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ABSTRACT

Broadie and Glasserman proposed a simulation-bas
method they namedstochastic meshfor pricing high-
dimensional American options. Based on simulated state
of the assets underlying the option at each exercise o
portunity, the method produces an estimator of the optio
value at each sampled state. Under the mild assumption
the finiteness of certain moments, we derive an asymptot
upper bound on the probability of error of the mesh esti
mator, where both the error size and the probability boun
vanish as the sample size increases. We include the e
pirical performance for the test problems used by Broadi
and Glasserman in a recent unpublished manuscript. W
find that the mesh estimator has large bias that decays ve
slowly with the sample size, suggesting that in applica
tions it will most likely be necessary to employ bias and/o
variance reduction techniques.

1 INTRODUCTION

In the financial markets, sophisticated, complex products a
continuously offered and traded. There are many financi
products whose values depend on more than one underlyi
asset. Examples include basket options (options on the a
erage of several underlying assets), out-performance optio
(options on the maximum of several assets), spread optio
(options on the difference between two assets), and qua
tos (options whose payoff is adjusted by some stochast
variable, typically an exchange rate). Even when there is
single underlying asset, there is trend towards models wit
multiple stochastic factors (sources of uncertainty), e.g
single-asset model with stochastic volatility. In addition,
multi-factor models are gaining more acceptance and us
for modeling interest rates, where models with two to fou
factors are common and models with up to ten factors ar
being tested (Broadie and Glasserman 1997a). As compu
d
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ing power is steadily increasing, multi-factor option-pricing
models are likely to become more prevalent.

Pricing and hedging options (European or American
using multi-factor models is a difficult task. Especially
for American options, which allow early exercise, ana
lytical formulas for pricing are rarely available. Various
deterministic numerical techniques are used, for examp
the numerical solution of an appropriate partial differen
tial equation. However, such methods require work th
grows exponentially in the number of state variables. Th
work requirement renders these methods ineffective wh
the state space dimension is higher than three or four.

Monte Carlo simulation techniques are conceptual
simple, yet powerful in addressing option pricing problem
of great complexity, whether the complexity arises from
the stochastic process driving the assets, the structure
the payoff (path-dependent), or the early exercise featur
(American). Until recently, the prevailing opinion was tha
American options could not be handled using Monte Car
simulation. Recent developments, however, have start
to pave the way for estimating American option prices vi
Monte Carlo methods.

Barraquand and Martineau (1995) proposed an alg
rithm that only approximately solves the American optio
pricing problem. They partition the state space of stocha
tic factors into a tractable number of cells and compute a
approximately optimal exercise policy that is constant ov
each cell. Although this method is fast, it yields an estima
that does not necessarily converge to the true price as w
increases. Broadie and Glasserman (1997b) were the fi
to develop a simulation procedure that yields provably co
vergent estimates for American option prices. Their metho
is based on a simulated tree of the state variables. The m
drawback of their method is that the work is exponential i
the number of exercise opportunities. For a comprehens
review of the literature in Monte Carlo methods for Pricing
American Options, see Broadie and Glasserman (1997a
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An important method developed recently for valuing
American options via simulation is the stochastic mes
method (Broadie and Glasserman 1997c). The stochas
mesh method begins by generating a numberb of randomly
sampled states of the stochastic factors underlying the opti
at each exercise opportunity. Based on this sample, t
mesh estimatorof the option value at each sampled state i
computed (a full description is deferred until Section 2.2
The authors also propose apath estimator, obtained by
simulating paths of the stochastic factors underlying th
options and estimating an approximate exercise policy bas
on the mesh values; see Broadie and Glasserman (199
for more details. It is shown that the mesh and pat
estimators are biased high and low, respectively. In additio
under certain technical assumptions, it is shown that bo
estimators converge (in norm) to the true option value a
the sample size (the number of sampled states per stageb

goes to infinity.
In this paper we derive an asymptotic upper boun

on the probability of error of the mesh estimator with
respect tob. Both the error size and the upper bound o
the probability of error are functions ofb that vanish as
b →∞. Our assumptions are mild–namely the finitenes
of certain moments. We also present empirical results o
the estimator’s behavior on the test problems in Broad
and Glasserman (1997c).

