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ABSTRACT

We study algorithms for sampling discrete-time paths of
gamma process and a variance gamma process, defined
a Brownian process with random time change obeying
gamma process. The attractive feature of the algorithms
that increments of the processes over longer time scales a
assigned to the first sampling coordinates. The algorithm
are based on having in explicit form the process’ conditiona
distributions, are similar in spirit to the Brownian bridge
sampling algorithms proposed for financial Monte Carlo,an
synergize with quasi-Monte Carlo techniques for efficienc
improvement. We compare the variance and efficiency o
ordinary Monte Carlo and quasi-Monte Carlo for an exampl
of financial option pricing with the variance-gamma model
taken from Madan, Carr, and Chang (1998).

1 INTRODUCTION

For numerical integrationvia randomizedquasi-Monte Carl
(QMC) techniques, there have been recent publications o
the subject of structuring the sampling algorithm so as to co
centrate the variance of the integrand to a few coordinat
(Caflisch and Moskowitz 1995, Moskowitz and Caflisch
1996, Acworth, Broadie, and Glasserman 1997, Åkesso
and Lehoczy 2000, Owen 1998, Liu and Owen 2003). Th
book of Fox (1999) is centered on such ideas and the
synergy with QMC. Caflisch and Moskowitz (1995) and
Moskowitz and Caflisch (1996) arose interest by introduc
ing an algorithm that exploits the synergy of such ideas wit
QMC by sampling discretely paths of a Brownian motion
recursively halfing the sampling horizon, conditional on
previously generated values of the process. This method
is known asBrownian bridge sampling. Several variants of
the structuring approach have been proposed, with Acwort
Broadie, and Glasserman (1997) suggesting an approa
based on the principal components of the covariance m
trix of a discretely sampled Brownian motion, and Åkesso
as
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and Lehoczy (2000) extending the ideas to more gene
Gaussian processes. Caflisch, Morokoff, and Owen (199
and Åkesson and Lehoczy (2000) report computational e
perience with integrals arising in pricing mortgage-backe
securities, and Acworth, Broadie, and Glasserman (199
also report experience with high-dimensional integrals ar
ing in option pricing. The empirical consensus is that th
above path generation schemes, when combined with qu
Monte Carlo, outperform ordinary Monte Carlo (MC) in
many situations, sometimes by orders of magnitude. O
the other hand, brute-force QMC without the structurin
approach has been found to outperform ordinary Mon
Carlo less consistently in problems of high dimension.

The above phenomenon can be understood by comb
ing the concepts ofANOVA decompositionof a function and
effective dimensionof an integral (Caflisch, Morokoff, and
Owen 1997, L’Ecuyer and Lemieux 2000b) with the well
known fact that QMC integration error decreases at a fas
rate than ordinary Monte Carlo when the integral’s dimen
sion is small. Briefly and loosely speaking, the ANOVA
decomposition of a function expresses the variance of
s-dimensional function of random inputs (coordinates) as
sum of variance terms, with a term corresponding to ea
of the 2s subsets of coordinates. In many high-dimension
integration problems, and depending on how the coordina
are defined, there exists a subset of coordinates of relativ
small cardinality to which most of the variance (e.g., 99%
is due; equivalently, the remaining subset of coordinate
while having large cardinality, contributes little to the vari
ance of the integral. In the case where the firstd coordinates
account for at least 100p% of the variance, we say that
the integral haseffective dimensiond in proportion p in
the truncation sense(Caflisch, Morokoff, and Owen 1997,
Hickernell 1998b). Ifp is close to one, this implies that the
variance depends essentially only on the uniformity of th
d-dimensional QMC point set defined as the projection
the original QMC point set on its firstd coordinates. The
smallerd is, the easier it is to make this point set mor
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uniform. Other measures of effective dimension are define
and studied, e.g., in Caflisch, Morokoff, and Owen (1997
L’Ecuyer and Lemieux (2000b), Hickernell (1998a).

