk=o 

D2S~"c if k = 1 

~'w(k) ~- [(q + 1)S~, + (n - 2 )S~ , . c l / tn (n  - 1)] if k : 2 .  (22) 
^ 

s 2. ( # ) / n  i f  k : 3 

s 2. (h)In if k = 4 

Note that for k = 1, 2, 3, and 4, display (20) specializes to the 

forms (6), (9), (I1), and (13) respectively. The average half- 

length of the kth confidence-interval estimator O(k) computed 
across all rn basic experiments is 

^ 
H(k) ~ m -t  ~ Hw(k) (23) 

w=l  

for k = 0, 1, 2, 3, 4; and the percentage reduction in half-length 

for O(k) relative to direct simulation is estimated by 

lOOtn(o) - H(k) ]/H(O). 

Finally we consider the estimation of confidence-interval 
coverage probabilities. For the wth basic experiment, let 

^ 1 if OeOw(k)  
&,(k)  ~ (24) 

0 otherwise 

for k = 0, 1, 2, 3, 4, and w = 1 . . . .  , m. The actual coverage per- 
^ 

eentage for O(k) is then given by 100I(k), where 

m - l ~  ^ I(k) ~ lw(k) for k = 0, 1, 2, 3, 4. (25) 
w = l  

$. EXPERIMENTAL RESULTS 

From previous experimentation [Avramidis et al. 1990] with 

the given networks, we observed marked departures from the 

joint normality assumption (5). This motivated our development 

of the controlled estimators (10), (11), and (13) based on split- 

ring. We also observed that the percentage of exponentially dis- 

tributed activities had no effect on confidence interval coverage, 

but it did affect the half-length of the confidence intervals. Since 

the worst-case behavior was observed with the percentage of 

exponentially distributed activities in the range 25% - 50%, we 

fixed this factor at the 50% level throughout the rest of this 

study. 

For each controlled point estimator of 0, the corresponding 

sample bias is summarized in Table 3 for each network 
configuration with 50% exponential activity durations. As 

detailed in Section 4, the results in Table 3 and in all subsequent 

tables were computed from metaexperiments composed of 

m = 2048 basic experiments, and each basic experiment con- 

sisted of n = 96 independent simulation runs. From Table 3 we 

see that the estimators Y(~) and "Y(h) designed for normal 

responses (that is, ~(1) and ~(2) respectively) possess a marked 

negative bias; and the bias of Y(fl) appears to be an order of 

magnitude greater in absolute value than the bias of the conven- 

tional controlled estimator Y(#).  By itself, this bias may not 

have much practical significance since it is less than 3% of the 

estimand # for each network configuration studied; however, this 

bias may significantly affect the performance of the correspond- 

ing confidence-interval estimators. This issue will be elaborated 

in the discussion given below on confidence-interval estimators. 

Finally, we note that the estimators Yo(B) and Yo(#) based on 

splitting (that is, ~(3) and ~(4) respectively) have negligible bias. 
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Table 4 summarizes the sample variance of each of the four 

controlled point estimators of 0. The estimator Y(fl)  based on 

the known covariance structure of the controls consistently 

displayed more variability than the conventional controlled esti- 

mator Y(~) .  It is interesting to note that the point estimators 

Y'.(fl) and Y . ( ~ )  frequently displayed nearly the same variabil- 

ity as their conventional counterparts. 

For each controlled point estimator of 0, the sample mean 

square error defined by equation (19) and displayed in Table 5 

provides a single figure of merit that incorporates both the bias 

and variance of that estimator. In all eases the conventional 

point estimator Y(fl) dominated the point estimator Y(fl)  based 

on the known covariance structure of the controls. Moreover, 

the estimator Y. ( f l )  was clearly superior to Y, ( f l )  with respect 

to mean square error. These conclusions are to some extent 

surprising since Y(~)  and Y. ( f l )  were specifically designed to 

exploit extra analytical information about the distribution of the 

control vector C. 