This paper is organized as follows. Section 2 contain
brief background on the problem of pricingAmerican option
and a description of the stochastic mesh method. Section
contains our main theoretical result, namely an asympto
bound on the probability of error of the mesh estimator wit
respect to the numberb of states sampled at each stage
In Section 4 we present computational results on the te
problems in Broadie and Glasserman (1997c) and in Secti
5 we offer conclusions.

2 BACKGROUND

2.1 American Option Pricing

Let St denote the vector of stochastic factors underlying th
option, modeled as a Markov process onRd with discrete-
time parametert = 0,1,2, ..., T . The argumentt indexes
the set of times when the option is exerciseable, also call
exercise opportunitiesor simplystages. Let h(t, x) denote
the payoff to the option holder from exercise at timet in
statex, discounted to time 0 with the possibly stochasti
discount factor recorded inx. This view of h(t, x) as
the discounted-to-time-0 payoff is adopted to simplify th
notation and does not reduce the generality of the metho
h
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By the dynamic programming principle, the option
value can be written as follows:

q(t, x) =
{
h(t, x) t = T , all x
max{h(t, x), c(t, x)} 0 ≤ t ≤ T − 1, all x

where

c(t, x) = E[q(t + 1, St+1)|St = x] (1)

is called thecontinuation valueat (t, x), equal to the value
of the option (discounted to time 0) when it is not exercised
at (time, state) pair(t, x). It is well-known from arbitrage
pricing theory that the arbitrage-free price of the option is
obtained when the conditional expectation in (1) is taken
with respect to the risk-neutral measure, defined as the
measure that makes the value of any tradeable security,
discounted to time 0, a martingale. For a rigorous treatment
of arbitrage pricing theory, see Duffie (1996) and Harrison
and Pliska (1981); for an excellent and mathematically
lighter treatment, see Baxter and Rennie (1996). Given
the known state ofS0 at time 0, sayx0, the option-pricing
problem is to computeq(0, x0).

2.2 The Stochastic Mesh Method

In reviewing the method, we follow Broadie and Glasserman
(1997c). The mesh method generates a stochasticmeshof
sample states{Sjt }, j = 1,2, ..., b for eacht = 1, ..., T . For
notational convenience, we defineb nonrandom mesh points
at stage 0,Sj0 = x0, j = 1,2, ..., b. For t = 1,2, ..., T ,
let gt (·) denote the probability density from which the
points {Sjt }bj=1 are sampled (to be specified later), and
let ft (x, ·) denote the conditional risk-neutral density of
St+1 given St = x. (We assume throughout the paper the
existence of such densities.) LetE = {0,1, . . . , T − 1}
denote the index set ofearly-exercise opportunitiesand let
I = {1,2, . . . , b} denote the index set of sampled points per
stage. The Broadie-Glasserman mesh estimator is calculated
as a backward recursion fort = T , T − 1, ...,0 :

q̂H (T , S
j
T ) =

{
h(T , S

j
T ) j ∈ I

max{h(t, Sjt ), ĉ(t, Sjt )} j ∈ I, t ∈ E

where the estimate of the continuation value functionĉ(t, x)

is

ĉ(t, x) :=
b∑
j=1

q̂H (t + 1, Sjt+1)ft (x, S
j
t+1)

gt+1(S
j
t+1)

. (2)

Note that the pointSjt+1 is weighed by the likelihood ratio

ft (x, S
j
t+1)/gt+1(S

j
t+1).

In Broadie and Glasserman (1997c), it is argued that
the choice of sampling densitiesgt+1(·) is crucial to the
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success of the method; and the choice recommended by
authors is as follows. We simulate independentlyb paths
of St starting fromx0 at time 0 and letSjt denote the state
of the j -th path at timet; and then we "forget" the path to
which a point belongs. This is called by the authors th
stratified implementation. For anyt, j , we call the ordered
pair (Sjt , S

j
t+1) a parentandchild, respectively.

