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ABSTRACT and Lehoczy (2000) extending the ideas to more general
Gaussian processes. Caflisch, Morokoff, and Owen (1997)
We study algorithms for sampling discrete-time paths of a and Akesson and Lehoczy (2000) report computational ex-
gamma process and a variance gamma process, defined aperience with integrals arising in pricing mortgage-backed

a Brownian process with random time change obeying a securities, and Acworth, Broadie, and Glasserman (1997)
gamma process. The attractive feature of the algorithms is also report experience with high-dimensional integrals aris-
that increments of the processes over longer time scales areing in option pricing. The empirical consensus is that the

assigned to the first sampling coordinates. The algorithms above path generation schemes, when combined with quasi-

are based on having in explicit form the process’ conditional
distributions, are similar in spirit to the Brownian bridge
sampling algorithms proposed for financial Monte Carlo, and
synergize with quasi-Monte Carlo techniques for efficiency
improvement. We compare the variance and efficiency of
ordinary Monte Carlo and quasi-Monte Carlo for an example
of financial option pricing with the variance-gamma model,
taken from Madan, Carr, and Chang (1998).

1 INTRODUCTION

For numerical integration via randomized quasi-Monte Carlo

Monte Carlo, outperform ordinary Monte Carlo (MC) in
many situations, sometimes by orders of magnitude. On
the other hand, brute-force QMC without the structuring
approach has been found to outperform ordinary Monte
Carlo less consistently in problems of high dimension.
The above phenomenon can be understood by combin-
ing the concepts cANOVA decompositioof a function and
effective dimensionf an integral (Caflisch, Morokoff, and
Owen 1997, L'Ecuyer and Lemieux 2000b) with the well-
known fact that QMC integration error decreases at a faster
rate than ordinary Monte Carlo when the integral’s dimen-
sion is small. Briefly and loosely speaking, the ANOVA

(QMC) techniques, there have been recent publications on decomposition of a function expresses the variance of a
the subject of structuring the sampling algorithm so as to con- s-dimensional function of random inputs (coordinates) as a
centrate the variance of the integrand to a few coordinates sum of variance terms, with a term corresponding to each

(Caflisch and Moskowitz 1995, Moskowitz and Caflisch
1996, Acworth, Broadie, and Glasserman 1997, Akesson
and Lehoczy 2000, Owen 1998, Liu and Owen 2003). The
book of Fox (1999) is centered on such ideas and their
synergy with QMC. Caflisch and Moskowitz (1995) and
Moskowitz and Caflisch (1996) arose interest by introduc-
ing an algorithm that exploits the synergy of such ideas with
QMC by sampling discretely paths of a Brownian motion,
recursively halfing the sampling horizon, conditional on

of the Z subsets of coordinates. In many high-dimensional
integration problems, and depending on how the coordinates
are defined, there exists a subset of coordinates of relatively
small cardinality to which most of the variance (e.g., 99%)
is due; equivalently, the remaining subset of coordinates,
while having large cardinality, contributes little to the vari-
ance of the integral. In the case where the firsbordinates
account for at least 16 of the variance, we say that
the integral haseffective dimensionl in proportion p in

previously generated values of the process. This method is the truncation sens@Caflisch, Morokoff, and Owen 1997,

is known asBrownian bridge samplingSeveral variants of
the structuring approach have been proposed, with Acworth,

Hickernell 1998b). Ifp is close to one, this implies that the
variance depends essentially only on the uniformity of the

Broadie, and Glasserman (1997) suggesting an approachd-dimensional QMC point set defined as the projection of
based on the principal components of the covariance ma- the original QMC point set on its first coordinates. The

trix of a discretely sampled Brownian motion, and Akesson
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uniform. Other measures of effective dimension are defined define the sampling algorithms, and discuss applications. In
and studied, e.g., in Caflisch, Morokoff, and Owen (1997), Section 4 we compare (in terms of variance and efficiency)

L'Ecuyer and Lemieux (2000b), Hickernell (1998a).
In this paper, we begin by introducing the gamma pro-

cess, a continuous-time process with stationary, independent
gammaincrements. Madan and Seneta (1990), Madan, Carr,2

and Chang (1998) introduced in the context of financial op-
tion pricing a continuous-time stochastic process termed
variance gammadhat is a Brownian motion with random

the bridge+QMC algorithms to the QMC-without-bridge
and MC algorithms for a simple illustrative example.

