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ABSTRACT

We develop an efficient Monte Carlo algorithm for
pricing barrier options with the variance gamma
model (Madan, Carr, and Chang 1998). After gener-
alizing the double-gamma bridge sampling algorithm
of Avramidis, L’Ecuyer, and Tremblay (2003), we develop
conditional bounds on the process paths and exploit these
bounds to price barrier options. The algorithm’s efficiency
stems from sampling the process paths up to a random res-
olution that is usually much coarser than the original path
resolution. We obtain unbiased estimators, including the
case of continuous-time monitoring of the barrier crossing.
Our numerical examples show large efficiency gain relative
to full-dimensional path sampling.

1 INTRODUCTION

Madan and Seneta (1990), Madan and Milne (1991) and
Madan, Carr, and Chang (1998) developed the variance
gamma (VG) model with application to modeling asset
returns and option pricing. The variance gamma process
is a Brownian motion with random time change, where
the random time change is a gamma process, i.e., a
continuous-time process with stationary, independent
gamma increments. It was argued that the variance gamma
model permits more flexibility in modeling skewness and
kurtosis relative to Brownian motion. Closed-form solutions
for European option were developed and empirical evidence
was provided that the VG option pricing model gives a better
fit to market option prices than the classical Black-Scholes
model. Except for European options, pricing with variance
gamma generally requires numerical techniques; such
techniques were developed in Hirsa and Madan (2004)
for American options and Ribeiro and Webber (2004),
Avramidis, L’Ecuyer, and Tremblay (2003) for path-
dependent options.

Bridge sampling of the variance gamma process was in-
dependently proposed by Ribeiro and Webber (2004) and
Avramidis, L’Ecuyer, and Tremblay (2003) and combined
with stratification and Quasi-Monte Carlo, respectively,
for pricing path-dependent options efficiently. Large ef-
ficiency gains were demonstrated for Asian and look-
back options. For barrier options, the results reported in
Ribeiro and Webber (2004) do not give a complete picture,
but imply the efficiency gain essentially disappears as the
barrier approaches the initial asset price.

When the option contract specifies continuous monitor-
ing of the barrier crossing, Monte Carlo-based estimators
are generally biased due to the simulation’s discrete-time
monitoring. For option-pricing models driven by more gen-
eral Lévy processes, Ribeiro and Webber (2003) develop a
correction method for the simulation bias. While empiri-
cally found effective, their approach is heuristic and does
not yield error bounds, so there is a risk of increasing the
error relative to the uncorrected procedure.

Our method is based on double-gamma bridge
sampling (DGBS) of a variance gamma process
(Avramidis, L’Ecuyer, and Tremblay 2003). With DBGS,
conditional on sampled values of two gamma processes at
any finite set of times containing 0 and T , we can compute
bounds on the VG path everywhere on (0, T ]. For many
payoff functions arising in applications, these process-path
bounds translate into lower and upper bounds on the con-
ditional payoff; in this paper, we focus on barrier options
to convey the main ideas. The algorithm samples a path
of the VG process until the gap between the bounding es-
timators is closed; this ensures unbiasedness, including the
case of continuous monitoring of the barrier crossing. In
numerical examples, we show that the algorithm’s expected
work is considerably reduced relative to full-dimensional
path sampling.

This paper is an abridged version of
Avramidis and L’Ecuyer (2004), who cover more general
payoff structures, study the bias of the truncated procedure,
and use extrapolation techniques and Quasi Monte-Carlo to
improve efficiency. The remainder is organized as follows.
Section 2 reviews the essentials of option pricing with the
variance gamma model. Section 3.1 generalizes the DGBS
algorithm, Section 3.2 develops the process bounds, and
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Section 3.3 analyzes the particular case of barrier options.
In Section 4 we demonstrate the efficiency gain with two
numerical examples.

2 OPTION PRICING WITH VARIANCE GAMMA

Under the variance gamma model, the asset log-return dy-
namics are characterized by a continuous-time stochas-
tic process obtained as a subordinate to Brownian mo-
tion, where the random time change (called operational
time in Feller (1966)) obeys a gamma process. Let
B = {B(t; θ, σ ) : t ≥ 0} be a Brownian motion with
drift parameter θ and variance parameter σ . Let G =
{G(t; µ, ν) : t ≥ 0} denote a gamma process with mean
rate µ and variance rate ν; this is a process with indepen-
dent gamma increments with G(t + h; µ, ν) − G(t; µ, ν)

having mean µh and variance νh. The variance gamma
(VG) process X(t; θ, σ, ν) is defined as

X(t; θ, σ, ν) := B(G(t; 1, ν), θ, σ ).

where G(t; 1, ν) is a unit-mean gamma process independent
of B.