We clarify some properties of the stratified imple
mentation. Letπ be a random permutation of the in-
tegers in{1,2, ..., b} chosen with equal probability from
all possible such permutations, and letFt be theσ -field
Ft = σ(S1

t , S
2
t , ..., S

b
t ). Then

Conditional onFt ,
{Sπ(1)t+1 , S

π(2)
t+1 , ..., S

π(b)
t+1 }

i.d.∼ gt+1(·) := 1
b

∑b
i=1 ft (S

i
t , ·)

(3)

where
i.d.∼ means "are identically distributed with density

...". Note that the densitygt+1(·) is defined conditionally
onFt . Also note that{Sπ(1)t+1 ,Sπ(2)t+1 ,...,Sπ(b)t+1 } are conditionally
dependent random vectors. On the other hand,

Conditional onFt ,
{S1
t+1, S

2
t+1, ..., S

b
t+1} are independent.

(4)

Also note that{S1
t+1, S

2
t+1, ..., S

b
t+1} are conditionallynot

identically distributed; they are unconditionally independen
and identically distributed.

3 CONVERGENCE IN PROBABILITY

Under an assumption on the finiteness of certain momen
we will show that the estimator̂qH (0, x0) with the strati-
fied implementation converges in probability toq(0, x0) as
b→∞; in fact, we derive an asymptotic upper bound o
the probabilty of error, where both the error size and th
probability upper bound vanish asb→∞.

We require the following moment assumptions, wher
S1
t ,S2

t ,S3
t denote paths which are independent of each oth

and have the distribution ofSt conditioned underS0 = x0,
and whereC is a constant that will appear on the probability
bound.

max
t∈E

E

[
max

t+1≤r≤T {h
4(r, S1

r )}
]
≤ C/8 (5)

max
t∈E

E

[
max

t+1≤r≤T {h
4(r, S2

r )}
f 4
t (S

1
t , S

2
t+1)

f 4
t (S

3
t , S

2
t+1)

]
≤ C/8 (6)

max
t∈E

E

[
max

t+1≤r≤T {h
4(r, S1

r )}
f 4
t (S

1
t , S

1
t+1)

f 4
t (S

3
t , S

1
t+1)

]
<∞ (7)
he

t

s,

r

max
t∈E

E

[
f 4
t (S

1
t , S

2
t+1)

f 4
t (S

3
t , S

2
t+1)

]
≤ C/8 (8)

max
t∈E

E

[
f 4
t (S

1
t , S

1
t+1)

f 4
t (S

3
t , S

1
t+1)

]
<∞ (9)

Theorem 1. Supposeb mesh paths{(Sjt : t =
0,1, . . . , T )}bj=1 are generated independently withSj0 = x0

for all j ∈ {1,2, ..., b}, wherex0 ∈ Rd is known at time 0.
Under assumptions (5)-(9),

P

{
|̂qH (0, x0)− q(0, x0)| > (1+ δ

bγ
)T − 1

}
≤ 6CT

δ4b1−4γ +O(b−2+4γ ) for any δ > 0, 0< γ < 1/4.

Proof. We start with a few definitions. Unless explicitly
stated, the time indext ∈ E . Let

c̄(t, x) := 1

b

b∑
j=1

q(t + 1, Sjt+1)f (x, S
j
t+1)

gt+1(S
j
t+1)

.

In other wordsc̄(t, x) is the natural estimate we would
make ofc(t, x) if q(t + 1, ·) were known (which of course
is not the case). Fixδ > 0 and 0< γ < 1/4, and define
the events

A1(t) =
{
ω : |c̄(t, Sjt )− c(t, Sjt )| ≤

δ

bγ
, ∀j ∈ I

}
and

A2(t) =
ω :

∣∣∣∣∣∣1b
b∑
j=1

ft (S
i
t , S

j
t+1)

gt+1(S
j
t+1)

− 1

∣∣∣∣∣∣ ≤ δ

bγ
, ∀j ∈ I


whereω denotes a generic point in the sample space, a
where for notational simplicity we suppress the dependen
of all random variables onω. Let A1 be the event that
A1(t) holds for eacht ∈ E , i.e.,

A1 := ∩t∈EA1(t).

Similarly, defineA2 = ∩t∈EA2(t). Finally, define the event
of direct interest

A =
{
ω : |̂qH (0, x0)− q(0, x0)| ≤ (1+ δ

bγ
)T − 1

}
.

Claim 1. A ⊃ A1 ∩ A2.