PREVIOUS RELATED WORK

For completeness and continuity, we review the Brown-
ian bridge sampling in the context of discrete sampling of

time change, where the random time change is a gamma Brownian paths. LetB(t) : t > 0} be a standard Brownian
process. The authors argued that the variance gamma modelmotion with zero drift and unit variance, i.e., such that

permits more flexibility in modelling skewness and kurtosis
relative to Brownian motion. They developed closed-form
solutions for European option pricing with the VG model

and provided empirical evidence that the VG option pricing
model gives a better fit to market option prices than the
classical Black-Scholes model. Another potential use of

B(0) = 0 and B(1) ~ N(0, 1), where~ means “is dis-
tributed as” andV'(u, 02) denotes the Normal distribution
with meany and variances2. We wish to estimate via
Monte Carlo an integral defined against pathsBofor a
given discrete-time partiton& tp <ty < ... <ty =T for
some giverT > 0. To make our discussion more concrete,

the gamma process (more precisely, the analogous procesdet us assume for example that the integrand in question has

in discrete-time) is as a model of partial sums of positive
random variables such as inter-arrival and service times in
gueueing systems.

We then define algorithms that sample discrete-time

effective dimension four in the truncation sense, in propor-
tion p close to one, so that most of the variance is due to the
macro-effects represented B(T/4), B(T/2), B(3T/4),

and B(T).  This setting, or variants thereof, are quite

paths of the gamma process and the variance gamma processgommon in many integration problems arising in financial

recursively halfing the sampling horizon, conditional on pre-

viously generated values of the process. First, we clarify that
exact sampling of gamma-process paths is straightforward,
a fact that may be obscured by the discussion in Madan,
Carr, and Chang (1998), as we explain in Section 3. Our
sampling algorithms are similar in spirit and structure to

the Brownian bridge algorithm discussed above; both are
based on the premise that many integrals are of low effective
dimension, with the macro-effects corresponding to incre-

asset pricing, becaud®(T) represents (up to a monotone
transformation, e.g., the exponential function) the value of
an asset or, more generally, a risk factor, and such quantities
often capture a large part of the overall uncertainty in the
future value of the asset to be priced by the integration
algorithm.

The natural sampling algorithm is to sample the Brow-
nian increments along the given partition; but the assumed
low effective dimension of the integrand in the truncation

ments of the process over large time scales being dominant sense, with coordinates corresponding to the inpyis/4),

in the ANOVA variance decomposition. These algorithms

attempt to synergize with quasi-Monte Carlo techniques for
efficiency improvement. We compare the variance and effi-
ciency of ordinary Monte Carlo and quasi-Monte Carlo for

an example of financial option pricing under the variance
gamma model of Madan, Carr, and Chang (1998). We find
that our bridge sampling algorithms combined with QMC

methods effectively improve simulation efficiency by large

factors.

While finalizing this paper, we became aware of related
unpublished work by Ribeiro and Webber (2002), who have
recently proposed bridge-based sampling algorithms that
turn out to be identical to those described in our Figures 2
and 3. The sampling algorithm of Figure 4 seems new.
We also experiment with different types of QMC point sets
than Ribeiro and Webber (2002) and randomize our QMC
point sets in order to obtain unbiased estimators of both the
mean and variance (which these authors do not have).

