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ABSTRACT

We consider a system with two types of traffic and two type
of agents. Outbound calls are served only by blend agen
whereas inbound calls can be served by either inboun
only or blend agents. Our objective is to allocate a numbe
of agents such that some service requirement is satisfie
We have taken two approaches in analyzing this staffin
problem: We developed a simulation model of the cal
center, which allows us to do a what-if analysis, as we
as continuous-time Markov chain (CTMC) queueing mod
els, which provide approximations of system performanc
measures. We describe the simulation model in this pape

1 INTRODUCTION

We consider a telephone call center with two types of traffic
inboundandoutbound, and two types of agents,inbound-
only and blend. The number of agents of each type can
vary from day to day and within each day. The inbound
calls arrive according to a Poisson process whose rate m
itself evolve as a stochastic process. When traffic is to
high, new inbound calls must wait in a queue. For inboun
traffic, we consider abandonment, i.e., some customers m
not stay in the queue once learning that they are put o
hold, or they may leave after spending some time waiting

When the inbound traffic is low, and some blend agent
are idle, an automatic dialer composes multiple outboun
calls in parallel (trying to reach potential customers, e.g
for marketing or direct sales), in order to increase th
productivity of the center.Mismatchesoccur when more
customers are reached by outbound calls than the numb
of idle agents. The outbound calls are served only by blen
agents, whereas inbound calls can be served by either typ
We are primarily interested in finding the number of agent
such that at leastp% of customers should have delay time
less thans seconds, for arbitraryp ands. Other performance
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measures of interest are agent utilization, abandonment rat
and rate of outbound calls.

We have taken two approaches in analyzing the staffing
problem: We developed a simulation model of the call cen-
ter and continuous-time Markov chain (CTMC) queueing
models. Each method has its own appeal: The simulatio
approach is highly flexible, e.g., it can be tailored to specific
details and is easy to modify. The simulation model also
allows us to do a what-if analysis and learn additional infor-
mation that may otherwise not be available, e.g., times tha
customers are willing to wait before abandoning. On the
other hand, the CTMC models are insightful, sometimes
faster computationally, and relatively easier to construc
than a simulation model. Moreover, a call center can be
naturally viewed as a queueing system, e.g., the simples
CTMC model for an inbound call center is aM/M/s queue-
ing model (seeGans, Koole, and Mandelbaum 2002and
Koole and Mandelbaum 2002for an overview of queueing
models in call center applications). In this paper we will only
describe our simulation model of call centers. Our CTMC
development can be found inDeslauriers et al. (2003).

This paper is organized as follows: Section2 discusses
some difficulties that we encountered in modelling the call
centers. We describe our data analysis in Section 3. Section
explains how we construct our simulation model and how it is
validated. Supposing that the simulation model reproduce
performance of a real call center, we explore how other
management policies affect the call center performance in
Section 5.

2 DIFFICULTIES ENCOUNTERED

Although the call center staffing problem poses many real
world issues that require us to make seemingly simplistic
assumptions, the resulting simulation model is quite good
at emulating the performance of a real call center (see
Section 5) while maintaining its parsimony. We describe
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the issues that we encountered in developing the call cente
simulation model in this section.

The types of data that are traditionally available at call
centers poses many challenges, one of which is due to th
aggregation of data over some period, typically 30 minutes
That is, for each half hour, we have the number of (inbound
call) arrivals, the sum of service times of the inbound calls
served, and similarly for the outbound calls, but not the
arrival times or service times of the individual calls (with
the exception on outbound calls in our case). The lack
of call-by-call information complicates the data analysis
because standard parameter estimation methods genera
do not apply. In addition, the stochastic nature of call
centers add difficulties to the data analysis, e.g., the arriva
rates varies from day to day and within each day.

It has been observed that the arrivals to a call
center are, in many cases, not realistically modelled
by a process with a deterministic time-varying arrival
rate (see, e.g.,Avramidis, Deslauriers, and L’Ecuyer 2003,
Jongbloed and Koole 2001andBrown et al. 2002). From
empirical study, call center arrivals are known to
have a variance that is considerably higher than im-
plied by Poisson arrival (Jongbloed and Koole 2001and
Deslauriers 2003) and strong positive association between
the arrivals in different time periods (Tanir and Booth 1999
andBrown et al. 2002).