In this paper, we begin by introducing the gamma pro
cess, a continuous-time process with stationary, independ
gamma increments. Madan and Seneta (1990), Madan, C
and Chang (1998) introduced in the context of financial op
tion pricing a continuous-time stochastic process terme
variance gammathat is a Brownian motion with random
time change, where the random time change is a gamm
process. The authors argued that the variance gamma mo
permits more flexibility in modelling skewness and kurtosi
relative to Brownian motion. They developed closed-form
solutions for European option pricing with the VG mode
and provided empirical evidence that the VG option pricin
model gives a better fit to market option prices than th
classical Black-Scholes model. Another potential use o
the gamma process (more precisely, the analogous proc
in discrete-time) is as a model of partial sums of positiv
random variables such as inter-arrival and service times
queueing systems.

We then define algorithms that sample discrete-tim
paths of the gamma process and the variance gamma proc
recursively halfing the sampling horizon, conditional on pre
viously generated values of the process. First, we clarify th
exact sampling of gamma-process paths is straightforwa
a fact that may be obscured by the discussion in Mada
Carr, and Chang (1998), as we explain in Section 3. O
sampling algorithms are similar in spirit and structure to
the Brownian bridge algorithm discussed above; both a
based on the premise that many integrals are of low effecti
dimension, with the macro-effects corresponding to incre
ments of the process over large time scales being domina
in the ANOVA variance decomposition. These algorithm
attempt to synergize with quasi-Monte Carlo techniques fo
efficiency improvement. We compare the variance and ef
ciency of ordinary Monte Carlo and quasi-Monte Carlo fo
an example of financial option pricing under the varianc
gamma model of Madan, Carr, and Chang (1998). We fin
that our bridge sampling algorithms combined with QMC
methods effectively improve simulation efficiency by large
factors.

While finalizing this paper, we became aware of relate
unpublished work by Ribeiro and Webber (2002), who hav
recently proposed bridge-based sampling algorithms th
turn out to be identical to those described in our Figures
and 3. The sampling algorithm of Figure 4 seems new
We also experiment with different types of QMC point set
than Ribeiro and Webber (2002) and randomize our QM
point sets in order to obtain unbiased estimators of both t
mean and variance (which these authors do not have).

The remainder of the paper is organized as follows
Section 2 reviews Brownian bridge sampling. In Section 3
we introduce the gamma and variance gamma process
nt
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define the sampling algorithms, and discuss applications. In
Section 4 we compare (in terms of variance and efficiency
the bridge+QMC algorithms to the QMC-without-bridge
and MC algorithms for a simple illustrative example.

2 PREVIOUS RELATED WORK

For completeness and continuity, we review the Brown-
ian bridge sampling in the context of discrete sampling of
Brownian paths. Let{B(t) : t ≥ 0} be a standard Brownian
motion with zero drift and unit variance, i.e., such that
B(0) = 0 and B(1) ∼ N (0, 1), where∼ means “is dis-
tributed as” andN (µ, σ 2) denotes the Normal distribution
with meanµ and varianceσ 2. We wish to estimate via
Monte Carlo an integral defined against paths ofB for a
given discrete-time partition 0= t0 < t1 ≤ . . . ≤ tn = T for
some givenT > 0. To make our discussion more concrete,
let us assume for example that the integrand in question ha
effective dimension four in the truncation sense, in propor-
tion p close to one, so that most of the variance is due to the
macro-effects represented byB(T/4), B(T/2), B(3T/4),
and B(T). This setting, or variants thereof, are quite
common in many integration problems arising in financial
asset pricing, becauseB(T) represents (up to a monotone
transformation, e.g., the exponential function) the value of
an asset or, more generally, a risk factor, and such quantitie
often capture a large part of the overall uncertainty in the
future value of the asset to be priced by the integration
algorithm.