Proof. We assume that eventsA1 and A2 hold and
show by a recursive argument going backwards in time th
eventAmust hold. We start by showing that an error boun
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that holds uniformly over all estimates at timet +1 can be
iterated backwards in time. Fixε > 0 and suppose that
for somet (0 < t ≤ T − 1) the error of the estimates at
the forward points satisfies

|̂qH (t+1, Sjt+1)−q(t+1, Sjt+1)| ≤ ε for all j ∈ I. (10)

Then

|̂c(t, x)− c̄(t, x)|

= 1

b

∣∣∣∣∣∣
b∑
j=1

q̂H (t + 1, Sjt+1)ft (x, S
j
t+1)

gt+1(S
j
t+1)

−
b∑
j=1

q(t + 1, Sjt+1)ft (x, S
j
t+1)

gt+1(S
j
t+1)

∣∣∣∣∣∣
= 1

b

∣∣∣∣∣∣
b∑
j=1

(
q̂H (t + 1, Sjt+1)− q(t + 1, Sjt+1)

)

×ft (x, S
j
t+1)

gt+1(S
j
t+1)

∣∣∣∣∣
≤ ε

b

b∑
j=1

ft (x, S
j
t+1)

gt+1(S
j
t+1)

≤ ε(1+ δ

bγ
) for all x ∈ {S1

t , S
2
t , .., S

b
t }, (11)

where the last inequality follows sinceA2 holds. So if
(10) holds, then the error of̂qH at staget (0 ≤ t ≤ T − 1)
can be bound uniformly onj as follows:∣∣∣̂qH (t, Sjt )− q(t, Sjt )∣∣∣
=

∣∣∣max{h(t, Sjt ), ĉ(t, Sjt )} −max{h(t, Sjt ), c(t, Sjt )}
∣∣∣

≤
∣∣∣̂c(t, Sjt )− c(t, Sjt )∣∣∣

≤
∣∣∣̂c(t, Sjt )− c̄(t, Sjt )∣∣∣+ ∣∣∣c̄(t, Sjt )− c(t, Sjt )∣∣∣

≤ ε(1+ δ

bγ
)+ δ

bγ
for all j ∈ I (12)

where in the last inequality we used (11) and that eventA1
holds.

Now the recursive bounding is as follows. We start th
error bounding with the special caset = T − 1, where we
observe that̂c(T − 1, SjT−1)− c̄(T − 1, SjT−1) = 0 for all
j , and so the definition of the eventA1(T −1) implies that
(12) holds fort = T −1 with ε = 0. Iterating the bounding
e

argument in (12) witht = T − 2, T − 3, ...,0, we get

|̂qH (0, x0)− q(0, x0)| ≤ δ

bγ

T−1∑
j=0

(1+ δ

bγ
)j

= δ

bγ

(1+ δ
bγ
)T − 1

1+ δ
bγ
− 1

= (1+ δ

bγ
)T − 1

which completes the proof of Claim 1.
LettingAc denote the complement of the eventA, we

haveP(Ac) ≤ P(Ac1)+P(Ac2). To complete the proof, we
will show thatP(Ac1) ≤ 3CT

δ4b1−4γ +O(b−2+4γ ) andP(Ac2)

≤ 3CT
δ4b1−4γ +O(b−2+4γ ).

We first obtain the upper bound forP(Ac1). Define the
event

A1(t, i) =
{
ω : |c̄(t, Sit )(ω)− c(t, Sit )(ω)| ≤

δ

bγ

}
.

Recall thatA1 = ∩T−1
t=0 A1(t) = ∩T−1

t=0 ∩bi=1 A1(t, i), so

P(Ac1) ≤ 6T−1
t=0 6

b
i=1P(A

c
1(t, i)) = b6T−1

t=0 P(A
c
1(t,1)),

(13)
since{{Sit , {Sjt }bj=1}bi=1 are identically distributed. We will
show that

P(Ac1(t,1)) ≤
3C

δ4b2−4γ +O(b−3+4γ ) for all t ∈ E, (14)

which, in view of (13), proves thatP(Ac1) ≤ 3CT
δ4b1−4γ +

O(b−2+4γ ).
The key for proving that̄c(t, S1

t ) − c(t, S1
t ) is small

with high probability asb → ∞ is that it can be written
as the sum ofb random variables which conditionally have
mean 0 and are independent.