The remainder of the paper is organized as follows.
Section 2 reviews Brownian bridge sampling. In Section 3,

B(T/2), B(3T/4), and B(T), means that QMC will be
very effective if instead we define input coordinates to cor-
respond to the crucial input8(T/4), B(T/2), B(3T/4),

and B(T), and then sample these inputs via the inverse
transform method. This can easily be achieved as follows.
We recall the standard property of Brownian motion that
for anyt > 0 and nonnegative time incrememd, Aty,

the conditional distribution oB(t + Aty) given B(t) and
B(t+At1+AL) isN(@B(t)+(1—a)B(t+ At +Aty, aAty),
wherea = Aty/(Aty + Atp). Moreover, sinceB(:) is a
Markov process, additionally conditioning on any portion
of the path befor¢ and aftert + At; + At> does not change
the conditional distribution. Based on this property, one
samples discretely paths of a Brownian motion, recursively
halfing the sampling horizon, conditional on previously gen-
erated values of the process, Thus, the Brownian path is
sampled in the ordeB(T), B(T/2), B(T/4), B(3T/4),...
Moskowitz and Caflisch (1996) combined this sampling
algorithm with using QMC points for the integration. As-
suming that all normal variates are generated by transforming

we introduce the gamma and variance gamma processes,a single (pseudo- or quasi-) uniform random number, the
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integral has low effective dimension and QMC is expected

to outperform MC. G0 =0;
h=27%T;
3 BRIDGE SAMPLING FOR GAMMA AND Fori =1to &
VARIANCE GAMMA PROCESSES GenerateQ ~ G(u2h/v, v/p):;

G(ih) = G((i — Dh) + Q;
We letG(a, B) denote the gamma distribution with density Nexti

_ a—1,—x/B Figure 1: Gamma Sequential Sampling (GSS) of a Process
f(X)=——x%""e , X>0, D : iy
BT () G(t; u, v) for a X-Point Equal-Length Partition d, T]
whereI is the usual gamma function, and we referato We observe that Madan, Carr, and Chang (1998) say

andg as the shape and scale parameters, respectively. The

gamma prpces{sG(t; Ko v) t = W'.th mean parameter of the continuous-time gamma process is best explained
u'and variance .parameter IS a contln'uous-tlme process by describing a simulation of the process,” and proceed to
with stationary, independent gamma increments such that describe the standard, general-purpose, but only approximate
for anyh > 0, method for generating paths of a Lévy process with infinite

2 Lévy measure, namely truncation of the Lévy measure near

Gt +hw,v) = Gt . v) ~ G /v, v/w). (2) zero (i.e., ignoring jumps below a certain small threshold)

and simulation from the appropriate compound Poisson
processes. We emphasize that in the case where the process
value needs to be observed only at fixed discrete points

Th i< the L& di in time, this approximate and cumbersome approach is
€ gamma process is the Levy process corresponding to unnecessary; itisimmediately clear from (2) that the process

the gamma distribution. For background on Lévy processes, ;. .ements can be simulated exactly via a gamma variate
including their existence, see Sato (1999). Some basic generator

facts about Lévy processes are: (a) they are in one-to-one

correspondence with infinitely divisible distributions; (b) the 3.1 Gamma Bridge Sampling

Lévy-Khintchine representation decomposes a Lévy process

into a sum of three parts: the first part is a deterministic

function of time, the second part is a stochastic process with

contlnuous_ compon_ent, namely a scaled Brownian motion, process over longer time scales, to the first coordinates. A

and the t.h.'rd part is a stocha_st|c process formed by the path of the process is sampled at the following time points, in

superposition of compound Poisson processes over a range, . jar of generationT, T/2, T/4, 3T /4, T8, 3T /8, 5T/8,

of possible jump sizes, and where the Poisson jump processesﬂ-/& ... 8T....,(2~1)8T. The algorithm is based on the

have rate functions that derive from the (possibly-infinite) observation that the conditional distributions ®ft: .. v)