The natural sampling algorithm is to sample the Brow-
nian increments along the given partition; but the assumed
low effective dimension of the integrand in the truncation
sense, with coordinates corresponding to the inputsB(T/4),
B(T/2), B(3T/4), and B(T), means that QMC will be
very effective if instead we define input coordinates to cor-
respond to the crucial inputsB(T/4), B(T/2), B(3T/4),
and B(T), and then sample these inputs via the inverse
transform method. This can easily be achieved as follows
We recall the standard property of Brownian motion that
for any t ≥ 0 and nonnegative time increments1t1,1t2,
the conditional distribution ofB(t + 1t1) given B(t) and
B(t+1t1+1t2) isN (aB(t)+(1−a)B(t+1t1+1t2, a1t2),
where a = 1t1/(1t1 + 1t2). Moreover, sinceB(·) is a
Markov process, additionally conditioning on any portion
of the path beforet and aftert +1t1+1t2 does not change
the conditional distribution. Based on this property, one
samples discretely paths of a Brownian motion, recursively
halfing the sampling horizon, conditional on previously gen-
erated values of the process, Thus, the Brownian path i
sampled in the orderB(T), B(T/2), B(T/4), B(3T/4),...
Moskowitz and Caflisch (1996) combined this sampling
algorithm with using QMC points for the integration. As-
suming that all normal variates are generated by transformin
a single (pseudo- or quasi-) uniform random number, the
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integral has low effective dimension and QMC is expecte
to outperform MC.

3 BRIDGE SAMPLING FOR GAMMA AND
VARIANCE GAMMA PROCESSES

We letG(α, β) denote the gamma distribution with density

f (x) = 1

βα0(α)
xα−1e−x/β, x > 0, (1)

where0 is the usual gamma function, and we refer toα

andβ as the shape and scale parameters, respectively. T
gamma process{G(t; µ, ν) : t ≥ 0} with mean parameter
µ and variance parameterν is a continuous-time process
with stationary, independent gamma increments such th
for any h > 0,

G(t + h; µ, ν) − G(t; µ, ν) ∼ G(µ2h/ν, ν/µ). (2)

By definition, the distribution of the increments depends o
the lengthh of the time increment but not on the timet . Note
that the increment of lengthh has meanµh and varianceνh.
The gamma process is the Lévy process corresponding
the gamma distribution. For background on Lévy processe
including their existence, see Sato (1999). Some bas
facts about Lévy processes are: (a) they are in one-to-o
correspondence with infinitely divisible distributions; (b) the
Lévy-Khintchine representation decomposes a Lévy proce
into a sum of three parts: the first part is a determinist
function of time, the second part is a stochastic process w
continuous component, namely a scaled Brownian motio
and the third part is a stochastic process formed by th
superposition of compound Poisson processes over a ran
of possible jump sizes, and where the Poisson jump proces
have rate functions that derive from the (possibly-infinite
Lévy measureλ with support on the range of jump sizes. To
lighten notation, we refer to the process asG(t) or simply
G when the parametersµ and ν are irrelevant or obvious
from the context.

Suppose we wish to generate paths of a gamma proc
between times zero andT for some givenT > 0. Clearly
only a discrete-time skeleton of the process can be genera
on a computer, so we assume the goal is to generate val
of the process for a discrete-time partition of(0, T), namely
at the time valuesti := i δT , i = 1, . . . , 2k, whereδ = 2−k

for some positive integerk. (This can be generalized easily
to arbitrary observation timesti .) Perhaps the most natural
sampling algorithm is to sample the process increments alo
the above partition, known to be independent, identical
distributed gamma variates. We term this natural approa
gamma sequential sampling(GSS). A pseudocode is given
in Figure 1.
e
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G(0) = 0;
h = 2−kT ;
For i = 1 to 2k

GenerateQ ∼ G(µ2h/ν, ν/µ);
G(ih) = G((i − 1)h) + Q;

Next i

Figure 1: Gamma Sequential Sampling (GSS) of a Proce
G(t; µ, ν) for a 2k-Point Equal-Length Partition of[0, T]

We observe that Madan, Carr, and Chang (1998) s
in their discussion of the gamma process, “the dynami
of the continuous-time gamma process is best explain
by describing a simulation of the process,” and proceed
describe the standard, general-purpose, but only approxim
method for generating paths of a Lévy process with infini
Lévy measure, namely truncation of the Lévy measure ne
zero (i.e., ignoring jumps below a certain small threshold
and simulation from the appropriate compound Poiss
processes. We emphasize that in the case where the pro
value needs to be observed only at fixed discrete poin
in time, this approximate and cumbersome approach
unnecessary; it is immediately clear from (2) that the proce
increments can be simulated exactly via a gamma varia
generator.