Claim 2. c̄(t, S1
t )− c(t, S1

t ) = 1
b

∑b
j=1Z

j (t), where

Zj (t) := q(t + 1, Sjt+1)f (S
1
t , S

j
t+1)

gt+1(S
j
t+1)

−E

[
q(t + 1, Sjt+1)f (S

1
t , S

j
t+1)

gt+1(S
j
t+1)

∣∣∣∣Ft
]
, j ∈ I,

where we recall thatFt is theσ -fieldFt = σ(S1
t , S

2
t , ..., S

b
t ).
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1

b

b∑
j=1

Zj (t)

= 1

b

b∑
j=1

(
q(t + 1, Sjt+1)f (S

1
t , S

j
t+1)

gt+1(S
j
t+1)

− E

[
q(t + 1, Sjt+1)f (S

1
t , S

j
t+1)

gt+1(S
j
t+1)

∣∣∣∣Ft
])

= c̄(t, S1
t )− E

1

b

b∑
j=1

q(t + 1, Sjt+1)f (S
1
t , S

j
t+1)

gt+1(S
j
t+1)

∣∣∣∣Ft


= c̄(t, S1
t )− E

1

b

b∑
j=1

q(t + 1, Sπ(j)t+1 )f (S
1
t , S

π(j)
t+1 )

gt+1(S
π(j)
t+1 )

∣∣∣∣Ft


= c̄(t, S1
t )− E

[
q(t + 1, X)f (S1

t , X)

gt+1(X)

∣∣∣∣Ft]
whereX represents a random variable which is obtained b
choosing one of the pointsS1

t+1, S
2
t+1, .., S

b
t+1 at random

with equal probability. The key behind the third step is the
invariance of the sum inside the expectation with respect t
permutations of the{Sjt+1}bj=1. The conditional distribution
of X when conditioned underFt has the densitygt+1(·) in
(3), so

E

[
q(t + 1, X)f (S1

t , X)

gt+1(X)

∣∣∣∣Ft] = E[q(t + 1, S1
t+1))|Ft ]

= c(t, S1
t )

which completes the proof of Claim 2.
Conditional on Ft , each of the variables

{Z1
t , Z

2
t , ..., Z

b
t } is a function of the single random

variable {S1
t+1, S

2
t+1, ..., S

b
t+1}, respectively. As such, the

{Zj (t)}bj=1 have two key properties: (a) they have condi-
tional mean 0; and (b) they are conditionally independen
in view of (4). Our upper bound for the probability of
P(Ac1(t,1)) will use Markov’s inequality with the 4th
moment of the deviation̄c(t, S1

t )− c(t, S1
t ). We will show

that this 4th moment goes to zero sufficiently fast withb
via the following two lemmas.

Lemma 1. SupposeY is a nonnegative random variable
with E[Y 4] <∞. ThenE[(Y −E[Y |F])4] ≤ 8E[Y 4], where
F is an arbitrary σ -field.
y

o

t,

Proof.

E[(Y − E[Y |F])4]
= E

(
Y 4− 4Y 3E[Y |F] + 6Y 2E2[Y |F]

−4YE3[Y |F] + E4[Y |F]
)

≤ E[Y 4] + 6E(Y 2E2[Y |F])+ E(E4[Y |F])
≤ E[Y 4] + 6

√
E[Y 4]

√
E(E4[Y |F])+ E(E[Y 4|F])

≤ 2E[Y 4] + 6
√

E[Y 4]
√

E(Y 4)

= 8E[Y 4].

In the second step, we dropped nonpositive random variabl
from the expectation. In the third step, we used th
Cauchy-Schwartz inequality for the secod term and Jensen
inequality for the third term, and in the fourth step we use
again Jensen’s inequality inside the second square root.

Lemma 2. Let F denote an arbitraryσ -field, and
let Z1, Z2, ..., Zb be random variables which, conditional
on F have mean 0, are conditionally independent of eac
other, and such thatE[Z4

1] <∞ and E[Z4
j ] ≤ C for each

j 6= 1, where the expectations are unconditional, and Ci
a constant. Then

E

[(
1
b

∑b
j=1Zj

)4
]
≤ 3C

b2 +O(b−3).