Option prices under the VG model are expectations of
functionals of paths of the asset price process, where expec-
tations are taken with respect to the risk-neutral measure.
Under the risk-neutral dynamics, the asset-price process S

has paths

S(t) = S(0) exp{(ω + r − q)t + X(t)},

where X is a VG process, r is the continuously-compounded,
risk-free interest rate, q is the asset’s continuously-
compounded dividend yield, and ω = log(1−θν−σ 2ν/2)/ν

ensures that E[S(t)]=S(0) exp[(r−q)t]. In practice, parameter
values θ , σ and ν are estimated by calibrating the model
against observed option prices. For a more detailed review,
see Madan, Carr, and Chang (1998).

3 ALGORITHM AND PROPERTIES

3.1 Generalized Double Gamma Bridge Sampling

The VG process paths have a representation as the
difference between two independent gamma processes
(Madan, Carr, and Chang 1998):

X(t; θ, σ, ν) = �+(t; µp; νp) − �−(t; µn; νn), (1)
where �+ and �− are independent gamma processes with

µp = (1/2)

√
θ2 + 2σ 2/ν + θ/2

µn = (1/2)

√
θ2 + 2σ 2/ν − θ/2

νp =
(

(1/2)

√
θ2 + 2σ 2/ν + θ/2

)2

ν

νn =
(

(1/2)

√
θ2 + 2σ 2/ν − θ/2

)2

ν.

The two gamma processes have common shape parameter
per unit-time increment, µ2

p/νp = µ2
n/νn = 1/ν.

Based on the above representation,
Avramidis, L’Ecuyer, and Tremblay (2003) developed
double-gamma bridge sampling (DGBS) of a VG process.
Their algorithm was stated for dyadic partitions of the
target time horizon; we make a direct generalization for
sampling an arbitrary time partition. We consider a finite
time interval [0, T ] and in infinite sequence of distinct real
numbers yo = 0, y1 = T , and y2, y3,..., dense in (0, T ).
This is the sequence of time points at which the two
gamma processes are sampled (generated), in order: first at
y1; then at y2, conditional on their values at y1; then at y3,
conditional on their values at y1 and y2; and so on. For each
positive integer m, let 0 = tm,0 < tm,1 < . . . < tm,m = T

denote the values yo, y1, . . ., ym sorted by increasing order,
and let ι(m) be the index i such that tm,i = ym. That is,
tm,ι(m) is the new observation time added at step m.

We call this more general sampling method the general-
ized DGBS algorithm. Figure 1 outlines the algorithm with
an infinite loop. In an actual implementation, the algorithm
can be stopped after any number of steps.

3.2 Bounds on the Asset-Price Process

Define

ζ = ω + r − q

ζ+ = max(ζ, 0)

ζ− = max(−ζ, 0)

and recall the asset-price process S has representation

S(t) = S(0) exp[ζ t + X(t)]
= S(0) exp[ζ t + �+(t) − �−(t)], t ≥ 0, (2)

where �+ and �− are the gamma processes in (1). Define

��+
m,i := �+(tm,i) − �+(tm,i−1),

��−
m,i := �−(tm,i) − �−(tm,i−1),
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t1,0 ← 0; t1,1 ← T ; �+(0) ← 0; �−(0) ← 0

Generate �+(T ) ∼ Gamma(T /ν, νp/µp)

Generate �−(T ) ∼ Gamma(T /ν, νn/µn)

For m = 2 to ∞ {

i ← ι(m)

tm,i ← ym

tm,i−1 ← tm−1,i−1; tm,i+1 ← tm−1,i

α1 ← (ym − tm,i−1)/ν; α2 ← (tm,i+1 − ym)/ν

Generate Y+ ∼ Beta(α1, α2)

�+(ym) ← �+(tm,i−1)

+ [
�+(tm,i+1) − �+(tm,i−1)

]
Y+

Generate Y− ∼ Beta(α1, α2)

�−(ym) ← �−(tm,i−1)

+ [
�−(tm,i+1) − �−(tm,i−1)

]
Y−

X(ym) ← �+(ym) − �−(ym)

}

Figure 1: Generalized Double Gamma Bridge Sampling of
a VG Process X with Parameters (1, ν, θ, σ ) at an Infinite
Sequence of Times yo = 0, y1 = T , and y2, y3,... in (0, T ]

and

Lm,i = S(tm,i−1) exp[−ζ−(tm,i − tm,i−1) − ��−
m,i],

Um,i = S(tm,i−1) exp[ζ+(tm,i − tm,i−1) + ��+
m,i],

Lm(t) = Lm,i,

Um(t) = Um,i,

for tm,i−1 < t < tm,i , and Lm(tm,i) = Um(tm,i) = S(tm,i),
for i = 1, . . . , m.