Moreover, some relevant information is simply not
available. For example, in an ideal world, we would use
the distribution of time that a customer is willing to wait
before abandoning the queue (called thepatience time) to
model the abandonment process. Instead, what we have
the number of customers abandoning and a rough histogra
of distribution of the waiting times before they hang up. In
other words, we have a problem of highlycensoreddata; we
only observe the maximal patience times of those customer
who abandon, but we have no information about these time
for customers who are served.

Another piece of missing information is how the dialer
works (i.e., the algorithm it uses to activate outbound calls
and how many outbound calls it makes) for it is a proprietary
knowledge of a software vendor. We gather from Bell staff
that the dialer considers the number of idle agents an
some measures of the quality of service, e.g., the fractio
of inbound calls that waits for longer than some threshold
averaged over some previous time interval. However, we
do not know how the dialer actually uses this information.
Because the dialer is key to the call center performanc
in blend environment, the lack of knowledge on the dialer
makes it more difficult to validate our simulation model.
Specifically, when we compare the simulated performanc
measures to the empirical values, we cannot be sure
the discrepancies we observe are due to our modellin
assumptions or due to our lack of knowledge on the dialer
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Human aspects of call center operations also complicat
model validation. We observe that the empirical quality of
service (QoS, defined as the fraction of inbound customer
whose waiting time is less than 20 seconds) is better tha
the target (80%) most of the time. From discussions with
Bell staff, we speculate that this is partly because call cente
managers respond “too quickly" when they observe short
term poor QoS by manipulating the dialer aggressivenes
parameter that controls how often the dialer makes outboun
calls and how many calls it attempts at a time. We do no
know how managers control the dialer in real time or if they
do so in a systematic fashion. In essence, the manage
control of a dialer coupled with the algorithms inside the
dialer constitute a black box which we regard as the diale
in our model.

Another human factor comes from the call center agent
themselves. The time that they are available to take a ca
is very likely to be less than the time for which they are
scheduled, because of coffee breaks, trips to restroom
absenteeism, etc. At this moment, due to the lack o
information and for the sake of model simplicity, these
factors are taken into account globally by reducing the
number of agents by some fixed percentage (see Section

3 INPUT MODELLING

The call center operates from 8:00 to 20:30, i.e., 8:30p.m
Agents receive only inbound calls before 14:00. After
that, some of the agents are in blend mode, and ther
are also outbound calls. Because all the available data
aggregated asaveragesover half-hour periods, it is natural
to assume that the model parameters (e.g., arrival rat
service time distributions) are constant over each half hou
and we proceed as such. That is, the planning horizon
partitioned into half-hour time periods; period 1 is 8.00-
8.30, period 2 is 8.30-9.00, and so on. We experimen
with the empirical data from Bell Canada to find the fitting
distribution for each process, but we discuss only the arriva
and the service processes in this paper (seeDeslauriers 2003
for additional details on the model). For those interested in
data analysis for call centers,Brown et al. (2002)offer an
extensive study of call-by-call data as well as investigation
of how well conventional queueing models perform in such
cases (inbound-only call centers).

3.1 Arrival Processes

After verifying that a Poisson process with adeterministic
time-varying arrival rate cannot realistically model the call
center arrivals, we consider a Poisson process withstochastic
rate. This choice is partially supported by the empirical
evidence inBrown et al. (2002)where they concludes that
the arrival processes of call center are well modelled as a
inhomogeneous Poisson process. LetXi be the number of
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inbound call arrivals in half houri, with the probability
mass function

Pr{Xi = x} = e−3i 3
x
i

x! . (1)

Jongbloed and Koole (2001)model3i as a gamma random
variable with density

gi(λ) = β
−αi
i

0(αi)
λαi−1e−λ/βi , (2)

for λ > 0, where0(a) = ∫∞0 ta−1e−t dt . They assume that
the3i ’s are mutually independent. This model, which we
call thePoisson-gammaarrival process model, is appealing
because it is flexible and mathematically tractable; unde
it, the number of arrivals in a given time interval has the
negative binomial distribution.

