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ABSTRACT 

To generate random variates from an unknown continuous 

distribution via the inverse transform method, we present a 

flexible, computationally tractable procedure for estimating the 

associated inverse distribution function based on sample data. 

Previously proposed methods for estimating inverse distribution 

functions can fail in either the distribution-fitting or variate- 

generation stages of application. To avoid these difficulties, we 

have developed the procedure IDPF for estimating an Inverse 

Distribution with a Polynomial Filter. After a first-cut or 

reference distribution has been obtained by some standard 

technique, a front-end polynomial filter for the inverse of the 

reference distribution is estimated by constrained nonlinear 

regression so that the resulting inverse distribution has minimum 

"distance" from the empirical inverse distribution. The 

constraints on the regression ensure that the fitted inverse 

distribution function is nondefective and monotonically 

nondecreasing. A specific implementation of this procedure is 

based on well-known techniques for obtaining a reference fit 

from the Johnson translation system of distributions. We 

present the results of a Monte Carlo study to demonstrate the 

effectiveness of the method. Compared to the reference fit, 

procedure IDPF yields significantly better approximations not 

only to the empirical inverse distribution function but also to the 

underlying theoretical inverse distribution function. 

1. INTRODUCTION 

In the development of discrete-event simulation models, 

one frequently needs to generate independent observations of a 

continuous random variable X having an unknown cumulative 

distribution function (CDF) F 0 .  Typically a random sample 

{X1, X2, ..., Xn} from F 0 is available, and this sample defines 

the associated empirical distribution function Fn(). The 
conventional approach to simulation input modeling involves (a) 
identifying an appropriate family of distributions to model the 

behavior of X; (b) estimating the corresponding parameter 

values that yield the "best" fit to the sample data set; and (c) 

invoking some standard sampling scheme to generate 

observations from the fitted distribution. Most of the well- 

known families of distributions have a fixed number of 

parameters, which implies a limited number of distributional 

shapes and thus a limited capability for approximating the 

distribution of the sample. Moreover, variate generation is 

troublesome or expensive for many well-known families of 

distributions. 

Hora (1983) proposed a method for simulation input 

modeling that uses the inverse of a known continuous CDF F00  

(the so-called reference distribunbn) as the starting point for 

estimating the target inverse CDF F - 1 0 .  Hora assumed that 

F -  10 has the functional form 

F -  1 (P) = F~l{P°°exp[i~lai(Pi-1)]} p ~ J :  , (0, 1), (1.1) 

where t and F 00  are to be chosen by the modeler. Hora's 

method attempts to reduce the problem of fitting an inverse 

CDF to that of choosing a reference distribution and then 

performing linear regression to estimate the parameters 

{aj : j  = 0, 1 ..... t} in (1.1). The obvious advantage of this 

approach is that the statistical theory for linear regression is 

well-known and widely applied. Hora's method is also highly 

flexible since it allows the introduction of an arbitrarily large 

number of parameters to compensate for any inadequacies in 

the reference fit. On the other hand, Hora's method has some 

serious drawbacks: (a) The linear statistical model that underlies 

the procedure for estimating the {aj} has an exponentially 

distributed, multiplicative error term rather than a normally 

distributed, additive error term; and this invalidates all of the 

usual inferential procedures based on normal linear regression 

theory. (b) The fitted inverse CDF of the form (1.1) may fail to 

be monotonic; and in addition to being nonsensical, this 

condition can destroy the effectiveness of standard variance 

reduction techniques such as common random numbers and 

antithetic variates. (c) The fitted inverse CDF of the form (1.1) 

may be undefined for some values ofp in the unit interval (0, 1); 

and this means that the fitted distribution is defective 
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(dishonest) and that the inverse transform method of variate 

generation will ultimately fail for this distribution. See 

Avramidis (1989) for a detailed analysis of the properties of 

Hora's method. 