Finally we consider the performance of the various con- 

trolled confidence-interval estimation procedures. Table 6 sum- 

marizes the percentage reduction (relative to direct simulation) 

of the average half-length of nominal 90% confidence intervals 

generated by each procedure for each network configuration 

with 50% exponential activities. Inspection of this table reveals 

that relative dominance of the critical path was a highly 

significant factor. The percentage reduction in average 

confidence-interval half-length generally increased with increas- 

ing levels of relative dominance of ~r(o. This is to be expected 

for the same reasons discussed at the beginning of this section: 

at higher levels of relative dominance, the control P (0 for the 

critical path was more highly correlated with the overall comple- 

tion time Y. 

Table 7 summarizes the percentage of confidence intervals 

that actually covered the estimand 0 for each controlled estima- 

tion procedure and for each network configuration with 50% 

exponential actMties. Since a total of m = 2048 confidence 

Network 

Table 3. Estimated Bias of Controlled Point Estimators 

Relative 
Dominance 

of ~r(o 

~(k)-0 
k = 0  k = l  k = 2  k = 3  k = 4  

20% - 40% -0.008 -0.250 -0.782 -0.079 -0.104 
1 50% - 70% 0,097 -0.239 -1.34 -0.052 -0.050 

80% - 100% 0.201 -0.217 -2.51 -0.117 -0.115 

20% - 40% -0.889 -1.75 -5.78 -1.05 -0.983 
2 50% - 70% -2.98 -2.65 -11.1 -2.35 -2.79 

80% - 100% -7.91 -4.16 -18.7 -3.99 -3.49 

20% - 40% -0.093 -0.171 -0.369 -0.116 -0.110 
3 50% - 70% -0.027 -0.158 -0.463 -0.089 -0.070 

80% - 100% -0.011 -0.135 -0.782 -0.107 -0.112 

Network 

Table 4. Estimated Variance of Controlled Point Estimators 

Relative 
Dominance 

of ~r(¢) 

v(k) 

k = O  k = l  k = 2  k = 3  k = 4  

20% - 40% 4.77 1.84 2.38 2.10 
50% - 70% 14.7 1.27 3.79 1.53 
80% - 100% 63.6 0.52 12.3 0.69 

20% - 40% 1100. 104. 221. 113. 
50% - 70% 3961. 43.1 447. 48.4 
80% - 100% 12030. 15.4 1321. 17.4 

20% - 40% 3.35 2.58 2.69 2.75 
50% - 70% 3.68 1.68 1.90 1.83 
80% - 100% 10.2 0.26 1..24 0.30 

3.43 
6.20 

20.7 

388. 
1007. 
2910. 

2.93 
2.34 
2.54 
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Table 5. Estimated Mean Square Error  of Controlled Point Estimators 

Network 
Relative 

Dominance 
of rr(0 

MSE(k)  

k = 0  k = l  k = 2  k = 3  k = 4  

20% - 40% 4.76 1.90 2.99 2.11 3.43 

1 50% - 70% 14.7 1.32 5.58 1.53 6.20 

80% - 100% 63.6 0,57 18.6 0.71 20.7 

20% - 40% 1100. 107. 254. 115. 389. 

2 50% - 70% 3968. 50,1 570. 53.9 1014. 

80% - 100% 12087. 32.7 1670. 33.3 2921. 

20% - 40% 3,36 2.61 2.82 2.76 2.94 

3 50% - 70% 3.68 1.70 2.11 1.84 2.34 

80% - 100% 10.1 0.28 1.85 0.31 2.55 

Table 6. Percentage Reduction in Average Confidence-Interval 
Half-Length for Nominal 90% Confidence Intervals 

Network 
Relative 

Dominance H(O) 

of ~r(o 

1 0 0 [ H ( 0 )  - H(k)]/H(O) 

k = l  k = 2  k = 3  k = 4  

20% - 40% 3.60 38.7 36.6 29.0 5.1 

1 50% - 70% 6.22 70.8 64.7 64.0 15.9 

80% - 100% 13.0 91.4 77.6 87.1 19.4 

20% - 40% 56.3 71.0 64.8 67.3 31.9 

2 50% - 70% 106. 90,0 77.2 89.8 35.8 

80% - 100% 186. 96.7 79.2 95.4 37.6 

20% - 40% 3.09 13.1 12,5 -2.9 -6.9 

3 50% - 70% 3.23 34.5 32.6 17.3 6.3 

80% - 100% 5.31 87.5 75.0 72.8 32.5 

Table 7. Actual Coverage Percentages for Nominal 90% Confidence 
Intervals 

Network 
Relative 1001 (k) 