To estimate the parameters in (2), we use the maximum
likelihood estimation (MLE) method where we estimate the
parameters of the negative binomial distribution. Letr be
the number of days in our data,d be the total number of
half-hour periods in a day (in our case, it is 25),Xi,j be
the number of arrivals in half houri of day j ,

X̄i =
r∑
j=1

Xi,j /r

Mi = max
1≤j≤r Xi,j

fi(k) =
r∑
j=1

I{Xi,j ≥ k},

where I{ε} is 1 if ε is true and 0 otherwise. The log-
likelihood function of observing{Xi,j ,1≤ i ≤ d,1≤ j ≤
r} under (1)–(2) is

φ̃i (αi) =
Mi∑
k=1

fi(k) ln(αi + k − 1)

+ rαi ln(αi/(αi + X̄i))
+ rX̄i ln(X̄i/(αi + X̄i)).

We will denote an estimator of a parametera as â. The
desiredα̂i is the the value at which̃φi(αi) is maximized
with respect toαi , i.e., the root of the first derivative
of φ̃i (αi) with respect toαi . The parameter̂βi can be
obtained by first solving for the negative binomial paramete
ϕ̂i = α̂i/(̂αi + X̄i) then β̂i is simply (1− ϕ̂i )/ϕ̂i .

We test the goodness of fit via the Kolmogorov-Smirnov
(KS) test statistic

Di
def= sup

x

∣∣F̃i(x)− F̂i(x)∣∣ , (3)
r

r

whereF̃i(x) is the empirical distribution and̂Fi(x) is the
estimated distribution ofXi for half hour i. Because the
empirical data are already used for estimating the distr
bution parameters, the distribution ofDi under the null
hypothesis is complicated and unknown. We estimate it v
a bootstrapping technique (Ross 1997) as follows. Using
the parameterized distributionF

α̂i ,β̂i
, we simulate a new

sample path for the same length of time as the empiric
data. From this realization, we again estimate the distrib
tion parameters in (2) via the MLE method so that we can
compute the bootstrappedDi∗ via (3). By repeating this
process, say,B, times we can estimate thep-value—the
probability that we observeDi conditional on the hypothe-
sis that the parameterized distribution is the true underlyin
distribution—for half houri as:

pi ≈ 1

B

B∑
k=1

I{D∗i,k ≥ Di}.

A drawback of the Poisson-gamma process is th
the number of arrivals in one time period is inde-
pendent of those in all other periods. This assump
tion rarely holds in practice (Tanir and Booth 1999).
Avramidis, Deslauriers, and L’Ecuyer (2003)model the3i
in (1) asdependentrandom variables where

3i = Wλi, (4)

the λi ’s are constants to be estimated, andW is a gamma
random variable with parameters(α′, β ′) and E[W ] = 1.
(See Brown et al. 2002for a Poisson model with auto-
regressive rate parameters across successive days.)
idea is to let the random factorW account for the day-to-
day traffic variation. The main advantages of this mode
are (a) mathematical tractability: under (1) and (4), the
distribution ofXi is negative multinomial distribution; and
(b) the possibility of time dependence, which improve
modelling realism, e.g., a time period with a heavy inboun
traffic would likely be followed by a high call volume in the
next time period (however, the random variableW induces
a positive correlation between the number of arrivals i
successive half hours). In addition, the arrival process (
has fewer parameters than (2), i.e., 26 vs. 50 paramete
for 25 time periods under study.

We estimate parameters in (4) via MLE. Let

ol =
r∑
j=1

I
{

d∑
i=1

Xi,j ≥ l
}

q = max
1≤j≤r

d∑
i=1

Xi,j ,
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and1 be a constant that is independent to the parameters w
want to estimate. For E[W ] = 1, we have thatβ ′ = 1/α′,
and the log likelihood function is:

φ̃(α′, λ1, . . . , λd) =
q∑
l=1

ol log
(
α′ + l − 1

)
+ 1+ rα′ log

(
α′∑d

k=1 λk + α′
)

+
r∑
j=1

(
d∑
i=1

Xi,j log

(
λi∑d

k=1 λk + α′
))

.

We get a better goodness of fit when we assume tha
the arrival process is time-of-the-day and day-of-the-week
dependent. Table 1 shows the estimated parameters f
Tuesdays, where the number of arrivals is per half hour. We
observe the arrival rates that are time-of-the-day dependen
We will use model (4) in our simulation model.