3.1 Gamma Bridge Sampling

We now describe a sampling algorithm that concentrat
the sampling of the macro-effects, i.e., increments of th
process over longer time scales, to the first coordinates.
path of the process is sampled at the following time points,
order of generation:T , T/2, T/4, 3T/4, T/8, 3T/8, 5T/8,
7T/8, . . ., δT ,. . ., (2k−1)δT . The algorithm is based on the
observation that the conditional distributions ofG(t; µ, ν)

are available in closed form. Specifically, for anyt ≥ 0
and nonnegative time increments1t1,1t2, the conditional
distribution of G(t + 1t1) given G(t) = γ0 and G(t +
1t1 +1t2) = γ2 is γ0 + (γ2 − γ0)Y, whereY is distributed
as B(1t1/ν,1t2/ν), and B denotes the beta distribution
on (0,1). Moreover, because of the independent-increme
property ofG(·), additionally conditioning on any portion of
the path beforet and/or aftert +1t1+1t2 does not change
the conditional distribution. The conditional distributions
do not depend on the mean parameterµ (µ only appears in
the unconditional distribution ofG(T)). As the time scale
decreases, the beta parameters decrease, resulting event
in a bimodal density whose mass concentrates more
the extreme values 0 and 1. We name this condition
sampling of the gamma processgamma bridge sampling. A
pseudocode for gamma bridge sampling is given in Figure
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G(0) = 0;

GenerateG(T) ∼ G(µ2T/ν, ν/µ);

For ` = 1 to k

For m = 1 to 2`−1

i = 2m − 1;

GenerateY ∼ B(µ2T/(ν2`), µ2T/(ν2`));

G(i T /2`) = G((i − 1)T/2`)

+ (
G((i + 1)T/2`) − G((i − 1)T/2`)

)
Y;

Next m

Next `

Figure 2: Gamma Bridge Sampling of a ProcessG(t; µ, ν)

for a 2k-Point Equal-Length Partition of[0, T]

3.2 The Variance Gamma Process and Bridge Sampling

Madan and Seneta (1990), Madan and Milne (1991), Madan
Carr, and Chang (1998) studied option pricing for a mode
where the asset log-return dynamics follow a continuous
time process obtained as a subordinate to Brownian motio
using a gamma process to modelrandomized operational
time (Feller 1966) (the term “operational time” refers to
the time scale of “operations” relevant to the phenomeno
of study). We now introduce this model of asset returns
named theVG processin Madan, Carr, and Chang (1998).

Let B = {B(t; θ, σ ) : t ≥ 0} be a Brownian motion
with drift parameterθ and variance parameterσ . Let
G = {G(t; 1, ν) : t ≥ 0} be a unit-mean gamma process
(µ = 1) independent of the processB. The variance gamma
(VG) processX(t; θ, σ, ν) is obtained as a subordinate of the
Brownian motion processB(t; θ, σ ) using the operational
time G(t; 1, ν) (Feller 1966):

X(t; θ, σ, ν) := B(G(t; 1, ν), θ, σ ). (3)

In simple terms, the VG process is obtained by subjecting
the Brownian motion to a random time change obeying a
gamma process.

In the interest of brevity, we proceed directly to the
specification of the asset price dynamics (under the VG
model) relevant to pricing, known asrisk-neutral asset
dynamics. We refer to Madan, Carr, and Chang (1998) for
aspects of the VG model that are relevant to the financia
literature. Let{S(t) : t ≥ 0} denote the risk-neutral asset
price process. Under the risk-neutral dynamics, the path
of the asset price process obey:

S(t) = S(0) exp{r t + X(t; θRN, σRN, νRN) + ωRNt}, (4)

where r is the risk-free interest rate, the subscript “RN”
indicates that these are the risk-neutral parameters (as o
posed to the statistical parameters), andωRN = log(1 −
,

,

l

s

p-

θRNνRN − σ 2
RNνRN/2)/νRN. Under the VG model, option

prices can be expressed as expectations against path
the processS over some fixed horizon under the abov
risk-neutral dynamics.