The following proposition states that the process S is
contained between the piecewise constant processes Lm

and Um and that these pathwise bounds are narrowing
monotonically with m.

Proposition 1 For every sample path of S, any
integer m ≥ 1, and all t ∈ [0, T ], we have

Lm(t) ≤ Lm+1(t) ≤ S(t) ≤ Um+1(t) ≤ Um(t).

Proposition 1 is a consequence of (2) and the
fact that the gamma increments are nonnegative.
Avramidis and L’Ecuyer (2004) state bounding processes
that are tighter bounds than Lm and Um. The current result
is obtained as their Corollary 1.
3.3 Barrier Options

We start with a basic description of the different types of
barrier options. A knock-in option comes into existence only
if the underlying asset price crosses a given barrier. A knock-
out option ceases to exist whenever the underlying asset
price crosses a barrier. Further, we distinguish them as up or
down, depending on the direction of asset-price movement
that triggers the barrier crossing. They are further classified
as call or put. For further information, see Hull (2000).

As a prototypical barrier option, we consider the up-and-
in call with continuous monitoring of the barrier crossing;
the payoff, discounted to time zero, is

CB(∞) = e−rT (S(T ) − K)+ I

{
sup

0≤t≤T

S(t) > b

}
, (3)

where b > S(0) is the barrier, K is the strike price, and
I denotes the indicator function. The related option with
discrete monitoring has discounted payoff

CB(d) = e−rT (S(T ) − K)+ I

{
max

1≤i≤d
S(ti) > b

}
(4)

for given ti ∈ (0, T ], i = 1, . . . , d.
Define the sequence of estimators

CL,m = e−rT (S(T ) − K)+ I

{
max

1≤i≤m
S(tm,i) > b

}

and

CU,m = e−rT (S(T ) − K)+ I

{
max

1≤i≤m
Um,i > b

}
,

for m = 1, 2, . . .. An interesting feature of this pair of
estimators is that the gap between them vanishes if S(T ) ≤ K

or if the indicator function takes the same value in both
cases, i.e., whenever

max
1≤i≤m

S(tm,i) > b or max
1≤i≤m

Um,i ≤ b. (5)

Thus, to estimate the continuous-time price, it appears sen-
sible to continue sampling until this gap is closed. Let M

denote the random variable defined as the smallest m for
which (5) holds. To allow additional deterministic truncation
of sampling after k steps, define

M(k) = min(M, k). (6)

Proposition 2 below summarizes some properties of the
estimators; it is a straightforward consequence of Proposition
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1. Let

Fm = (�+(tm,1), �
−(tm,1), . . . , �

+(tm,m), �−(tm,m)).

Proposition 2 (a) For any fixed m ≥ 1, con-
ditional on Fm,

CL,m ≤ CB(∞) ≤ CU,m.

Moreover,

CL,m ≤ CB(d) ≤ CU,m

whenever

{tm,1, . . . , tm,m} ⊆ {t1, . . . , td}. (7)

The bounding estimators are narrowing monoton-
ically in m.

(b) The estimator CL,M(∞) = CU,M(∞) is unbiased for
the continuous-time price E[CB(∞)]. Moreover,
CL,M(d) = CU,M(d) is unbiased for the discrete-
time price E[CB(d)] whenever (7) holds.

Part (b) states an attractive property of unbiased-
ness for the case of continuous-time monitoring; this
was precisely the goal of the correction procedure of
Ribeiro and Webber (2003), which, however, does not guar-
antee unbiasedness. On the other hand, an unresolved issue
in our procedure is whether M(∞) has finite mean. For
the case of discrete-time monitoring with finite but large d,
our unbiased estimator is likely to require considerably less
computation compared to the unbiased estimator that sam-
ples full-dimensional paths; empirical evidence supporting
this assertion is offered in Section 4. Moreover, part (a)
shows a pair of estimators whose expectations bracket the
option price; this permits constructing confidence intervals
that may be useful in time-critical applications where some
pricing accuracy is exchanged for speed of computation.