Proof. E[(∑b
j=1Zj )

4] = 6E[E[Zj1Zj2Zj3Zj4|F]],
where the four indices are ranging independently from
to b. Since E[Zj1 |F] = 0, the conditional independence of
theZ′s implies that the summand vanishes if there is on
index different from the three others. This leaves term
of the form E[E[Z4

j1
|F]], of which there areb, and terms

of the form E[E[Z2
j1
Z2
j2
|F]] for j1 6= j2, of which there

are 3b(b − 1). For each of the two different forms, the
number of terms with any index equal to 1 isO(b−1) of the
total number of such terms, and so the finiteness of E[Z4

1]
implies that the relative contribution of these terms to th
total isO(b−1).Now focusing on terms where all indices are
different than 1, we have E[E[Z4

j1
|F]] = E[Z4

j1
] ≤ C, and

E[E[Z2
j1
Z2
j2
|F]] = E[Z2

j1
Z2
j2
] ≤

√
E[Z4

j1
]
√

E[Z4
j2
] ≤ C.

Hence

E

[(∑b
j=1Zj

)4
]

≤ bC (1+O(b−1)
)+ 3b(b − 1)C

(
1+O(b−1)

)
which completes the proof of Lemma 2.

Claim 3. TheZj (t) satisfy the conditions of Lemma
2 for theσ -field F = Ft .
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Proof. Applying Lemma 1 with Y =
q(t+1,Sjt+1)f (S

1
t ,S

j
t+1)

gt+1(S
j
t+1)

andF = Ft , we get

E[(Zj (t))4]

≤ 8E

[
q4(t + 1, Sjt+1)f

4(S1
t , S

j
t+1)

g4
t+1(S

j
t+1)

]

≤ 8E

 max
t+1≤r≤T {h

4(r, S
j
r )}f 4(S1

t , S
j
t+1)

g4
t+1(S

j
t+1)

 ∀j ∈ I.
The {Zj (t)}bj=2 are unconditionally identically distributed,
and we have

E[(Z2(t))4]
≤ 8E

[
max

t+1≤r≤T {h
4(r, S2

r )}

×1

b

f 4(S1
t , S

2
t+1)

f 4(S1
t , S

2
t+1)
+
∑
s 6=1

f 4(S1
t , S

2
t+1)

f 4(Sst , S
2
t+1)


= 8

{
1

b
E

[
max

t+1≤r≤T {h
4(r, S2

r )}
]

+b − 1

b
E

[
max

t+1≤r≤T {h
4(r, S

j
r )}

(
f 4(S1

t , S
2
t+1)

f 4(S3
t , S

2
t+1)

)]}

≤ 8

{
1

b

C

8
+ b − 1

b

C

8

}
= C for all t ∈ E,

where for the first step we recall the definition ofgt+1 in
(3) and we use the fact (Jensen’s inequality) that for an
x1, x2, ..., xb > 0,

1(
x1+...+xb

b

)4 ≤ 1

b

(
1

x4
1

+ ...+ 1

x4
b

)
.

An analogous argument combined with assumption (7
shows that E[(Z1(t))4] <∞ for all t.

Now we have

P(Ac1(t,1)) = P

(
|c̄(t, S1

t )− c(t, S1
t )| ≥

δ

bγ

)
= P

(
1

b

∣∣∣∑b
j=1Z

j (t)

∣∣∣ ≥ δ

bγ

)

≤
E

[(
1
b

∑b
j=1Z

j (t)
)4
]
b4γ

δ4 (15)

≤ 3C

δ4b2−4γ +O(b−3+4γ ) (16)
)

for eacht ∈ E . In step three, we used Markov’s inequality
with power 4, and in step four we used Lemma 2 wit
Zj = Zj (t) and F = Ft . This is precisely what was
required in (14), and completes the proof thatP(Ac1) ≤

3CT
δ4b1−4γ +O(b−2+4γ ).

The probability boundP(Ac2) ≤ 3CT
δ4b1−4γ +O(b−2+4γ )

is proved by noting thatAc2 can be written as an event of the
form Ac1 for the functionq(·, ·) = 1, and then assumptions
(8) and (9) will serve in place of (6) and (7), respectively
This completes the proof of Theorem 1.