To the best of our knowledge, except for standa
European options, pricing formulas under the VG mod
are not available in closed form. Hence, numerical or Mon
Carlo integration appear to be the only viable approach
and for the case of high-dimensional integrals arising in t
pricing of path-dependent options, Monte Carlo integratio
is often the leading practical approach.

With such applications in mind, we describe two algo
rithms for sampling paths of the asset price process (4) t
concentrate the sampling of the macro-effects (ofX andS)
to the first coordinates, where “macro-effects” are unde
stood to be the increments of these processes over lon
time scales. In analogy with Brownian bridge sampling an
gamma bridge sampling, both algorithms sample the V
process at a time partition that becomes increasingly fin
First, note that to simulate paths of the asset price dynam
it suffices to generate paths of the VG processX(t; θ, σ, ν)

and then transform these to paths ofS via the transforma-
tion (4). For the first algorithm, namedBrownian-gamma
bridge sampling(BGBS), we observe that the assumed in
dependence of processesG and B implies that conditional
on any collection of increments of the gamma processG,
the increments of the Brownian processB are independent
normals. Thus, we may first sample increments ofG via
gamma bridge sampling, and then sample increments
B(G(t)) by Brownian bridge sampling, conditional on th
correspondingG increments. This can be done in two
ways: (a) sampling first all increments ofG and then all
increments ofB; or (b) sampling them in alternance. Th
pseudocode given in Figure 3 uses the second approa
This method is in fact equivalent to the one sketched
Section 4 of Ribeiro and Webber (2002).

Our second algorithm, nameddouble-gamma bridge
sampling(DGBS), depends crucially on an alternative rep
resentation of the VG process, as the difference betwe
two independent gamma processes (Madan, Carr, and Ch
1998) as follows:

X(t; θ, σ, ν) = γp(t; µp; νp) − γn(t; µn; νn), (5)

where

µp = (1/2)

√
θ2 + 2σ 2/ν + θ/2

µn = (1/2)

√
θ2 + 2σ 2/ν − θ/2

νp =
(

(1/2)

√
θ2 + 2σ 2/ν + θ/2

)2

ν

νn =
(

(1/2)

√
θ2 + 2σ 2/ν − θ/2

)2

ν.
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G(0) = 0; X(0) = 0;

GenerateG(T) ∼ G(µ2T/ν, ν/µ);

GenerateX(T) ∼ N (θG(T), σ 2G(T));

For ` = 1 to k

For m = 1 to 2`−1

i = 2m − 1;

GenerateY ∼ B(µ2T/(ν2`), µ2T/(ν2`));

G(i T /2`) = G((i − 1)T/2`)

+ [
G((i + 1)T/2`) − G((i − 1)T/2`)

]
Y;

b = G((i + 1)T/2`) − G(i T /2`);

GenerateZ ∼ N (0, bσ 2Y);

X(i T /2`) = Y · X((i + 1)T/2`)

+ (1 − Y) · X((i − 1)T/2`) + Z;

Next m

Next `

Figure 3: Brownian-Gamma Bridge Sampling (BGBS) o
a VG processX(t) = B(G(t; µ, ν), θ, σ ) for a 2k-Point
Equal-Length Partition of[0, T]

In view of the above representation of the processX, it
is possible to concentrate the sampling of macro-effects
paths ofX (and thus also of macro-effects of paths ofS) to the
first sampling coordinates. Algorithm DGBS samples eac
of γp andγn by gamma bridge sampling, while interleaving
the sampling of the two processes, so that sampling occ
in the following order: γp(T), γn(T), γp(T/2), γn(T/2),
γp(T/4), γn(T/4), γp(3T/4), γn(3T/4),... A pseudocode
is given in Figure 4.

These sampling algorithms, combined with QMC meth
ods, are experimented and compared with standard MC
a simple numerical example in Section 4.2.