Using Hora's formulation (1.1) as a point of departure, we 

propose a new method for fitting an Inverse Distribution with a 

Polynomial Filter (IDPF). Given a reference distribution F00  

representing a first-cut estimate of the unknown continuous 

distribution F 0  that is to be sampled by the inverse transform 

method, we seek an improved estimate of F - 1 0  based on the 

assumption that F - t  0 can be adequately modeled with the 

functional form 

= [~f,p,+ X-~f ,  Jp],pe(O, 1). (1.2) 

^ 

The coefficient estimates {fli} are selected to minimize an 

appropriate function of the corresponding estimation errors 
^ 1 {F-  (p) - F ~ l ( p ) : p c ( 0 ,  1)} subject to the constraint that the 

polynomial within the square brackets on the right-hand side of 

(1.2) is monotonically nondecreasing. 

This paper is organized as follows. In Section 2 we discuss 

the basis for procedure IDPF, and we present  an 

implementation of this procedure using Johnson's translation 

system of distributions for the reference fits. Section 3 shows a 

typical application of the procedure, and Section 4 summarizes 

the results of a Monte Carlo study of the performance of the 

procedure. The main conclusions of this work are recapitulated 

in Section 5. 

2. THE ESTIMATION PROCEDURE IDPF 

2.1. Basis for Procedure IDPF 

As with Hora's method, at the outset we require an 

admissible reference distribution Fo(); this means that F00  

must have the same support as F(). It is of course highly 

desirable that F~ t 0 should also provide a reasonably close 

approximation to the empirical inverse distribution F~ 10. We 

assume that the target inverse CDF F -  ~ 0 has the form 

F -  x(p) = F~o t [q (p)], p ~ (0, 1), (2.1) 

where q0  is a polynomial function ofp. In order for (2.1) to 

define a legitimate inverse CDF, we require that 

0 < q ( p ) < l ,  p~(O, 1) and (2.2a) 

q(p) is nondecreasing inp forp • (0, 1). (2.2b) 

Condition (2.2a) guarantees that F - l ( p )  is defined for all 

pc(0 ,1) ,  while condition (2.2b) ensures that F - l ( p )  is 

monotonically nondecreasing in p for p e(0, 1). In addition, 

since F 0 and F00  have the same support, we must have the 

following boundary conditions for q 0:  

q(O)=O, and q(1) = 1. (2.2c) 

Note that (2.2b) and (2.2c) imply (2.2a). Our specification of 

the inverse CDF will be complete after we choose the degree r 

and the coefficients {/3/} of the polynomial q0. To satisfy (2.2c), 

q 0 must have the general form 

r-1 ' / r-1 ] r 
q(P) = i=lY]flYP' + [1 - y_~l/3yJp , p~(0,  1). (2.3) 

Procedure IDPF is based on a nonlinear least-squares 

procedure for selecting the degree r of the polynomial (2.3) and 

for estimating the coefficients {/3./} of this polynomial. Let 

X(x) <_ X(2) <_ • • • _< X(n) denote the order statistics 

corresponding to the given sample. Using the well-known 

approximation 

( ~ i - - L  
E[X(, )]  ~ F - 1 ] - - : - 2 - 1 ,  i = l . . . . .  n 

k " ) 
(2.4) 

(Hahn and Shapiro 1967), we formulate the problem of least- 

squares estimation of r and {/3y : j = 1, 2 ..... r - 1} as 

[/ 
r ,  {#i} i= q ' 

where q0  is given by (23) and is subject to (2.2b). The function 

to be minimized in (2.5) does not account for the variance of 

X(0; thus we will refer to this variant of procedure IDPF as 

ordinary least-squares (OLS) estimation. 