Lévy measure. with support on the range of jump sizes. T0 4o available in closed form. Specifically, for a’hy; 0

lighten notation, we refer to the process@g) or simply and nonnegative time increments;, Aty, the conditional

G when the parameters and v are irrelevant or obvious  jicribution of G(t + Aty) given G(t) = yo and G(t +

from the context. Ati+At) = 218 yo+ (72— y0)Y, whereY is distributed
Suppose we wish to generate paths of a gamma process,s g at, /. Aty/v), and B denotes the beta distribution

between times zero anil for some givenT > 0. Clearly on (0,1). Moreover, because of the independent-increments

only a discrete-time skeleton of the process can be generatedproperty ofG(-), additionally conditioning on any portion of

on a computer, so we assume the go_gl is to generate valuesthe path before and/or aftett + Aty + At, does not change

of the process for a discrete-time partition(6f T), namely the conditional distribution. The conditional distributions

; e P k _ 2K
at the time V"’,‘l_ues, =10T, 1 ~ L....2%, where§ =2 . do not depend on the mean parametdy. only appears in
for some positive integet. (This can be generalized easily the unconditional distribution 0&(T)). As the time scale

to arbl_trary obs_ervaﬂon timess.) Perhaps th? most natural decreases, the beta parameters decrease, resulting eventually
sampling algorithm is to sample the processmcrementsalongin a bimodal density whose mass concentrates more on
the above partition, known to be independent, identically the extreme values O and 1. We name this conditional
distributed gamma variates. We term this natural approach sampling of the gamma proceg.;amma bridge samplingA

ignar;i?ue:selquential samplin(@SS). A pseudocode is given o0 qocode for gamma bridge sampling is given in Figure 2.

in their discussion of the gamma process, “the dynamics

By definition, the distribution of the increments depends on
the lengtth of the time increment but not on the timheNote
that the increment of lengtinhas meamh and varianceh.

We now describe a sampling algorithm that concentrates
the sampling of the macro-effects, i.e., increments of the
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G(0) =0;
GenerateG(T) ~ G(u2T /v, v/w);
Fore=1tok
Form=1to 21
i =2m-—1;
GenerateY ~ B(u?T/(v2%), u?T/(v2Y));
G({iT/25 =G((i —1T/2H
+ (G +1T/25 = G(( —1DT/2H)Y;
Next m
Next ¢

Figure 2: Gamma Bridge Sampling of a Proc€ss; i, v)
for a X-Point Equal-Length Partition dD, T]

3.2 The Variance Gamma Process and Bridge Sampling

Madan and Seneta (1990), Madan and Milne (1991), Madan,
Carr, and Chang (1998) studied option pricing for a model
where the asset log-return dynamics follow a continuous-
time process obtained as a subordinate to Brownian motion,
using a gamma process to modahdomized operational
time (Feller 1966) (the term “operational time” refers to
the time scale of “operations” relevant to the phenomenon
of study). We now introduce this model of asset returns,
named the/G processn Madan, Carr, and Chang (1998).

Let B = {B(t;0,0) : t > 0} be a Brownian motion
with drift parameteré and variance parameter. Let
G = {G(;1,v) : t > 0} be a unit-mean gamma process
(u = 1) independent of the proceBs The variance gamma
(VG) processX(t; 0, o, v) is obtained as a subordinate of the
Brownian motion proces8(t; 0, o) using the operational
time G(t; 1, v) (Feller 1966):

X(t;0,0,v) :=B(G(; 1,v),0,0). 3)
In simple terms, the VG process is obtained by subjecting
the Brownian motion to a random time change obeying a
gamma process.