3.3 Queueing Simulation with Gamma Increments

Recall our discussion motivating the effectiveness of Brow
nian bridge sampling in the context of financial simulation
In the context of queueing, one could argue that effectiv
structuring of queueing simulations may bring efficiency im
provement by reducing the effective dimension in a simila
way. One line of thought would be that large-scale e
fects, measured by increments of the partial-sum proces
of interarrival and service times over large—as opposed
small—blocks of successive customers, may contain a lar
fraction of the relevant uncertainty.

For a simple concrete illustration, consider a single
server queue with i.i.d. interarrival timesA = {Ai : i =
1, 2, . . .} and i.i.d. customer service timesS = {Si : i ≥
1, 2, . . .}, where the sequencesA and S are independent.
f

s

r

s

e

γp(0) = 0; γn(0) = 0;

Generateγp(T) ∼ G(µ2
pT/νp, νp/µp);

Generateγn(T) ∼ G(µ2
nT/νn, νn/µn);

For ` = 1 to k

For m = 1 to 2`−1

i = 2m − 1;

GenerateYp ∼ B(µ2
pT/νp2`, µ2

pT/(νp2`));

γp(i T /2`) = γp((i − 1)T/2`)

+ [
γp((i + 1)T/2`) − γp((i − 1)T/2`)

]
Yp;

GenerateYn ∼ B(µ2
nT/(νn2`), µ2

nT/(νn2`));

γn(i T /2`) = γn((i − 1)T/2`)

+ [
γn((i + 1)T/2`) − γn((i − 1)T/2`)

]
Yn;

X(i T /2`) = γp(i T /2`) − γn(i T /2`);

Next m

Next `

Figure 4: Double Gamma Bridge Sampling (DGBS) of
a VG ProcessX(t) = B(G(t; µ, ν), θ, σ ) for a 2k-Point
Equal-Length Partition of[0, T]

Assume thatAi and Si are gamma random variables with
meansµA andµS and variancesνA andνS, respectively.

Many performance measures can be estimated by sim
ulating the system’s evolution over a fixed numberd of
customers. For convenience of exposition, we taked = 2k

for some positive integerk. Consider thepartial-sum pro-
cesses{∑ j

i=1 Ai : j = 1, 2, . . . , d} and {∑ j
i=1 Si : j =

1, 2, . . . , d}. Observe that the joint distributions of the in-
terarrival time partial sums{∑ j

i=1 Ai : j = 1, 2, . . . , d}
coincide with the finite dimensional distributions of a
continuous-time gamma process sampled at integer value
{G( j ; µA, νA), j = 1, 2, . . . , d}, and analogously for the
service-time partial sums. Thus the gamma bridge samplin
algorithm immediately applies for sampling the partial sums
with the key feature that macro-effects are concentrated o
the first sampling coordinates.

In preliminary experiments comparing the efficiency of
simulations for estimating the average sojourn time of th
first d customers in a single queue using standard MC, QMC
with gamma sequential sampling as in Figure 1, and QMC
with gamma bridge sampling as in Figure 2, we found tha
QMC generally helps (this agrees with the results of Lemieu
and L’Ecuyer 2000) but that using the gamma bridge i
not always better than gamma sequential sampling. Th
explanation is that the interaction between customers that a
close to each other in time can be much more important, i
this example, than the interaction between customers that a
far from each other (Lemieux and L’Ecuyer 2000). On the
other hand, one can certainly construct queueing exampl
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where using the gamma bridge would bring significan
benefit. This issue is in need for more study.

4 NUMERICAL RESULTS

4.1 Experimental Setup

This section reports numerical results on an option pricin
example. The simulations were made using the SSJ softw
package (L’Ecuyer, Meliani, and Vaucher 2002). For th
QMC point sets, we used (a) the Korobov lattice rule
proposed in Table 1 of L’Ecuyer and Lemieux (2000b) (w
used the third value ofa in the table for each value ofn)
and (b) Sobol’ point sets with the same parameters as
Bratley and Fox (1988).