To incorporate the variability of the order statistics {X(i )}  

into the estimation procedure IDPF, we exploit a key asymptotic 

property of these variates. Let a denote a fixed percentage in 

(0, 1). As an estimator of the order-a quantile xa ~ F - l ( a ) ,  the 

statistic X(i ,)  satisfying (in - 1)In < a < in/n for every sample 

size n is asymptotically normal with mean xa and variance 

[a(1 - a)]/[nf2(x¢,)], where f 0 is the density corresponding to 
the unknown CDF F 0. Formally this property is summarized in 
the relation 
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n'12f (x'~)[ X(i") - x<~] D 
[a(1 _a)]a/2 n ~ c o  *N(0, 1) (2.6) 

(see p. 94 of Serfling (1980)). Using the reference density f0() 
to approximate f 0  and using F~l{q[( i -~) /n]}  to 

approximate x~ for a = (i -. ~)/n, we obtain the weighted 

least-squares (WLS) estimation problem: 

min (i)-Fo0 1 q [ - - -~ - -  i -  a 
r'(OJ} i= n - T [ 1 - ~ - ~ -  / 

, (2.7) 

where again q0  has the form (2.3) and is subject to (2.2b). 

Next we consider the problem of minimizing (2.5) or (2.7) 

subject to (2.2b). We assume for the moment that r is fixed; 

rules for choosing r will be discussed later. Note that the 

feasible region is a complicated subset of (r-1)-dimensional 

Euclidean space which cannot be described conveniently in 

geometric or analytic terms; instead we must resort to numerical 
techniques for checking the feasibility of each trial solution 

(ill,/32 ..... /3r_ 1). This motivates the use of a search technique 
for finding the minimum of (2.5) or (2.7), where each infeasible 

point is assigned a large penalty to force the search away from 

the infeasible region. Taking the derivative of q 0 with respect 
top,  we see that (2.2b) is equivalent to 

q'(p) = y]jl3jpJ-1 + 1 -  ~3irpr-l>o, p ~ ( 0 , 1 ) . ( 2 . 8 )  
j=l  

Since q (1) > q (0), the derivative q "0 must be positive in some 

subinterval of (0, i). Thus (2.8) is satisfied if and only if the 

equation 

r - 1  " 1 [ r - I  ) r 
~ J~JP'- + tl - i~lfljJrp -1 = 0 (2.9) 

j = l  

has no roots in (0, 1). To verify this condition, we apply a 

standard algorithm for finding the roots of a polynomial. If a 

root of (2.9) is found in the unit interval, then the corresponding 

polynomial q0  is infeasible for the minimization problem (2.5) 

or (2.7); and in this case a very large positive value must be 

assigned to the objective function. 

It is not difficult to show that at least in principle, we can 
always find a polynomial q0  for which the objective function in 
(2.5) or (2.7) is arbitrarily close to zero. However, this 

polynomial might have an arbitrarily high degree r, making it 

unusable in simulation applications. Thus in practice, procedure 

IDPF should start with a reference distribution that provides a 

fairly good fit to the sample distribution so that a manageable 

upper limit can be set for the degree r ; moreover a reasonable 

heuristic rule should be used to identify the optimal value of r. 

2.2. An Implementation of Procedure IDPF Using Johnson's 
Translation System 

In this study we concentrate on using the Johnson 
translation system of distributions as a source for the reference 

fit. We say that F o 0  belongs to the Johnson translation system 
if 

Fo(x) = ~I3" + 6 " g [ ~ ] l  fo ra l lxeH,  (2.10) 

where ~ 0  is the standard normal CDF, 3' and 6 are shape 

parameters, ~ is a location parameter, A is a scale parameter, H 
is the (closed) support of the distribution 

H =.  

[~, +co) for the SL (lognormal) family, 

( -co,  +co) for the Sv (unbounded) family, 

[~, ~ + A] for the SB (bounded) family, 

( -co ,  +co) for the Sjv (normal) family, 

(2.11) 

and g 0 is one of the following functions: 

g(v) =, 

"In(v), for the SL (lognormal) family, 

ln[y + ~ y 2  + 1], for the Sv (unbounded) family, 

ln[y/(1 -y ) ] ,  for the SB (bounded) family, 

Y, for the SN (normal) family. 

(2.12) 

For all x e H, the corresponding density function is 

f0(x) = ~ - - g  ~ - - ~ j  ex - + 6 .g  , (2.13) 

where 

g ' ( v )  = 

l/y, for the SD (lognormal) family, 

1 / X / ~  + 1, for the Str (unbounded) family, 

1/[y (1 -y ) ] ,  for the SB (bounded) family, 

1, for the SN (normal) family. 