In the interest of brevity, we proceed directly to the
specification of the asset price dynamics (under the VG
model) relevant to pricing, known assk-neutral asset
dynamics We refer to Madan, Carr, and Chang (1998) for
aspects of the VG model that are relevant to the financial
literature. Let{S(t) : t > 0} denote the risk-neutral asset
price process. Under the risk-neutral dynamics, the paths
of the asset price process obey:

S(t) = S(0) explrt + X(t; 6rN, OrRN, VRN) + wrNt},  (4)

wherer is the risk-free interest rate, the subscript “RN”

indicates that these are the risk-neutral parameters (as op-

posed to the statistical parameters), asgh = log(l —
322

ORNVRN — GI%NURN/Z)/I)RN. Under the VG model, option
prices can be expressed as expectations against paths of
the processS over some fixed horizon under the above
risk-neutral dynamics.

To the best of our knowledge, except for standard
European options, pricing formulas under the VG model
are not available in closed form. Hence, numerical or Monte
Carlo integration appear to be the only viable approaches;
and for the case of high-dimensional integrals arising in the
pricing of path-dependent options, Monte Carlo integration
is often the leading practical approach.

With such applications in mind, we describe two algo-
rithms for sampling paths of the asset price process (4) that
concentrate the sampling of the macro-effectsXadnd S)
to the first coordinates, where “macro-effects” are under-
stood to be the increments of these processes over longer
time scales. In analogy with Brownian bridge sampling and
gamma bridge sampling, both algorithms sample the VG
process at a time partition that becomes increasingly fine.
First, note that to simulate paths of the asset price dynamics,
it suffices to generate paths of the VG proc¥ss; 0, o, v)
and then transform these to paths®¥ia the transforma-
tion (4). For the first algorithm, namedgrownian-gamma
bridge sampling BGBS), we observe that the assumed in-
dependence of process@sand B implies that conditional
on any collection of increments of the gamma proc8éss
the increments of the Brownian proceBsare independent
normals. Thus, we may first sample incrementsof/ia
gamma bridge sampling, and then sample increments of
B(G(t)) by Brownian bridge sampling, conditional on the
correspondingG increments. This can be done in two
ways: (a) sampling first all increments & and then all
increments ofB; or (b) sampling them in alternance. The
pseudocode given in Figure 3 uses the second approach.
This method is in fact equivalent to the one sketched in
Section 4 of Ribeiro and Webber (2002).

Our second algorithm, namedbuble-gamma bridge
sampling(DGBS), depends crucially on an alternative rep-
resentation of the VG process, as the difference between
two independent gamma processes (Madan, Carr, and Chang
1998) as follows:

X(t;0,0,v) = yp(t; wp: vp) — ¥a(t; wn; vn),  (5)

where

(1/2),/62 4+ 202/v +6/2

Hp =
un = (1/2)4/02+202/v —6/2
2
vp = ((1/2),/92—1—202/11—1—9/2) v
2
Vn = ((1/2),/92—1—202/11—9/2) V.
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G(0) =0; X(0)=0; ¥p(0) = 0; ¥n(0) =0;
GenerateG(T) ~ G(u2T /v, v/u); Generateyp(T) ~ G(u3T /vp. vp/ 14p);
GenerateX (T) ~ N (0G(T), 02G(T)); Generateyn(T) ~ G(u2T /vn, vn/n);
Fore =1tok Fore =1tok
Form=1to 21 Form=1to 21
i =2m-1; i =2m-—1;
GenerateY ~ B(u?T/(v2%), uT/(v2%)); GenerateYp ~ B(u3T /vp2’, 15T /(vp2"));
G(iT/2)=G((i —1T/2H (T /25 = yp(( — DT/2
+[GWi +DT/2 — G((i —DT/2H]Y; + [y + DT /2 — yp(i — DT/29] Yp;
b=G((i +1T/2%) — G(T/2Y; GenerateYn ~ B(u2T /(vn2%), uT /(vn2%));
GenerateZ ~ N(0, bo2Y); (T /25 = yn((i — DT /25
XAT/25H =Y - X((i + 1T /29 + [yn(( + DT /2 — yn((i — DT/29] Yn;
+@Q-Y)-X(( =DT/2 + Z; XAT /2 = yp(T /2 = (T /29;
Next m Next m
Next ¢ Next ¢