Table 1: Parameter Estimates for the Pois-
son Arrival Process with a Gamma-
Distributed Correlation Factor for Tuesday

Value Value
α̂′ 36.0 λ̂13 57.3
β̂ ′ 0.0278 λ̂14 54.8
λ̂1 26.5 λ̂15 57.8
λ̂2 38.4 λ̂16 58.8
λ̂3 52.4 λ̂17 60.1
λ̂4 61.1 λ̂18 54.3
λ̂5 63.8 λ̂19 46.3
λ̂6 62.2 λ̂20 40.5
λ̂7 66.2 λ̂21 35.0
λ̂8 59.8 λ̂22 31.2
λ̂9 58.8 λ̂23 27.1
λ̂10 57.4 λ̂24 24.7
λ̂11 58.0 λ̂25 17.9
λ̂12 57.8

3.2 Service Time Distributions

We tried to fit an inbound service timeS1 as an exponential
random variable with rates that are piecewise-constant ove
each half-hour. Recall that we only have sum of service
times and not call-by-call service times. LetX′i,j be the
number of inbound calls served in half-houri on day j ,
and Yi,j is the sum of service times of these calls. The
maximum likelihood estimator of the service rate for half
hour i is

µ̂1,i =
∑r
j=1X

′
i,j∑r

j=1 Yi,j
.

We assess the goodness of fit by the bootstrapping K
test described in Section 3.1. Because we do not have ind
e

t

or

t.

r
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vidual service times, we use the property of the exponentia
distribution that, forZ1, Z2, . . . , Zα i.i.d. exponential ran-
dom variables with meanβ,

∑α
i=1Zi is a gamma random

variable with parametersα andβ. We do the bootstrapping
KS test on thesum of service times. We find that the
exponential distribution does not provide a satisfactory fit
to our data. Note that we simply test if the sum of the
service times, conditional on the number of calls served
follows a gamma distribution. This test is weaker than
testing if individual service times are exponential, yet the
null hypothesis is rejected by a wide margin (the estimated
p-values are≤ 0.001 for 11 of the 25 half-hour periods),
so it seems that the service times are far from exponentia

As suggested inBrown et al. (2002), we have experi-
mented with the lognormal distribution whose density is

1

x
√

2πσ 2
exp
−(ln x − µ)2

2σ 2 for x > 0. (5)

We use the method of moments to get the estimators. Le
the kth moment ofS1 be mk = E(Sk1), and the average
inbound service time during half houri be Ȳi . The first
two moments are simply

µ = 2 lnm1− 1

2
lnm2, σ

2 = lnm2− 2 lnm1, (6)

and them1 estimate is

m̂1 =
∑d
k=1X

′
kȲk∑d

k=1X
′
k

. (7)

We obtainm2 via the relationshipm2 = Var(S1)+m2
1, and

the unbiased estimator of Var(S1) (seeDeslauriers 2003for
the proof):

V̂ar(S1)
2 = 1

d − 1

d∑
k=1

X′k(Ȳk − m̂1)
2. (8)

For S1 in seconds, we get̂µ = 5.874 andσ̂ 2 = 0.948 in
(5).

Another distribution we have explored is the gamma.
The method of moments yields the gamma parameter est
mates in Equation (2) as:

β̂ = V̂ar(S1)
2

m̂1
and α̂ = m̂2

1

V̂ar(S1)2

We considered the case where the service times are time
of-the-day independent and dependent, and we got a bett
fit with the latter. Table 2 shows the parameter estimate
and its bootstrappedp-values, where the service times are
in seconds. We decided to use the gamma distribution in
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our simulation model in Section 4 because it was easie
to test the goodness of fit for this distribution than for the
lognormal, and the fit was reasonably good.

Table 2: Estimated Parameters of Service Times of Inboun
Calls Under the Gamma Model

i α̂i β̂i pi i α̂i β̂i pi
1 1.374 357.4 0.55 14 0.702 838.4 0.34
2 0.924 608.9 0.78 15 0.782 727.9 0.89
3 0.956 634.1 0.50 16 0.776 725.2 0.73
4 0.807 750.5 0.65 17 0.821 678.3 0.93
5 0.735 811.3 0.21 18 0.565 992.3 0.76
6 0.706 843.6 0.61 19 0.583 970.4 0.73
7 0.700 888.9 0.60 20 0.583 917.0 0.66
8 0.533 1126.2 0.58 21 0.496 1080.2 0.16
9 0.664 863.9 0.37 22 0.487 1089.0 0.44
10 0.740 770.0 0.89 23 0.506 1021.4 0.35
11 0.465 1218.0 0.38 24 0.536 944.1 0.79
12 0.615 935.0 0.93 25 0.505 986.7 0.34
13 0.697 844.9 0.56