(2.14) 
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These four families of the Johnson system can fit any 

distribution to its first four moments, and in practice the 

Johnson system has been used successfully in a broad range of 

disciplines. Moreover, a multivariate extension of the Johnson 

system is relatively straightforward (Johnson (1949b))~ These 

two properties motivated the use of the Johnson system in our 

implementation of procedure IDPF. 

As a front end for procedure IDPF that computes a specific 

reference distribution in the Johnson system, we used a 

noninteractive version of the software package FITI'R1 

developed by Venkatraman and Wilson (1987). Although 

FITIR1 incorporates a variety of methods for fitting Johnson 

distributions to sample data, the example discussed in the next 

section is based on the method of moment matching-that is, the 

reference distribution is chosen to yield the same first four 

moments as the given sample data set. Although moment 

matching is a popular method for fitting Johnson distributions to 

sample data, this technique can yield infeasible parameter 

estimates such that some of the sample observations lie outside 

the support of the fitted distribution. We have modified the 

moment-matching algorithm of FITTR1 to avoid such 

in_feasibility in the reference distribution. 

The minimization of (2.5) or (2.7) is performed using the 

Nelder-Mead simplex search procedure as implemented by 

Olsson and Nelson (1974). The objective function is evaluated at 

the vertices of a simplex representing alternative solutions to the 

minimization problem, and the search moves in a direction of 

declining objective-function values through a sequence of 

reflections, expansions, and contractions of the simplex until 

either (a) the simplex is sufficiently small or (b) the differences 

between the objective-function values at the simplex vertices are 

sufficiently small. This search procedure has been used 

successfully in a wide variety of applications (Olsson 1974). 

To find the roots of equation (2.9), we employ Miiller's 

method as implemented by Conte and de Boor (1980). Given 

approximations Pi- 2, Pi- 1, and Pi to a zero of the function h (p) 

defined by the left-hand side of (2.9) for all real p, we take the 

next approximation Pi to be a zero of the parabola that passes 

through the three points [Pi-2, h(pi-2)], [Pi-1, h(pi-1)], and 

[Pi, h(pi)]. Once a zero zl of h(p) has been located to a 

prespecified accuracy, the procedure is repeated with the 

deflated function h i ( p ) ~ h ( p ) / ( p  - Z l )  to find the next zero. 

The algorithm returns all complex roots of a polynomial with 

real coefficients; of course we only use the real roots for the 

purposes of IDPF. 

In the absence of a formal statistical test for identifying the 

degree r of the polynomial filter, we use the following heuristic 

rule. Starting with the degree r-~ 2 and the associated 

coefficient estimates {~5)} and objective-function value Q('), 

we perform another iteration of the fitting procedure with 

degree r + 1 to obtain the coefficient estimates {~:  ÷ 1)} and the 

objective-function value Q(r+:). So long as Qff+l/ < 0.95Qff), 

additional iterations of the fitting procedure are performed. 

When the last objective-function value Q(r+l) is within 5% of 

the next-to-last value Q('), the next-to-last parameter values r 

and { ~ 5 ) : j  = 1 ..... r - l }  are delivered and the procedure 

stops. Because of the generally good quality of the reference fits 

provided by FITI'R1, we imposed the additional limit r _< 6 in 

this implementation of procedure IDPF. To execute this version 

of procedure IDPF on a computer, we developed a portable 

FORTRAN 77 program which is available upon request. 

3. AN APPLICATION OF PROCEDURE IDPF 

To illustrate the input-modeling problems that procedure 

IDPF was designed to solve, we discuss a simulation application 

that arose in the field of medical decision making. The sample 

data set labelled SGOT is a random sample of blood levels of 

serum glutamic oxylacetic transaminase (expressed in units per 

deciliter) taken from a population of elderly diabetics enrolled in 

a monitoring program of a general medicine clinic. As shown by 

the dashed curve in Figure 1, the reference distribution F00  

determined by the moment-matching option of FrITR1 was an 

SB (bounded) distribution with estimated parameters ,~ = 3.154, 

= 0.914, ~ = 706.9, and ~ = 6.000. For this reference fit, the 

Kolmogorov-Smirnov goodness-of-fit statistic had the value 

0.163; and the Mann-Wald chi-square goodness-of-fit statistic 

with 4 degrees of freedom had the value 19.09. Note that the 

step function in Figure 1 is the empirical CDF F n O. 