Figure 3: Brownian-Gamma Bridge Sampling (BGBS) of Figure 4: Double Gamma Bridge Sampling (DGBS) of
a VG processX(t) = B(G(t; u,v),0,0) for a X-Point a VG ProcessX(t) = B(G(t; u, v), 6, o) for a ZX-Point

Equal-Length Partition of0, T] Equal-Length Partition of0, T]

In view of the above representation of the proceéssit Assume thatA; and § are gamma random variables with
is possible to concentrate the sampling of macro-effects of meansua andus and variancesa andvs, respectively.
paths ofX (and thus also of macro-effects of path&pfo the Many performance measures can be estimated by sim-

first sampling coordinates. Algorithm DGBS samples each ulating the system’s evolution over a fixed numiaeiof
of yp andyn by gamma bridge sampling, while interleaving  customers. For convenience of exposition, we take 2K
the sampling of the two processes, so that sampling occurs for some positive integek. Consider thepartial-sum pro-

in the following order: yp(T), yn(T), ¥p(T/2), ¥n(T/2), cesses(>/_;A :j=12..,dand{3)_;S:] =
Yo(T/8), yn(T/4), yp(3T/4), m(3T/4),... A pseudocode 1,2 ....d}. Observe that the joint distributions of the in-
Is given in Figure 4. terarrival time partial sumgy>/_ A : j = 1,2,...,d}

These sampling algorithms, combined with QMC meth-  coincide with the finite dimensional distributions of a

a simple numerical example in Section 4.2. {G(j; ma,va), | = 1,2,...,d}, and analogously for the
) ] ] ] service-time partial sums. Thus the gamma bridge sampling
3.3 Queueing Simulation with Gamma Increments algorithm immediately applies for sampling the partial sums,

_ _ o _ with the key feature that macro-effects are concentrated on
Recall our discussion motivating the effectiveness of Brow- the first sampling coordinates.

nian bridge sampling in the context of financial simulations. In preliminary experiments comparing the efficiency of

In the context of queueing, one could argue that effective simylations for estimating the average sojourn time of the
structuring of queueing simulations may bring efficiency im-  first d customers in a single queue using standard MC, QMC
provement by reducing the effective dimension in a similar yith gamma sequential sampling as in Figure 1, and QMC
way. One line of thought would be that large-scale ef- yjth gamma bridge sampling as in Figure 2, we found that
fects, measured by increments of the partial-sum processesgnc generally helps (this agrees with the results of Lemieux
of interarrival and service times over large—as opposed t0 gng ’Ecuyer 2000) but that using the gamma bridge is
small—blocks of successive customers, may contain a large not always better than gamma sequential sampling. The

fraction of the relevant uncertainty. explanation is that the interaction between customers that are
For a simple concrete illustration, consider a single- ¢jose to each other in time can be much more important, in

server queue with i.i.d. interarrival time& = {A : i = this example, than the interaction between customers that are

1,2,...} and iid. customer service time&s= {§ :i > far from each other (Lemieux and L'Ecuyer 2000). On the

1,2,...}, where the sequences and S are independent.  iher hand, one can certainly construct queueing examples
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where using the gamma bridge would bring significant
benefit. This issue is in need for more study.

4 NUMERICAL RESULTS
4.1 Experimental Setup

This section reports numerical results on an option pricing

lows (Hull 2000): The option holder receives at expiration
time T the payoff

d
1
Ca = max O,EJZ‘;S(tj)—K (6)

where S(t) is the asset price at timg d is the number

example. The simulations were made using the SSJ software of instants whereS(-) is sampledy; is the jth sampling

package (L'Ecuyer, Meliani, and Vaucher 2002). For the

QMC point sets, we used (a) the Korobov lattice rules

proposed in Table 1 of L'Ecuyer and Lemieux (2000b) (we

used the third value od in the table for each value of)

and (b) Sobol’ point sets with the same parameters as in
Bratley and Fox (1988).