The lattice rules were randomized by random shif
modulo 1, as explained in L’Ecuyer and Lemieux (2000b
whereas the digital nets of Sobol’ were randomized b
the affine matrix scrambling in Definition 2.8 of Owen
(2003). For each QMC point set, we madem independent
replicates of the randomization, for a total ofmnsimulation
runs, wheren is the cardinality of the point set.

For j = 1, . . . , m, let X j be the average value of the
performance measure of interest over then runs of the j th
randomization. TheseX j are i.i.d. unbiased estimators of
the integral of interest, sayµ, so we can use their sample
meanX̄ and sample varianceS2

qmc to compute a confidence
interval forµ in a standard way under the assumption th
the X j are also approximately normally distributed. Fo
comparison, we makemn (independent) simulation runs
with the MC method and compute the sample varianc
S2

mc. A confidence interval on thevariance reduction factor
σ 2

qmc/σ
2
mc (the variance of QMC over that of MC) can

be computed by using the well-known fact that under th
normality assumption,

(m − 1)mnS2
qmcσ

2
mc

m(mn− 1)S2
mcσ

2
qmc

has the F distribution with(m, mn) degrees of freedom.
We define the efficiency improvement factoras

cqmcσ
2
qmc/[cmcσ

2
mc], wherecqmc and cmc are the average

cost (CPU time) per simulation run for QMC and MC
respectively. A confidence interval on this factor can als
be computed via the F distribution if we neglect noise i
the estimation ofcqmc andcmc. This is what we shall do.

4.2 Asian Option Pricing with the VG Model

We consider pricing a simple example ofasian call option
under the variance gamma model for the asset price d
namics. The payoff depends on the arithmetic mean of t
underlying asset value at prespecified points in time, as fo
t

g
re

in

,

t

e

y-
e
l-

lows (Hull 2000): The option holder receives at expiratio
time T the payoff

CA = max


0,

1

d

d∑
j =1

S(t j ) − K


 (6)

where S(t) is the asset price at timet , d is the number
of instants whereS(·) is sampled,t j is the j th sampling
time (here we assume thatt j = j T/d for all j ), and K
is a constant called thestrike price of the option. The
option value, isµ = e−rT E[CA], where the expectation is
taken with respect to the risk-neutral asset price proce
defined in (4). The goal is to estimate thisµ as efficiently
as possible, i.e., with the smallest variance for a give
computing budget, by simulation. This is an integratio
problem ins = 2d dimensions.

We have implemented several QMC-based samplin
methods for the random variableCA. BGBS(b) and DGBS
are the methods described in Figures 3 and 4. BGBS(a)
the variant of BGBS where thed values ofG are sampled
first (using gamma-bridge sampling) and then thed values of
B are sampled via the Brownian bridge method. BGSS(a
BGSS(b), and DGSS refer to versions of these three metho
where bridge sampling is replaced by sequential sampli
for both the gamma and Brownian processes. Finally, M
means the standard MC method with sequential sampli
for both processes. All normal, gamma, and beta rando
variables are generated by inversion, using numerical a
proximations of the inverse distribution functions. We use
the methods given in Kennedy and Gentle (1980) for th
normal distribution, DiDonato and Moris (1987) for the
gamma distribution, and the “inverse of the incomplete be
integral” function from the Cephes Math Library (Moshier
2000) for the beta distribution. With these approximation
and our implementations, the inverse is roughly fifty time
more costly to compute for the beta than for the gamma, a
four times more costly for the gamma than for the norma
This has to be considered when comparing estimator’s ef
ciencies. We estimate the variance reduction and efficien
improvement factors of each QMC method compared wit
MC. In order to be able to use the F distribution for compu
ing confidence intervals on the variance reduction factor
all the methods were simulated independently of each oth
(A different approach would have taken common rando
numbers across the methods and might have provided l
noisy estimators of the variance reduction factors.)