Since the reference fit showed substantial departures from 

the central portion of the empirical distribution where we would 

expect the largest values of both the target density f 0 and the 

reference density fo(), we chose to apply the WLS version of 

procedure IDPF to compensate for the obvious inadequacies of 

the reference fit. Starting from the reference value Q(°) = 4.694 

of the WLS objective function (2.7), procedure IDPF fitted a 

polynomial filter of degree r = 4 with the objective-function 

value Q(4) = 0.3123 and the associated coefficient estimates )1 
A A 

= 2.686, B2 = -5.543, and ~3 = 5.400. The solid curve in Figure 

1 shows the resulting CDF F(). The corresponding inverse 

distribution functions F~ 1 0, ~o 1 0, and F -  10 can be seen by 

431 



I O0 050 .~.L~;-~-= -~ ...... 7 .... 

875 J ~  / ~ ~ 

750 - ~ /  

/ /  

375 / 

J;lli/ 

250 / 

[25 / 

0 00 
000 375 750 [ [3 [ 50 t 88 2 25 2 63 3 O0 

(X202 ) 

Figure 1: CDFs for SGOT Data-Empirical CDF (Stepped), 

Reference Fit (Dashed Curve), and WLS Fit (Solid Curve) 

043 

037 

031 . 

025 ~ 

0~8] !P 
ore4 

o°12i 
000 375 750 l t3 

- ... , 

t '50 I 88 2 25 2 63 
( x l o  2 ) 

3 O0 

Figure 2: PDFs for SGOT Data-Reference Fit (Dashed Curve) 

and WLS Fit (Solid Curve) 

rotating Figure 1 counterclockwise by 90 °. Figure 2 shows the 

related probability density functions (PDFs)fo0 and f(). 

We have observed that whereas the WLS version of 

procedure IDPF is more effective in adjusting the central 

portion of the reference fit, the OLS version is more effective in 

compensating for discrepancies in the tails of the reference fit. 

Although not depicted here, the OLS fit to the SGOT data set 

was barely distinguishable from the reference fit. It is also 

interesting to note that the WL$ method yielded a density f 0  

with a substantially larger ordinate at the mode and a markedly 

different shape than the reference density f00.  We believe 

procedure IDPF provides an open-ended mechanism for 

extending the basic types of distributional shapes that are 

achievable with a given family of reference distributions. See 

Avramidis (1989) for other applications of procedure IDPF. 

4. MONTE CARLO EVALUATION OF PROCEDURE IDPF 

4.1. Layout of the Monte Carlo Experiments 

The two basic goals of the Monte Carlo analysis are: 

1. To evaluate procedure IDPF as a data-reduction device-that 

is, as a means of obtaining a simplified analytic representation 

of a specific set of data. This can be done by measuring how 

well the fitted inverse CDF approximates the empirical 

inverse CDF. 

2. To evaluate procedure IDPF as a means for estimating the 

inverse of the underlying distribution from which the sample 

data set has been taken. This involves measuring how well the 

fitted inverse CDF approximates the underlying theoretical 
inverse CDF. 

Although these goals coincide asymptotically as the sample size 

n~oo,  the extent to which they agree in small samples is not 

clear. This consideration motivated the formulation of the 
separate goals 1 and 2. 