The lattice rules were randomized by random shifts
modulo 1, as explained in L'Ecuyer and Lemieux (2000b),
whereas the digital nets of Sobol' were randomized by
the affine matrix scrambling in Definition 2.8 of Owen
(2003). For each QMC point set, we maaeindependent
replicates of the randomization, for a totalroh simulation
runs, wheren is the cardinality of the point set.

Forj =1,...,m, let X; be the average value of the
performance measure of interest over theuns of thejth
randomization. Thes&; are i.i.d. unbiased estimators of
the integral of interest, say, so we can use their sample
meanX and sample variancﬁmc to compute a confidence
interval for i in a standard way under the assumption that
the X; are also approximately normally distributed. For
comparison, we makenn (independent) simulation runs
with the MC method and compute the sample variance
S A confidence interval on theariance reduction factor
oénc/ohe (the variance of QMC over that of MC) can
be computed by using the well-known fact that under the
normality assumption,

(m— 1)mn%mcanz1C
m(mn— 1) s%cagmc

has the F distribution witlim, mn) degrees of freedom.

We define the efficiency improvement factomas
cqmcacfmc/[cmcaﬁm], where cqme and cme are the average
cost (CPU time) per simulation run for QMC and MC,
respectively. A confidence interval on this factor can also
be computed via the F distribution if we neglect noise in
the estimation otgmc andcme. This is what we shall do.

4.2 Asian Option Pricing with the VG Model
We consider pricing a simple example adian call option
under the variance gamma model for the asset price dy-

namics. The payoff depends on the arithmetic mean of the
underlying asset value at prespecified points in time, as fol-

324

time (here we assume thgt = jT/d for all j), and K

is a constant called thsetrike price of the option. The
option value, isu = e 'T E[Ca], where the expectation is
taken with respect to the risk-neutral asset price process
defined in (4). The goal is to estimate thisas efficiently

as possible, i.e., with the smallest variance for a given
computing budget, by simulation. This is an integration
problem ins = 2d dimensions.

We have implemented several QMC-based sampling
methods for the random variab®&,. BGBS(b) and DGBS
are the methods described in Figures 3 and 4. BGBS(a) is
the variant of BGBS where the values ofG are sampled
first (using gamma-bridge sampling) and thendhalues of
B are sampled via the Brownian bridge method. BGSS(a),
BGSS(b), and DGSS refer to versions of these three methods
where bridge sampling is replaced by sequential sampling
for both the gamma and Brownian processes. Finally, MC
means the standard MC method with sequential sampling
for both processes. All normal, gamma, and beta random
variables are generated by inversion, using numerical ap-
proximations of the inverse distribution functions. We used
the methods given in Kennedy and Gentle (1980) for the
normal distribution, DiDonato and Moris (1987) for the
gamma distribution, and the “inverse of the incomplete beta
integral” function from the Cephes Math Library (Moshier
2000) for the beta distribution. With these approximations
and our implementations, the inverse is roughly fifty times
more costly to compute for the beta than for the gamma, and
four times more costly for the gamma than for the normal.
This has to be considered when comparing estimator’s effi-
ciencies. We estimate the variance reduction and efficiency
improvement factors of each QMC method compared with
MC. In order to be able to use the F distribution for comput-
ing confidence intervals on the variance reduction factors,
all the methods were simulated independently of each other.
(A different approach would have taken common random
numbers across the methods and might have provided less
noisy estimators of the variance reduction factors.)

For the numerical illustration, we take parameter values
from Madan, Carr, and Chang (1998): lgefy = —0.1436,
orN = 012136, gy = 03, 1 =01, T =1, K =
101, andS(0) = 100. We madem = 100 independent
randomizations for each QMC method. Table 1 provides
estimates of the improvement factors of each of the six QMC
sampling method compared with MC, for three values of
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n, using the Korobov lattice rules and the Sobol’ point sets.
Each table entry gives a 98% confidence interval on the
variance reduction factor (top pair) and a 98% confidence
interval on the efficiency improvement factor (bottom pair).