Unlike inbound service times, we do have call-by-call
outbound service times. We first explore modelling the out
bound service times with parameterized distributions such a
exponential, gamma and lognormal. The lognormal appea
to be a good choice if we assume that the outbound servic
times are half-hour dependent. Nevertheless, because w
have a large amount of data, the KS goodness-of-fit te
rejects all the distributions we tried. In the simulation, we
generate the service times with a density obtained via
kernel density estimation method, using the UNURAND
package (Leydold and Hörmann 2002).

4 OTHER ASPECTS OF THE SIMULATION
MODEL

In our simulation model of the call center, there areni,1
identical inbound agents andni,2 identical blend agents
during periodi. These integers are parameters of the mode
There is a single FIFO waiting queue for inbound calls
A customer who is not served immediately hangs up with
probability 0.005; otherwise, he joins the queue from which
he will abandon if experiencing a waiting time greater than
his patience time. We model this patience time as an
exponential random variable with mean 1/ηi during half
hour i.

Our dialer model tries to emulate the real dialer in tha
the decision on when and how many outbound calls to mak
is based on the current state of the system. When the servi
of a customer ends, if the number of idle blend agents i
N2, the dialer makes outbound calls if all of the following
three conditions are satisfied: (a)N2 > 1; (b) the number
of busy agents (of any type) is at mostni,1+ ni,2− 4; and
(c) more than 75% of the inbound calls that arrive over the
last 10 minutes wait for less than 20 seconds. The numb
r
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e
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of calls composed is 2N2 if the percentage of mismatches
averaged over the last 15 minutes does not exceed 8% of t
total outbound calls attempted; otherwise, the number o
outbound calls composed isN2. We do not claim that this
heuristic is a good control policy for the dialer. We merely
want to reproduce what we have observed in the empirica
data and learned by talking to the call center managers.

Each outbound call successfully reaches a custome
with probabilityκi during half houri. The answering time
for an outbound call, defined as the time required by the
dialer to either reach the customer or recognize that th
attempt is not successful, is exponentially distributed with
mean 2 seconds.

Under the arrival process and service time distributions
described in Section 3 and the parameter values in Table
we have validated our simulation model by comparing the
simulation results to the empirical data collected form the
center. Using the average number of agents from the empi
ical data, we noticed that our QoS was higher and the age
occupation fraction (defined as the ratio of times agents ar
busy to the total scheduled times) lower than in the data. W
think that this is because our agents are too “efficient,” in a
sense that they are never absent or take a break. We we
able to obtain results much closer to the empirical data b
assuming that the inbound agents are available only 90% o
time and the blend agents are available only 85% of time
(To implement this, we simply multiplied the number of
agents of each type by the appropriate percentage round
to the next integer. The numbers given in Table 3 arebefore
this reduction).

In Section 3, we saw that the arrival rates are day
of-the-week dependent, and so is the number of agent
Thus, we simulate each day of the week separately. Table
shows the simulation results for Tuesdays. The half width
of the 95% confidence intervals are obtained by assumin
that the simulation outputs are i.i.d. normally distributed.
Here and in all other forthcoming tables,ε denotes a value
less than 0.1. For most performance measures, there is
significant difference between the results of the simulation
and the empirical data. The number of abandoned calls i
the simulation could better match what we observe in the
empirical data had we have better information on custome
patience time.

We have developed a simulation tool in C for simulating
our models of call centers. The software has a modular de
sign, which is practical in that it enables users to understan
the structure and relationships between the various aspec
of the model without going into much detail. In addition,
it allows stability in the general structure of the simulation
model as it evolves; the modification of certain details is
done inside the corresponding module while leaving othe
modules unchanged.