In designing the Monte Carlo experiments to evaluate 

procedure IDPF, we selected all of the target distributions from 

the generalized lambda family of distributions (Ramberg and 

Schmeiser 1972, 1974). This selection was based on the 

flexibility of the generalized lambda family and on the simplicity 
of its inverse CDF: 

F - I ( P )  = A1 -F [p A3 - (1 -p )~] /A2 ,  p e(0 ,  1),  (4.1) 

where A1 is a location parameter, As is a scale parameter, and A3 

and A4 are shape parameters. For further discussion of this 

family, see Ramberg et al. (1979). 
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We performed four basic experiments, each with a different 

target distribution from the generalized lambda family. The goal 

here was to test procedure IDPF for a diversity of underlying 

distributional shapes and to identify the factors that significantly 

affect the performance of the procedure. All four target 

distributions used in our study have mean 0, variance 1, skewness 

~ ,  and kurtosis 04 as shown in Table 1. We designed a complete 

factorial-type experiment with high and low values for the 

factors aa and 04. The values of the parameters ~l, A2, A3, and 

corresponding to each of the four experiments were obtained 

from tables given in Ramberg et ai. (1979) and are also 

displayed in Table 1. 

Table 1: Layout of the Mome Carlo Experiments. 

Expt. aa 04 A1 A2 ] ~3 A,I 

1 0 . 8  3 . 0  - 1 . 2 2 5  0 . 1 9 9  0 . 0 0 6  0 . 3 3 5  

2 0 . 8  1 0 . 0  - 0 . 1 4 1  - 0 . 3 0 3  - 0 . 1 1 2  - 0 . 1 4 5  

3 2 . 0  9 . 0  - 0 . 9 9 3  - 0 . 0 0 1  - 0 . 0 4 0  - 0 . 0 0 1  

4 2 . 0  1 5 . 0  - 0 . 4 2 6  - 0. .238 - 0 . 0 5 9  - 0 . 1 4 1  

Within each of the four basic experiments, we performed 

two subexperirnents using the sample size n as an additional 

factor. The levels n = 20 and n = 100 were used. Each of the 

eight resulting subexperiments consisted of the following steps: 

1. Generate a sample of the selected size n from the target 
distribution of the form (4.1). 

2. Determine a reference distribution F00  by selecting the best 

of the Sty and SB fits computed with the least-squares 

estimation options of FITTR1 (Swain, Venkatraman, and 

Wilson 1988). 

3. Determine the final estimate F -  1 0 of the target inverse CDF 

using the selected version of procedure IDPF. 

4. Compute the relevant performance measures that gauge the 

difference in quality between the reference fit and the IDPF 

fit. 

5. Generate 100 independent replications of the protocol defined 

by steps 1 -4  and compute the grand mean and the standard 

error of the grand mean for each performance measure. 

4.2. Formulation of the Performance Measures 

To accomodate both of the stated goals of the Monte Carlo 

analysis, we found it necessary to formulate separate 

performance measures for each goal. The most natural 

performance measure for the first goal seems to be the final 

computed value of the objective function that procedure IDPF 

was designed to minimize. For the OI_S method this quantity is 

QI(F)-=Ln i=x ~ IX(i) -F-* 2, (4.2) 

where # -1  0 denotes either the reference inverse F~ 1 0 or the 

IDPF-fitted inverse p-x() .  For the WI_S method, the relevant 

figure of merit is 

i = 1  _ / ~ , -  1 Q2(#) =- ~ (0 
/o 2 Ix/0] 

1 • 
i--Tn [ 1 -  

(4.3) 

It should be stressed that (4.2) and (4.3) depend only on F~ 1 0, 

Fo 1 0, and p -  x(); neither Q , 0  nor Q 20 depends on knowledge 

of the true underlying inverse CDF. Other standard goodness- 

of-fit statistics might also be appropriate here-for  example, the 

Kolmogorov-Smirnov statistic or the chi-square statistic could be 

used. However, aside from the fact that these statistics have 

been developed to test goodness-of-fit for the CDF rather than 

for the inverse CDF, we think that the performance of 

procedure IDPF should be measured by precisely the same 

quantity that the procedure was designed to minimize. 

