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ABSTRACT

To estimate the density f of a conditional expectation µ(Z) = E[X |Z], Steckley and Henderson (2003)
sample independent copies Z1, . . . ,Zm; then, conditional on Zi, they sample n independent samples of X ,
and their sample mean X̄i is an approximate sample of µ(Zi). For a kernel density estimate f̂ of f based
on such samples and a bandwidth (smoothing parameter) h, they consider the mean integrated squared
error (MISE),

∫
( f̂ (x)− f (x))2dx, and find rates of convergence of m, n and h that optimize the rate of

convergence of MISE to zero. Inspired by the cross-validation approach in classical density estimation,
we develop an estimate of MISE (up to a constant) and select the h that minimizes this estimate. While a
convergence analysis is lacking, numerical results suggest that our method is promising.

1 INTRODUCTION

The problem of dealing with uncertainty in simulation models has received considerable attention in the
proceedings of the Winter Simulation Conference.

The problem motivating this paper is studied in Steckley and Henderson (2003) and is as follows. Let
Z and X be random variables, and put µ(z) = E[X |Z = z], where E denotes expectation. Provided that the
random variable µ(Z) has a density (with respect to Lebesgue measure), say f , the problem of interest is
to estimate f . It is assumed that the function µ() is unknown, but it can be estimated, as it is possible to:
(i) sample Z; and (ii) sample X from the conditional distribution P(X ∈ ·|Z = z) for any possible realization
z. This problem arises, for example, when Z is a parameter that is uncertain and a system’s performance
is modeled as the expectation E[X |Z]. Then, the density f summarizes the uncertainty in performance due
to uncertainty about Z.

The paper is organized as follows. The approach of Steckley and Henderson (2003) is reviewed in
Section 2.1. In Section 2.2 we develop a related approach, where the focus is on the bandwidth, which is
set differently. We review briefly the least-squares cross-validation approach to bandwidth selection in the
classical setting where exact samples from the unknown density are available. Then we adapt this approach
to our setting, where the samples are not exact. In Section 3 we give numerical results, comparing the
MISE of our estimate to that of Steckley and Henderson (2003) in examples taken from these authors.

2 METHODOLOGY

2.1 Background

This section follows closely the method in Steckley and Henderson (2003). We include some of their
assumptions, not aiming for completeness, but instead to suit our later needs. It is assumed:

A1. Z has density g
A2. µ() is strictly monotone and its inverse, µ−1, is differentiable.
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Note that A1–A2 imply that the conditional expectation µ(Z) has a density (see Billingsley (1986), equations
(20.16) and (20.20)). Sampling is as follows:

1. (Outer sampling) Z1, . . . ,Zn are independent samples of Z.
2. (Inner sampling) Conditional on Z1, . . . ,Zn, (Xi, j : i= 1, . . . ,n, j = 1, . . . ,m) are mutually independent

and such that Xi,1, . . . ,Xi,m are samples from the distribution P(X ∈ ·|Z = Zi) for each i.

Steckley and Henderson (2003) propose the kernel estimate of f

f̂ (x) =
1
n

n

∑
i=1

K(x− X̄(Zi); h2) (1)

where

X̄i = X̄(Zi) =
1
m

m

∑
j=1

Xi, j

and the chosen kernel is K(x; h2) = e−x2/2h2
/(h
√

2π), that is, the density at x of a mean-zero Normal
distribution whose standard deviation h is called the bandwidth. Further assume:

A3. The conditional distribution of the inner sample mean X̄(Z) given Z is Normal with mean µ(Z)
and variance σ2(Z)/m, where σ2(z) = Var(X |Z = z) is the variance function.

The mean integrated squared error (MISE) is EL, where

L = L(h) = L(n,m,h) =
∫
( f̂ (x)− f (x))2dx (2)

is the integrated squared error, and n,m, and h are functions of a computer budget b. Under A1-A3 and
further assumptions, Steckley and Henderson (2003) develop an expansion of EL. To restate their result,
assume the variance function is constant, say σ2. Their equation (1) expands MISE into: an integrated
squared bias term of size O(h2 +σ2/m); an integrated variance term of size O(1/nh); and a remainder
term. In the limit where h→ 0, m→ ∞, and nh→ ∞, they show that MISE tends to zero. Subject to the
computing-budget constraint nm = b, and with the bandwidth set as h = am−1/δ for constants a and δ ,
they show that as b→ ∞, the best rate of convergence of EL to zero is attained by δ = 2 and m = rb2/7

for a constant r (see page 387, where r is called d and is a function of a and properties of f ) which
implies h = O(b−1/7), n = O(b5/7), and EL = O(b−4/7). This regime gives optimal growth rates, up to the
unrestricted constant r (or a).