For the numerical illustration, we take parameter value
from Madan, Carr, and Chang (1998): LetθRN = −0.1436,
σRN = 0.12136, νRN = 0.3, r = 0.1, T = 1, K =
101, andS(0) = 100. We madem = 100 independent
randomizations for each QMC method. Table 1 provide
estimates of the improvement factors of each of the six QM
sampling method compared with MC, for three values o
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n, using the Korobov lattice rules and the Sobol’ point set
Each table entry gives a 98% confidence interval on th
variance reduction factor (top pair) and a 98% confiden
interval on the efficiency improvement factor (bottom pair

We see a clear evidence of variance reduction a
efficiency improvement for QMC compared with MC, and
these improvements are more pronounced when QMC
combined with bridge sampling. The Sobol’ point set
perform better, with the bridge methods, than Korobov rule
The DGBS method generally provides the best varian
reduction, but the efficiency improvement is often bette
with BGBS, after the higher cost of DGBS (for generatin
the beta random variables) has been factored out. T
eventual availability of good approximations that are fa
to compute for the inverse beta distribution could definite
make DGBS the method of choice.

Table 1: 98% Confidence Intervals on Variance
Reduction Factors (Above) and Efficiency Im-
provement Factors (Below) of Randomized QMC
Over MC, for the Asian Option Example with
d = 16

Korobov Lattice Rules
n = 4093 n = 8191 n = 16381
a = 1397 a = 7151 a = 5693

BGSS(a) (5, 10) (6, 12) (10, 19)
(5, 10) (6, 12) (10, 19)

BGSS(b) (5, 10) (7, 15) (10, 21)
(5, 10) (7, 15) (10, 21)

DGSS (15, 30) ( 7, 15) (27, 54)
(7, 15) (4, 7) (14, 28)

BGBS(a) (32, 65 ) (34, 68) (65, 130)
(18, 36 ) (19, 38) (36, 72)

BGBS(b) (16, 32 ) (45, 90) (50, 100)
( 9, 18 ) (25, 50) (27, 53)

DGBS (38, 76 ) (73, 145) (87, 174)
(11, 21 ) (20, 41) (24, 49)

Sobol’ Nets
n = 4096 n = 8192 n = 16384

BGSS(a) (11, 22) (7, 15) (12, 24)
(11, 22) (7, 15) (12, 24)

BGSS(b) (13, 26) (8, 16) (19, 38)
(13, 26) (8, 16) (19, 38)

DGSS (27, 54) (31, 62) (40, 81)
(11, 22) (16, 31) (20, 41)

BGBS(a) (85, 170) (56, 111) (95, 190)
(42, 85) (28, 56) (47, 95)

BGBS(b) (149, 298) (175, 351) (285, 570)
(84, 168) (99, 198) (76, 152)

DGBS (234, 468) (359, 718) (321, 642)
(65, 131) (101, 201) (90, 180)
.
e
e

d

is

.
e
r

e
t

One can also observe that for Sobol’ point sets,BGBS(
is much better than BGBS(a), whereas for Korobov rule
these is no clear winner between these two sampling me
ods. The explanation is that in contrast to the Korobo
rules, the Sobol’ point sets have been designed to ha
better uniformity over their first coordinates than over the
last ones, and the BGBS(b) sampling method exploits th
by transfering more of the variance to the first few random
variables (i.e., it achieves a lower effective dimension i
the truncation sense).

It should be pointed out that these variance reductio
factors also depend a lot on the choice of parameters
the QMC point sets (e.g., the value ofa for the Korobov
rules and the “direction numbers” for the Sobol’ point sets
see L’Ecuyer and Lemieux 2002 or L’Ecuyer 2003 for a
explanation of these parameters). Changing the values
a in Table 1, for example, may improve or degrade som
factors significantly. In general, larger values ofn should
give larger reduction factors for QMC, but this is not totally
clear from the table because (1) of the noise in the varian
estimators and (2) for a given value ofn and given type
of point set, the specific parameters selected here might
significantly better or worse than other parameters for th
samen, for the particular integral considered here.

In other experiments (whose detailed results are n
given here), we found that changing the numberd of ob-
servation times while keeping all other parameters consta
seems to have no significant effect on the variance reducti
factor. On the other hand, increasing the expiration dateT
while keeping all other parameters constant tends to increa
the variance reduction (and efficiency improvement) facto
with the QMC methods.
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