The following result shows that the rate of convergenc
may be sharpened using moments of order higher than
as we did in assumptions (5)-(9).

Theorem 2. Suppose the mesh paths{Sjt }bj=1are gen-

erated independently withSj0 = x0 for all j ∈ {1,2, ..., b},
wherex0 ∈ Rd is the known state at time 0. Under assump
tions (5)-(9) where we replace the power 4 by the power
and letC1 be the corresponding constant,

P

{
|̂qH (0, x0)− q(0, x0)| > (1+ δ

bγ
)T − 1

}
≤ 2520C1T

δ8b5−8γ +O(b−6+8γ ) for any δ > 0, 0< γ < 5/8.

Sketch of Proof. One can show thatP(Ac1(t,1)) ≤
1260C1
δ8b5−8γ +O(b−6+8γ ) by arguing analogously to (15)-(16),
using Markov’s inequality with power 8 instead of powe
4 and a result analogous to Lemma 2 for the 8th mome
The other steps in the proof are as in Theorem 1.

4 EMPIRICAL PERFORMANCE

We report empirical results on the performance of the me
estimator on the test problems in Broadie and Glasserm
(1997c) . Under the risk-neutral measure, thed assets
are independent, and each follows a geometric Browni
motion process:

dSτ (k) = Sτ (k)[(r − δ)dτ + σdWτ (k)], k = 1, . . . , d,

whereWτ(k), k = 1, . . . , d are independent Brownian mo-
tions,r is the riskless interest rate,δ is the divident rate, andσ
is a volatility parameter. Exercise opportunities occur at th
set of calendar timesτt = tT /T , t = 0,1, . . . , T , whereT
is the calendar option expiration time. Under the risk-neutr
measure, the random variables log(Sτt (k)/Sτt−1(k)) for
k = 1, . . . , d are independent and normally distributed with
mean(r− δ−σ 2/2)(τt − τt−1) and varianceσ 2(τt − τt−1).

Tables 1-3 contain results for amaximum option, which
is a call option on the maximum of the assets with payo
equal to

h (t, (S(k), k = 1, . . . , d)) = e−rτt
(

max
1≤k≤d S(k)−K

)+
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where (x)+ := max(x,0). The parameters ared = 5,
r = 0.05, δ = 0.1, σ = 0.2, K = 100,T = 3, andT = 3,
6, and 9, respectively. Tables 4-5 contain results for
goemetric average option, which is a call option on the
geometric average of the assets with payoff equal to

h (t, (S(k), k = 1, . . . , d)) = e−rτt
(
(
∏d
k=1 S(k))

1
d −K

)+
and parametersd = 5 and 7 assets respectively,r = 0.03,
δ = 0.05, σ = 0.4, K = 100,T = 1, andT = 10. Within
each table, the two panels contain results for out-of-th
money and in-the money cases, specifically withS0(k) =
x0, k = 1, . . . , d, where x0 = 90 and 110, respectively.
Within each panel, we set the mesh sizeb to the values 200,
400, 800, and 1600. The column labeled “CPU” measur
CPU time in seconds per replication ofq̂H on a SUN Ultra
5 workstation. Our performance measures are the relat
bias (RB), relative standard error (RSE), and relative ro
mean square error (RRMSE) of̂qH , defined as the bias,
standard error, and root mean square error (RMSE) divid
by the true option value, respectively. We approximate
the true option values using the results in Broadie a
Glasserman (1997c) as follows. For the max option, w
used the most accurate estimates in that paper, which ha
relative error less than 0.35% with 99% confidence. For t
geometric average option, the values are calculated fr
a single-asset binomial tree, presumably with negligib
error. For completeness, these approximated “true” opti
values are listed here in the order in which they appear
the tables, i.e., Table 1, panel 1; Table 1, panel 2; Tab
2, panel, 1; etc. The values are: 16.006, 35.695, 16.4
36.497, 16.659, 36.782, 1.362, 10.211, 0.761, and 10. T
estimateŝRB, R̂SE, andR̂RMSE in these tables are base
on 64 independent replications of̂qH .