We will consider a density estimator that is of the form (1), where n and m grow as specified above,
but the bandwidth h is set differently, as explained in the next section.

2.2 Bandwidth Selection

By standard setting, we mean that–unlike our setting–a random sample X1, . . . ,Xn is available directly from
a target density f . Here, and with EL being the quality measure, an established method for bandwidth
selection is least-squares cross-validation. We review the basic idea very briefly, following Silverman
(1986), Section 3.4.3. Write

L0(h) = L−
∫

f 2 =
∫

f̂ 2−2
∫

f̂ f .

(Integrals may be written as above to lighten notation.) The basic idea is to construct an estimate of L0(h)
and then to select h to minimize this estimate. Define f̂−i as the density estimate constructed from all data
points except i, that is, f̂−i(x) = (n− 1)−1

∑ j: j 6=i K(x−X j; h2). It is easy to see that n−1
∑i f̂−i(Xi) is an

unbiased estimate of E
∫

f̂ f . Thus, M0(h) =
∫

f̂ 2−2n−1
∑i f̂−i(Xi) is an unbiased estimate of EL0(h) for
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each h. The minimizer of M0(h) is the selected bandwidth. It is hoped that this minimizer is close to the
minimizer of EL0(h), which coincides with the minimizer of EL(h), as the term

∫
f 2 is independent of h.

This leads to good large-sample properties (Hall 1983, Stone 1984).
In our setting, the mean X̄i of any inner sample i is no longer an exact sample from f , so the work above

does not seem to apply directly. Motivated by the work in the standard setting, we seek an unbiased estimate
of E

∫
f̂ f . We observe that

∫
f̂ (x) f (x)dx = n−1

∑i
∫

K(x− X̄(Zi); h2) f (x)dx and examine its expectation:

E
∫

f̂ (x) f (x)dx = E
∫

K(x− X̄(Z1); h2) f (x)dx

=
∫

E
[∫

K(x− X̄(Z1); h2) f (x)dx
∣∣∣∣Z1 = z

]
g(z)dz. (3)

Now

E
[∫

K(x− X̄(Z1); h2) f (x)dx
∣∣∣∣Z1 = z

]
=

∫ ∫
K(x− y; h2) f (x)K

(
y−µ(z);

σ2(z)
m

)
dxdy

=
∫

K
(

x−µ(z); h2 +
σ2(z)

m

)
f (x)dx.

The first step above uses A3, the normality of the sample mean. In the second step, the integral with respect
to y is a convolution of normal densities, giving a normal density whose variance is the sum of variances
of the densities being convoluted. (Similar observations are made in Steckley and Henderson (2003), but
with somewhat different aims.) Inserting into (3),

E
∫

f̂ (x) f (x)dx =
∫ ∫

K
(

x−µ(z); h2 +
σ2(z)

m

)
f (x)g(z)dxdz

= EK
(

µ(Z2)−µ(Z1); h2 +
σ2(Z1)

m

)
(4)

where Z1,Z2 are independent random variables each having density g.
Let i 6= k, and consider the quantity K

(
X̄k− X̄i; h2 +S2

i /m
)
, where

S2
i = (m−1)−1

m

∑
j=1

(Xi, j− X̄i)
2

is the i-th inner sample variance. This is a natural estimate of (4), and averaging these estimates over all
such i,k leads to