The simulation programs are fast. To give an idea, i
takes approximately 12 minutes of CPU time on a 2MHz
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Table 3: Input Parameters of the Simulation Model for Tuesdays

Period Start End Out. Mean # in. # blend
i time time success patience time agents agents

(hr) (hr) prob. κi 1/ηi (sec) n1 n2
1 8.0 8.5 0 400 11.4 0
2 8.5 9.0 0 400 18.6 0
3 9.0 9.5 0 400 24.3 0
4 9.5 10.0 0 700 27.9 0
5 10.0 10.5 0 700 28.1 0
6 10.5 11.0 0 600 28.1 0
7 11.0 11.5 0 600 27.7 0
8 11.5 12.0 0 600 27.8 0
9 12.0 12.5 0 600 25.8 0
10 12.5 13.0 0 600 25.9 0
11 13.0 13.5 0 500 29.0 0
12 13.5 14.0 0 500 28.9 0
13 14.0 14.5 0.27 500 26.6 6.1
14 14.5 15.0 0.27 500 25.0 14.1
15 15.0 15.5 0.28 500 25.6 19.5
16 15.5 16.0 0.29 500 26.5 21.7
17 16.0 16.5 0.29 500 24.8 20.2
18 16.5 17.0 0.30 500 21.4 18.6
19 17.0 17.5 0.33 500 19.6 14.1
20 17.5 18.0 0.37 500 9.9 21.3
21 18.0 18.5 0.40 500 4.1 21.2
22 18.5 19.0 0.38 500 3.2 20.6
23 19.0 19.5 0.41 500 2.8 19.8
24 19.5 20.0 0.41 100 3.3 21.9
25 20.0 20.5 0.41 50 3.2 20.8
f
.
e
a
a

e

e

y

s

y
r-
Table 4: Comparison of Daily Performance Measures
Averaged from Empirical Data and Those Obtained by
Simulation of 100,000 Days

Performance Tuesday
measure Simulated Empirical
QoS (%) 88.3± ε 87.9± 2.4

Inbound calls arrived 1230.9± 1.3 1228.1± 67.1
Abandoned calls 26.9± 0.2 28.1± 4.8
Outbound calls

attempted 1952.9± 1.6 1783.7± 218.1
Outbound calls

served 601.7± 0.5 565.3± 69.6
Mismatches 44.4± 0.1 38.5± 6.2

Agent occupation (%) 71.1± ε 71.7± 2.8

Athlon-XP processor running the RedHat Linux 8 operating
system to simulate 100,000 operating days of the call cente

5 NUMERICAL EXPERIMENTS

The goal of this section is to provide some examples o
what-if analysis that the simulation model allows us to do
For this purpose, we assume that the simulation mod
described in Section 4 replicates the performance of a re
call center, and we use it to benchmark the changes th
we make.
s

r.

l
l
t

5.1 Improving the Dialer’s Operation

The policy of the dialer used in our model (and in the
call center) attempts at maintaining the QoS above 80%
every day, and perhaps every hour, by basing its decision
on the QoS and number of mismatches observed over th
past 10 minutes. It would certainly be less restrictive to
respect the QoS requirement only over the long term (say, on
month or one year) rather than in the short term. Simulation
experiments can give us an idea of how much we can gain b
changing the policy in that direction, i.e., adopting a policy
that avoids looking at the QoS over the past few minutes or
hours and bases its decision only on the current system’
state. Additional motivation for looking at this came from the
observation that call center managers may have a tendenc
to modify the dialer’s aggressiveness parameters and ove
react when they see poor QoS in the last few minutes. This
type of behavior degrades the performance of the system
in the long run.

To illustrate this, we made simulation experiments with
the following simple dialing rule: at the end of a service,
if N2 blend agents are idle, the system dials round(τN2)

numbers in parallel for some fixed constantτ , where “round”
means rounding to the nearest integer.

Table 5 gives the results forτ = 1.2, 1.4, 1.6, and 2.0.
We see that the volume of outbound calls completed increase
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significantly, and the agent occupation increases slightly
compared with the original rule described in Section 4 (see
Table 4 under columnSimulated). Of course, these values
also increase withτ . The QoS decreases slightly, but still
remains well above the 80% limit, even forτ = 2. The
number of abandonments is larger than with the original rule
and increases slowly withτ . The number of mismatches,
on the other hand, increases very rapidly withτ . It is
smaller than with the original rule forτ ≤ 1.4 and larger
for τ ≥ 1.6. (Note that withτ = 1, there would be no
mismatch.) The appropriate choice ofτ would depend on
how the call center managers value the increases/decreases
these different performance measures. For instance, we s
that the policy withτ = 1.6 achieves a much larger volume
of outbound calls (around 11% increase) than the origina
rule. On the other hand, there are more abandonments an
mismatches. It should be left to the managers to decide if th
value of the increased volume of outbound calls outweights
the “cost” of these additional abandonments and slight QoS
decrease.