To gauge the success of procedure IDPF in satisfying the 

second distribution-fitting goal discussed in Subsection 4.1, we 

introduce a quantity similar to the Kolmogorov-Smirnov statistic 

that has been adapted to estimation of an inverse CDF rather 

than a CDF. Specifically, we define 

D(/~) - s u p {  I/7-1(p) - F-X(p) [ :p ~ (0, 1)}, (4.4) 

where F - X 0  denotes the target inverse CDF (4.1); and again 

/~-x 0 denotes either the reference inverse F~o*0 or the IDPF- 

fitted inverse /~-1(). Although (4.4) cannot be computed 

exactly, accurate approximations to it can be obtained by 

computing the maximum of I /~-l(p) - F - l ( p )  I for a finite 

set of closely-spaced p-values between zero and one. 
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Since procedure IDPF is based on a reference distribution, 

its performance should be measured by the improvement in the 

quality of the fit that IDPF yields relative to the reference fit. 

We therefore define the difference 

A 
AOl  ~ Qi(Fo) - QI (F) ,  (4.5) 

^ 

where Qi(F0) and Qi(F) respectively denote the Ql-Statistics 

for the reference fit and the IDPF fit. Similarly, we let 

Aa2  =-Q2(Fo) - Q2(F) and (4.6) 

AD =-D(Fo) - D(F) .  (4.7) 

As a general rule for any statistic T in the tables to follow, we let 

denote the grand mean of the T-values across all 100 

replications of the relevant Monte Carlo experiment; and we let 

SE(T)  denote the standard error of T. Finally, we define the 

standardized statistics 

AQ1 AQ2 
Z a Q i ~ - -  , Z ~ Q 2 ~ - - - -  , Z / ~ . D ~  - -  . (4.8) 

SE(AQ 1) SE(AQ2) . SE(AD) 

Under the respective hypotheses that the differences 

AQ1, AQ2, or AD have expected values equal to zero, 

ZAO ~, Zzxc~ 2, and ZAo respectively have asymptotic standard 

normal distributions. Thus the Z-values in (4.8) can be used to 

test the corresponding hypotheses at any desired level of 

significance. 

affect the performance of the method; the relative reduction in 

the value of Q1 is approximately 30-50% for all eight 

subexperiments. 

Table 3 displays the values of the statistics D (Fo), AD, 

SE(AD), and ZAo for the OLS version of procedure IDPF. 

Again, the values of the statistic Z,xo indicate that the 

differences AD are statistically significant for all subexperiments, 

with the exception of subexperiment 2a and possibly 

subexperiment 4a. However, the relative reduction in the grand 

average D- is generally much smaller than the corresponding 

reduction in the grand average Q 1 for each subexperiment. As 

in Table 2, Table 3 does not reveal any systematic effect on the 

performance of procedure IDPF that is due to the shape of the 

target distribution or the sample size; the reduction in D relative 

to the comparable figure for the reference distribution is 

approximately 0-20% for all eight subexperiments. 

Tables 4 and 5 are the counterparts of Tables 2 and 3 for 

the weighted least-squares (WLS) version of procedure IDPF. 

All remarks about Tables 2 and 3 apply to Tables 4 and 5 

respectively. The relative reductions in the values of the 

statistics Q-~ and D- are approximately the same as the 

corresponding figures for the OLS procedure. Thus no marked 

difference in the performance of the OLS and WLS versions of 

procedure IDPF can be detected from this study. A definitive 

comparison of these two procedures will require a more 

extensive Monte Carlo study. 