1
n(n−1) ∑

i
∑

k:k 6=i
K
(

X̄k− X̄i; h2 +
S2

i

m

)
(5)

as a (cross-validation) estimate of (4). Observing that
∫

f̂ 2(x)dx = n−2
∑i ∑ j K(X̄i− X̄ j; 2h2) leads to

M(h) =
1
n2 ∑

i
∑

j
K(X̄i− X̄ j; 2h2)− 2

n(n−1) ∑
i

∑
k:k 6=i

K
(

X̄k− X̄i; h2 +
S2

i

m

)

as an estimate of EL(h)−
∫

f 2.
For a computing budget b, the proposed estimate of f is as in (1), where: m = max(2, [rb2/7]) and

n = max(2, [b/m]), where [x] is the integer closest to x; h is the minimizer of M(h); and r is a user-selected
constant. If we additionally restrict the minimizer of M(h) to be of order m−1/2 (or equivalently of order
b−1/7), then we know that under the assumptions in Steckley and Henderson (2003), MISE obtains the
optimal convergence rate; and it is then hoped to reduce MISE compared to these authors’ choice h= am−1/2,
where guidance on a seems to be lacking. We adopt this restriction and give the details later.
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3 NUMERICAL RESULTS

We report on Examples 1 and 3 of Steckley and Henderson (2003). Preliminary experiments suggested
that M(h) has a unique minimizer on (0,∞) that is roughly of order m−1/2, which makes it plausible that
the minimizer obeys the same convergence rate as prescribed by the asymptotic optimality framework of
Steckley and Henderson (2003). We wanted to compare empirically the choice h = hSH = m−1/2 of Steckley
and Henderson (2003) to the choice

h = hCV = argmin
m−1/2/32≤h≤32m−1/2

M(h). (6)

For simplicity we solve the minimization problem approximately: we discretize the above interval into
201 equally-spaced points in logarithmic scale and call the minimizer ĥCV. Although the constant “32”
above is arbitrary, we observed that ĥCV was never an endpoint of the specified interval. This observation
and the denseness of the discretization gave us confidence that the MISEs associated to ĥCV, hCV, and
argminh>0 M(h) were nearly the same for the purpose of comparison against the MISE of hSH.

We report the MISEs EL(hSH) and EL(ĥCV), each estimated as the average of 100 independent
replications (25 replications in Example 1, case r = 1.5 below) for budgets b ∈ {211,212, . . . ,218}. We
recall that r controls a trade-off between outer and inner sample size. In preliminary experiments, we
found values of r that roughly minimize the (estimated) MISE of each method at the largest budget. These
numbers, denoted r∗SH and r∗CV, help us show MISE at its near-optimum and away from it.

Example 1. Here Z ∼ Beta(4,4). (A Beta(a,b) random variable has density on (0,1) proportional
to xa−1(1− x)b−1.) Conditional on Z = z, X has the Normal distribution with mean z and variance 0.5.
Thus f is the Beta(4,4) density. Here, we found r∗SH ≈ r∗CV ≈ 6; then we set r ∈ {1.5,6,24}, that is, at the
optimum, and also up and down from the optimum by a factor of four. Figure 1 shows log2(MISE) versus
log2(b).
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(a) r = 1.5
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(b) r = 6
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(c) r = 24

Figure 1: Mean Integrated Squared Error of the Two Methods for Example 1 and Several r.

Example 2. Here Z has a Beta(4,4) density shifted to the right by one unit, so the support is (1,2).
Conditional on Z = z, X ∼ Expon(z), the exponential distribution with mean z. Thus f is the Beta(4,4)
density. Here, we found r∗SH ≈ 16 and r∗CV ≈ 24, and we set r to 20 and also up and down from this by a
factor of four. Figure 2 shows log2(MISE) versus log2(b).
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(a) r = 5
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(b) r = 20

11 12 13 14 15 16 17 18
−5

−4

−3

−2

−1

0

1

log2(b)

expo.r=80

 

 
SH
CV

(c) r = 80

Figure 2: Mean Integrated Squared Error of the Two Methods for Example 2 and Several r.

The results shown are representative of a larger set of experiments. Neither estimate showed a uniform
advantage. The new density estimate yielded smaller MISE more often than not.

4 CONCLUSION

We developed an approach to choosing the bandwidth when estimating the density of a conditional
expectation by a kernel-based method, where outer and inner sample sizes are prescribed by optimal
asymptotics established in Steckley and Henderson (2003). The method is based on a cross-validation
estimate of the expected squared error and determines the bandwidth by minimizing this estimate. In our
experiments, the new density estimate yielded notably smaller MISE often, but not always.
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