Table 5: Daily Performance Measures Obtained from the
Simulation with a New Dialing Heuristic

Performance τ Half
measures 1.2 1.4 1.6 2.0 width
QoS (%) 86.0 85.4 84.5 84.1 ε

Abandonments 36.1 38.2 41.6 42.8 0.3
Outbound
calls served 639.0 652.6 669.5 677.0 0.4
Mismatches 2.2 15.3 75.0 98.8 0.1
Agent
occup. (%) 72.0 72.3 72.8 73.0 ε

More refined stationary rules could also be considered
and could certainly improve on the simple rules in Table 5.
Such rules could take into account the number of idle
agents of each type and perhaps the current arrival rateλi .
Then, one can define an optimization problem by imposing
constraints on some of the long-run performance measure
and incorporating the others into the objective function. The
decision variables of this problem would be the parameter
of the dialing rule (for the above simple rule, it isτ ). The
optimization problem could be solved via optimization-by-
simulation methodology.

5.2 Sensitivity of the Performance Measures to the
Staffing Level

We now look at how the performance measures are affecte
by a change in the staffing level. From the simulation
experiment, we observe that the QoS is higher than wha
is required (88.3% vs 80%). The simulation model allows
us to assess the call center performance if we lower th
staffing level.
in
e

d

Table 6 shows the performance measures when we
decrease the number of agents by 5%. The QoS is stil
comfortably above the requirement, but the number of out-
bound calls served decreases. These results enable the c
center managers to evaluate if the saving of 5% reduction
in the number of agents is enough to compensate the loss o
revenue resulting from fewer outbound calls and the loss o
customer satisfaction as manifested by the increase in th
number of abandoned calls. (One possible explanation fo
the decrease in agent occupancy is that when there are few
agents, the dialer is triggered to make outbound calls les
frequently as the threshold condition is harder to satisfy.)

Table 6: Daily Performance Measures Obtained
from the Simulation with 5% Fewer Agents

Performance measures Tuesday
QoS (%) 85.4± ε (−2.9)
Outbound calls served 540.4± 0.5 (−61.3)
Abandoned calls 34.6± 0.3 (+7.7)
Mismatches 39.3± 0.1 (−5.1)
Agent occupation (%) 68.8± ε (−2.3)

5.3 Sensitivity of the Performance Measures to
the Distributions of Stochastic Processes

In the next experiment, we modify the assumptions of our
simulation model by changing the distributions of the arrival
process and the service times of inbound and outbound call
to resemble those of a M/M/s queueing model which is often
used to model call centers (Koole and Mandelbaum 2002).
As we previously mentioned, we have also developed CTMC
models in parallel to the simulation model, so we are curious
to see how the change in the input distributions would affect
the call center performance.

We consider the Poisson arrival process with the deter-
ministic time-of-the-day dependent arrival rates (i.e.,W = 1
in (4)) and exponentially distributed service times (for in-
bound and outbound calls, with different distribution param-
eters). Note that these distributions have the same mean
as their corresponding counterparts that we have chosen fo
our original simulation model.

Table 7 shows a significant increase in the QoS of
the simulation under the new set of distributions compared
to the original simulation model. This is not surprising,
because assuming deterministic arrival rates reduces th
traffic variability. This reduces congestion in the system and
improves the QoS. We also observe a significant decrease i
the in the volume of outbound calls. Our experiment shows
that simply using the assumptions of a M/M/s queueing
model can give significant error in performance measures
estimates. The significance of these errors depends of cours
on the other sources of error in the model (e.g., amoun
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and reliability of the data) and also on what the manage
find acceptable.

Table 7: Daily Performance Measures Obtained
from the Simulation Where the Arrival Process is
Poisson with Deterministic Rates and Exponential
Service Times

Performance measures Tuesday
QoS (%) 91.7±ε (+3.4)
Outbound calls served 572.0± 0.7 (−29.7)
Abandoned calls 16.5± 0.2 (−10.4)
Mismatches 42.2±0.1 (−2.2)
Agent occupation (%) 70.2±ε (−0.9)
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