We see a clear evidence of variance reduction and
efficiency improvement for QMC compared with MC, and
these improvements are more pronounced when QMC is
combined with bridge sampling. The Sobol’ point sets
perform better, with the bridge methods, than Korobov rules.
The DGBS method generally provides the best variance
reduction, but the efficiency improvement is often better
with BGBS, after the higher cost of DGBS (for generating
the beta random variables) has been factored out.
eventual availability of good approximations that are fast
to compute for the inverse beta distribution could definitely
make DGBS the method of choice.

Table 1: 98% Confidence Intervals on Variance
Reduction Factors (Above) and Efficiency Im-
provement Factors (Below) of Randomized QMC
Over MC, for the Asian Option Example with
d=16

Korobov Lattice Rules
n=4093| n=8191| n= 16381
a=1397 | a=7151| a=5693
BGSS(a) (5, 10) (6, 12) (10, 19)
(5, 10) (6, 12) (10, 19)
BGSS(b) (5, 10) (7, 15) (10, 21)
(5, 10) (7, 15) (10, 21)
DGSS (15, 30) (7, 15) (27, 54)
(7, 15) @4, 7 (14, 28)
BGBS(a)| (32, 65)| (34,68)| (65, 130)
(18,36)| (19,38 | (36, 72)
BGBS(b) | (16,32)| (45, 90)| (50, 100)
(9,18)| (25,50)| (27, 53)
DGBS (38, 76 )| (73, 145)| (87, 174)
(11, 21)| (20, 41) | (24, 49)

Sobol’' Nets

nN=4096| n=28192| n= 16384
BGSS(@)| (11, 22) (7, 15) (12, 24)
(11, 22) (7, 15) (12, 24)
BGSS(b) (13, 26) (8, 16) (29, 38)
(13, 26) (8, 16) (29, 38)
DGSS (27, 54) (31, 62) (40, 81)
(11, 22) | (16, 31)| (20, 41)
BGBS(a) | (85, 170)| (56, 111)| (95, 190)
(42, 85)| (28,56)| (47, 95)
BGBS(b) | (149, 298)| (175, 351)| (285, 570)
(84, 168) | (99, 198)| (76, 152)
DGBS (234, 468)| (359, 718)| (321, 642)
(65, 131) | (101, 201)| (90, 180)
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One can also observe that for Sobol’ point sets, BGBS(b)
is much better than BGBS(a), whereas for Korobov rules
these is no clear winner between these two sampling meth-
ods. The explanation is that in contrast to the Korobov
rules, the Sobol’ point sets have been designed to have
better uniformity over their first coordinates than over their
last ones, and the BGBS(b) sampling method exploits this
by transfering more of the variance to the first few random
variables (i.e., it achieves a lower effective dimension in
the truncation sense).

It should be pointed out that these variance reduction
factors also depend a lot on the choice of parameters for

The the QMC point sets (e.g., the value affor the Korobov

rules and the “direction numbers” for the Sobol’ point sets;
see L'Ecuyer and Lemieux 2002 or L'Ecuyer 2003 for an
explanation of these parameters). Changing the values of
a in Table 1, for example, may improve or degrade some
factors significantly. In general, larger valuesrothould
give larger reduction factors for QMC, but this is not totally
clear from the table because (1) of the noise in the variance
estimators and (2) for a given value nfand given type

of point set, the specific parameters selected here might be
significantly better or worse than other parameters for the
samen, for the particular integral considered here.

In other experiments (whose detailed results are not
given here), we found that changing the nhumbesf ob-
servation times while keeping all other parameters constant
seems to have no significant effect on the variance reduction
factor. On the other hand, increasing the expiration date
while keeping all other parameters constant tends to increase
the variance reduction (and efficiency improvement) factors
with the QMC methods.
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