The above approach and results analogous to Proposition
2 apply with very straightforward modifications to the other
types of barrier options. For example, for a down-and-in call
option, we have b < S(0), we replace “sup0≤t≤T S(t) > b”
in the indicator function in (3) by “inf0≤t≤T S(t) < b”,
and make corresponding replacements in the low and high
estimators. The additional variations up-and-out call, down-
and-out call, and the put versions can be handled similarly.

4 NUMERICAL RESULTS

We examine the efficiency of the estimator in Proposi-
tion 2(b) for two examples of barrier options with discrete
monitoring. We consider the up-and-in call (4) and the
down-and-out call with discounted payoff

e−rT (S(T ) − K)+ I

{
min

1≤i≤d
S(ti) > b

}
.

Both options have discrete monitoring at ti = T i/d, i =
1, . . . , d. Option parameters are: S(0) = 100 and K = 100.

We take VG model parameters from
Hirsa and Madan (2004): T = 0.46575, σ = 0.19071,
ν = 0.49083, θ = −0.28113, r = 0.0549, and q = 0.011;
these were calibrated against options on the S&P 500
index using data for June 30, 1999 and correspond to
intermediate-maturity options.

Given the estimator’s unbiasedness, the efficiency gain
factor compared to full-dimensional (non-truncated) sam-
pling is the ratio of expected work between the two es-
timators. Tables 1 and 2 show results for the up-and-in
call and the down-and-out call, respectively; we give 95%
confidence intervals on the expected work E[M(d)] and
the estimated option prices, varying the barrier b and the
problem dimension d. The ratio d/E[M(d)] may be viewed
as a simple, albeit rough, measure of the efficiency gain. In
all cases, we see that expected work grows very slowly with
the dimension d; equivalently, efficiency increases rapidly.

Table 1: Estimated Expected Work E[M(d)] and
Price (Standard Error in Parentheses) for Up-and-
in Call Option, for Selected Barrier Levels b and
Dimension d.

b d 95% C.I. on E[M(d)] Price
105 4 ( 2.20, 2.20) 7.3329 ( 0.008)

16 ( 3.64, 3.65) 7.3739 ( 0.008)
64 ( 5.10, 5.13) 7.3843 ( 0.008)

256 ( 6.54, 6.61) 7.3874 ( 0.008)
110 4 ( 2.25, 2.26) 6.3883 ( 0.008)

16 ( 3.55, 3.56) 6.5260 ( 0.008)
64 ( 4.83, 4.86) 6.5716 ( 0.008)

256 ( 6.09, 6.15) 6.5833 ( 0.008)
120 4 ( 2.11, 2.11) 2.0406 ( 0.006)

16 ( 2.41, 2.42) 2.1238 ( 0.007)
64 ( 2.71, 2.73) 2.1557 ( 0.007)

256 ( 3.01, 3.04) 2.1654 ( 0.007)

It is interesting to observe the effect of the distance
between the barrier and the initial asset price. It is intuitive
that expected work decreases as distance increases, because
in most sampled paths we determine early in the sampling
process (via the bounds) that the barrier is not crossed.
In the opposite direction, as the distance becomes small,
the bounds become less useful and it takes more sampling
until we determine the barrier-crossing indicator. On a
positive note, our examples suggest that expected work is
small throughout and is not very sensitive to this distance.
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Table 2: Estimated Expected Work E[M(d)] and
Price (Standard Error in Parentheses) for Down-and-
out Call Option, for Selected Barrier Levels b and
Dimension d.

b d 95% C.I. on E[M(d)] Price
80 4 ( 2.16, 2.16) 7.5018 ( 0.008)

16 ( 2.45, 2.46) 7.5011 ( 0.008)
64 ( 2.74, 2.76) 7.5008 ( 0.008)
256 ( 3.03, 3.06) 7.5007 ( 0.008)

95 4 ( 2.49, 2.49) 7.3199 ( 0.008)
16 ( 3.45, 3.47) 7.1832 ( 0.008)
64 ( 4.42, 4.44) 7.1368 ( 0.008)
256 ( 5.36, 5.41) 7.1241 ( 0.008)

99 4 ( 2.77, 2.77) 6.8283 ( 0.007)
16 ( 4.47, 4.49) 6.3299 ( 0.007)
64 ( 6.20, 6.24) 6.1528 ( 0.007)
256 ( 7.93, 8.00) 6.1021 ( 0.007)

In the least-favorable (smallest-distance) case across our
experiments, the down-and-out option with b = 99, we get
E[M(256)] ≈ 8. This should be contrasted to the negative
results of Ribeiro and Webber (2004), who found little or
no efficiency gain when distance is small.
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