4.3. Discussion of the Experimental Results 

Tables 2 through 5 contain the results of our Monte Carlo 

experiments. The subexperiments have been renumbered 

{ la, lb, 2a, ..., 4b}, with the suffix "a" denoting the sample size 

n = 20 and the suffix "b" denoting the sample size n = 100. We 

start by discussing the results for the ordinary least-squares 

(OLS) version of procedure IDPF. Table 2 displays the values of 

the statistics Qi(Fo), AQ1, SE(AQ1), and ZaQt for each 

subexperiment. The values of the statistic Zzxoj indicate that 

the observed differences AQ1 are statistically significant for all 

eight subexperiments; and these results provide some evidence 

of the effectiveness of procedure IDPF. In addition, a 

comparison of each mean difference AQ1 with the 

corresponding baseline value Q x (F0) indicates that in all eight 

subexperiments, the OLS version of procedure IDPF yields 

practically significant improvements in fit as well as statistically 

significant improvements. Neither the shape of the target 

distribution (that is, as and cq) nor the sample size appear to 

5. SUMMARYAND CONCLUSIONS 

We believe that procedure IDPF can be a useful tool for 

input modeling in simulation experiments. Our Monte Carlo 

performance evaluation provides some evidence that procedure 

IDPF c a n  yield significant improvements relative to the 

reference fit with respect to each of the following input- 

modeling objectives: (a) approximating the empirical inverse 

CDF, and (b) approximating the true underlying inverse 

distribution. Procedure IDPF has been designed to avoid the 

reliability problems that have been observed with other methods 

for estimating inverse CDFs in simulation experiments. The 

main disadvantage of the procedure is the lack of a rigorously 

developed statistical theory for selecting the order of the 

polynomial filter. This is a topic for future research. 
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Table 2: Goodness-of-Fit Statistics Q 1 (F0), AQ 1, 

SE(AQ1), and Zao, for the OLS Version of 

Procedure IDPF 

Expt. Q t (Fo) AQ 1 

la 0.0531 0.0253 

lb 0.0108 0.0023 

2a 0.0957 0.0360 

2b 0.0612 0.0250 

3a 0.0850 0.0501 

3b 0.0292 0.0079 

4a 0.0931 0.0319 

4b 0.0966 0.0420 

SE(AQ1) Z zxQ~ 

0.0O67 3.7795 

0.0004 4.8640 

0.0083 4.2968 

0.0038 6.4861 

0.0159 3.1508 

0.0018 4.3046 

0.0069 4.6086 

0.0058 I 7.1744 

Table 4: Goodness-of-Fit Statistics Q 2 (F0), AQ 2, 

Expt. 

la 

lb 

2a 

2b 

3a 

3b 

4a 

4b 

SE(AQ2), and ZzxQ~ for the WLS Version of 

Procedure IDPF 

Q2(Fo) AQg. SE(AQ2) 

0.3793 i 0.1561 0.0151 

0.4523 0.0629 0.00833 

0.2839 0.1291 0.0120 

0.2863 0.0512 0.0104 

0.3449 0.1421 0.0121 

0.5984 0.0665 0.0108 

0.2827 0.1229 0.0095 

0.3310 0.0952 0.0195 

ZAQ2 

10.3240 

7.5775 

10.7620 

4.8961 

11.7083 

6.1633 

12.9020 

4.8853 

Table 3: Goodness-of-Fit Statistics D(F0), AD, 

SE(AD), and ZZXD for the OLS Version of 

Procedure IDPF 

Expt. 

la 

lb 

2a 

2b 

3a 

3b 

4a 

4b 

D (F0) AD SE(AD) Z,xo 

1.0564 0.2030 0.0474 4.2774 

0.4172 0.0381 0.0103 3.7013 
I 

1.3338 0.0010 0.0418 0.0248 

0.9928 0.1118 0.0458 2.4390 

1.8740 0.3109 0.0940 3.3060 

0.8576 0.0970 0.0307 3.1566 

1.5824 0.0831 0.0544 1.5255 

1.1101 0.2348 0.0575 4.0778 

Table 5: Goodness-of-Fit Statistics D (F 0), AD, 

SE(AD), and Z,xo for the WLS Version of 

Procedure IDPF 

Expt. D(Fo) 

la 1.0558 

lb 0.4203 

2a 1.3091 

2b 1.1040 

3a 1.8368 

3b 0.8854 

4a 11.5777 

4b 1.1739 

AD SE(AD) Zzxo 

0.1607 0.0402 3.9891 

0.0226 0.0061 3.6825 

- 0.0082 0.0201 - 0.4069 

0.0630 0.0214 2.9327 

0.1968 0.0647 3.0406 

0.0415 0.0188 2.2028 

0.0729 0.0658 1.1075 

0.0904 0.0240 3.7661 
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