Dominance 
of ~r(o k = 0  k = l  k = 2  k = 3  k = 4  

20% - 40% 90.0 86.5 79.4 89.6 91.4 
1 50% - 70% 89.1 85.8 71.4 90.4 93.1 

80% - 100% 89.4 77.8 66.8 86.3 95.5 

20% - 40% 90.4 86.2 81.3 89.0 92.3 

2 50% - 70% 90.2 81.0 80.2 86.1 95.3 

80% - 100% 90.3 59.8 78.6 70.7 95.3 

20% - 40% 90.0 88.1 86.0 91.5 91.5 

3 50% - 70% 90.0 86.8 81.9 90.3 92.1 

8 0 % -  100% 89.6 63.3 72.3 77.2 94.9 
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intervals were generated by each estimation procedure for each 

network configuration, the standard error of the estimated cov- 
erage probability l (k)  in Table 7 is 

E[Iw(k)]{ -E 12 
SE[I(k)] = 

-< [ 2048J _~ 0.011. (26) 

Examination of Table 7 reveals that the level of relative 

dominance of the critical path had a more complex effect on 

coverage probability than on confidence-interval half-length. 

The conventional control-variate estimators (6) and (9) (that is, 

O(1) and O(3) respectively) performed poorly at high levels of 

relative dominance of 7r(0; note particularly the performance in 

networks 2 and 3 with relative dominance of ~r(¢) in the range 

80% - 100%. In this latter case, the critical-path control P(O 
virtually always coincided with the overall completion time Y so 
that the resulting confidence intervals of the form (6) and (9) 

were either very small or degenerate; and when this 
phenomenon was coupled with the bias induced by the marked 

degree of nonnormality in the response and the controls, the net 

effect was a substantial loss of confidence-interval coverage. 

With respect to the confidence-interval estimation procedures 

based on the known covariance matrix of the controls, estimator 

(9) (that is, O(2)) also suffered from this effect while its analo- 

gue based on splitting (13) (that is, O(4)) did not. 

Several conclusions emerged from our comparison of the 

performance of the four controlled confidence-interval pro- 

cedures. The conventional estimator (6) and its splitting version 
(11) yielded consistently larger half-length reductions than the 

corresponding estimators (9) and (13) based on the known 

covariance structure of the controls. Half-length reductions of 

up to 97% were observed with (6) and (11). However, such 

reductions were not realized without cost. The actual coverage 

probability achieved by estimators (6) and (9) fell more than two 

standard errors below the nominal level 0.90 in every case 

reported in Table 7. On the other hand, the splitting estimator 
(13) achieved at least the nominal coverage level 0.90 for every 

network configuration on which it was tested. Of course the 

reductions in confidence-interval half-length achieved by (13) 

were much more modest than the reductions achieved by the 

other controlled estimation procedures. 

6. CONCLUSIONS 

In this paper we have examined four control-variate estima- 
tion procedures to be used in lieu of the conventional direct- 
simulation analysis of stochastic activity networks. All of these 
procedures are designed to improve upon the performance of 

direct simulation with respect to the accuracy of both point and 
confidence-interval estimators of mean completion time. As a 

fundamental principle for evaluating the performance improve- 

ments yielded by each of these procedures, we believe that 

confidence-interval coverage must be maintained at its nominal 
level while optimizing the accuracy of the corresponding point 

and confidence-interval estimators; thus it is unacceptable to 

achieve a large improvement in point-estimator accuracy at the 

expense of a significant loss of confidence-interval coverage. 

The second basic consideration in evaluating the performance of 
these control-variate estimation procedures is the additional 

computational overhead that they incur. In the simulation study 

reported here, the computational cost of these controlled esti- 

mation procedures was negligible compared to the cost of simu- 

lating the stochastic activity networks; moreover the cost of the 

controlled estimation procedures was very insensitive to the size 

of the selected networks. Thus considerable efficiency gains can 
be realized by the use of path control variates in large-scale 

applications. 
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