Table 1: Maximum Option on Five Assets,T = 3.

x0 b CPU R̂B R̂SE R̂RMSE
90 200 3.3 0.175 0.093 0.198

400 8.4 0.127 0.052 0.137
800 24.1 0.089 0.038 0.097
1600 78.1 0.064 0.023 0.068

110 200 3.3 0.149 0.044 0.155
400 8.4 0.115 0.036 0.121
800 24.3 0.074 0.021 0.077
1600 78.0 0.054 0.015 0.056

It is obvious that the mesh estimator is highly positivel
biased, with (relative) bias being the dominant factor in th
estimator’s overall error, as measured by RRMSE. T
number of exercise opportunitiesT is an important factor,
with relative bias and overall error increasing fast wit
T . This is expected in view of Theorem 1, which show
a geometric growth of the estimator’s error bound wit
the number of exercise opportunities. In all cases, t
a
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Table 2: Maximum Option on Five Assets,T = 6.

x0 b CPU R̂B R̂SE R̂RMSE
90 200 6.6 0.402 0.098 0.414

400 17.0 0.337 0.066 0.343
800 49.0 0.288 0.043 0.291
1600 158.5 0.231 0.029 0.233

110 200 6.6 0.370 0.066 0.376
400 16.9 0.331 0.038 0.333
800 48.7 0.256 0.023 0.257
1600 158.5 0.203 0.018 0.204

Table 3: Maximum Option on Five Assets,T = 9.

x0 b CPU R̂B R̂SE R̂RMSE
90 200 9.9 0.557 0.096 0.566

400 25.6 0.521 0.064 0.525
800 73.2 0.466 0.042 0.468
1600 238.4 0.402 0.032 0.403

110 200 9.8 0.556 0.061 0.559
400 25.5 0.503 0.040 0.505
800 73.2 0.445 0.026 0.446
1600 239.4 0.368 0.021 0.368

Table 4: Geometric Average Option on Five Assets,
T = 10.

x0 b CPU R̂B R̂SE R̂RMSE
90 200 10.9 0.621 0.320 0.699

400 28.4 0.610 0.218 0.647
800 80.7 0.584 0.139 0.601
1600 260.3 0.493 0.090 0.502

110 200 11.0 0.533 0.101 0.542
400 28.6 0.460 0.061 0.464
800 81.7 0.367 0.042 0.370
1600 260.4 0.277 0.032 0.279

bias decays slowly withb, and this appears to be the
general pattern over further experiments not reported her
In view of the quadratic growth of work withb, the obvious
extrapolation from these tables suggests that the large bi
will persist for most feasible sample sizes.

5 CONCLUSION

We have derived an asymptotic upper bound on the prob
bility of error of the mesh estimator for pricing American
options with respect to the numberb of states sampled
at each stage. Both the error size and the upper boun
on the probability of error are functions ofb that vanish
as b → ∞. The constantC appearing on the probability
bound involves the fourth moment of the likelihood ratio of
1-step transition densities between a parent and a non-ch
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Table 5: Geometric Average Option on Seven Assets,
T = 10.

x0 b CPU R̂B R̂SE R̂RMSE
90 200 15.4 0.628 0.336 0.712

400 39.5 0.635 0.269 0.690
800 112.9 0.605 0.198 0.636
1600 362.9 0.610 0.141 0.626

110 200 15.4 0.477 0.100 0.488
400 39.3 0.455 0.061 0.459
800 112.6 0.396 0.041 0.398
1600 365.3 0.338 0.029 0.340

to another non-parent and the same child multiplied by th
maximum future payoff over a path that starts at the child

Despite the demonstrated guaranteed convergence
the mesh estimator under our mild required assumption
our computational experience shows very poor behavio
specifically large positive bias. The bias is present even f
small number of exercise opportunities, and decays slow
with b. In view of our theoretical result, we conclude tha
for the specific problems studied, the constantC is very
large. This observation is consistent with the experienc
of many researchers that likelihood ratios are often high
variable random variables. We expect that the consta
C grows rapidly with the problem dimensiond and the
number of exercise opportunitiesT , making the practical
viability of the method questionnable. From an applicatio
perspective, we conclude that caution should be exercis
when using this method.
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