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ABSTRACT ing power is steadily increasing, multi-factor option-pricing
models are likely to become more prevalent.
Broadie and Glasserman proposed a simulation-based Pricing and hedging options (European or American)
method they namedstochastic meshor pricing high- using multi-factor models is a difficult task. Especially
dimensional American options. Based on simulated states for American options, which allow early exercise, ana-
of the assets underlying the option at each exercise op- lytical formulas for pricing are rarely available. Various
portunity, the method produces an estimator of the option deterministic numerical techniques are used, for example
value at each sampled state. Under the mild assumption of the numerical solution of an appropriate partial differen-
the finiteness of certain moments, we derive an asymptotic tial equation. However, such methods require work that
upper bound on the probability of error of the mesh esti- grows exponentially in the number of state variables. This
mator, where both the error size and the probability bound work requirement renders these methods ineffective when
vanish as the sample size increases. We include the em-the state space dimension is higher than three or four.
pirical performance for the test problems used by Broadie Monte Carlo simulation techniques are conceptually
and Glasserman in a recent unpublished manuscript. We simple, yet powerful in addressing option pricing problems
find that the mesh estimator has large bias that decays very of great complexity, whether the complexity arises from
slowly with the sample size, suggesting that in applica- the stochastic process driving the assets, the structure of
tions it will most likely be necessary to employ bias and/or the payoff (path-dependent), or the early exercise features

variance reduction techniques. (American). Until recently, the prevailing opinion was that
American options could not be handled using Monte Carlo
1 INTRODUCTION simulation. Recent developments, however, have started

to pave the way for estimating American option prices via
In the financial markets, sophisticated, complex products are Monte Carlo methods.
continuously offered and traded. There are many financial Barraquand and Martineau (1995) proposed an algo-
products whose values depend on more than one underlying rithm that only approximately solves the American option
asset. Examples include basket options (options on the av- pricing problem. They partition the state space of stochas-
erage of several underlying assets), out-performance optionstic factors into a tractable number of cells and compute an
(options on the maximum of several assets), spread options approximately optimal exercise policy that is constant over
(options on the difference between two assets), and quan- each cell. Although this method is fast, it yields an estimate
tos (options whose payoff is adjusted by some stochastic that does not necessarily converge to the true price as work
variable, typically an exchange rate). Even when there is a increases. Broadie and Glasserman (1997b) were the first
single underlying asset, there is trend towards models with to develop a simulation procedure that yields provably con-
multiple stochastic factors (sources of uncertainty), e.g., vergent estimates for American option prices. Their method
single-asset model with stochastic volatility. In addition, is based on a simulated tree of the state variables. The main
multi-factor models are gaining more acceptance and use drawback of their method is that the work is exponential in
for modeling interest rates, where models with two to four the number of exercise opportunities. For a comprehensive
factors are common and models with up to ten factors are review of the literature in Monte Carlo methods for Pricing
being tested (Broadie and Glasserman 1997a). As comput- American Options, see Broadie and Glasserman (1997a).
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An important method developed recently for valuing By the dynamic programming principle, the option
American options via simulation is the stochastic mesh value can be written as follows:
method (Broadie and Glasserman 1997c¢). The stochastic
mesh method begins by generating a nunibef randomly g, x) = { h(t, x) t=T, allx
sampled states of the stochastic factors underlying the option =~ max{h(z,x),c(t,x)} 0<r<T -1 allx
at each exercise opportunity. Based on this sample, the
mesh estimatoof the option value at each sampled state is Where
computed (a full description is deferred until Section 2.2). _ _
The authors also propose @ath estimator obtained by ctt. %) = Elgt + 1 Seep |5 = 2] @
simulating paths of the stochastic factors underlying the is called thecontinuation valueat (¢, x), equal to the value
options and estimating an approximate exercise policy based of the option (discounted to time 0) when it is not exercised
on the mesh values; see Broadie and Glasserman (1997c)at (time, state) paifz, x). It is well-known from arbitrage
for more details. It is shown that the mesh and path pricing theory that the arbitrage-free price of the option is
estimators are biased high and low, respectively. Inaddition, obtained when the conditional expectation in (1) is taken
under certain technical assumptions, it is shown that both with respect to the risk-neutral measure, defined as the
estimators converge (in norm) to the true option value as measure that makes the value of any tradeable security,
the sample size (the number of sampled states per skage) discounted to time 0, a martingale. For a rigorous treatment
goes to infinity. of arbitrage pricing theory, see Duffie (1996) and Harrison
In this paper we derive an asymptotic upper bound and Pliska (1981); for an excellent and mathematically
on the probability of error of the mesh estimator with lighter treatment, see Baxter and Rennie (1996). Given
respect tob. Both the error size and the upper bound on the known state ofg at time 0, sayxg, the option-pricing
the probability of error are functions d@f that vanish as problem is to compute (0O, xo).
b — oo. Our assumptions are mild—namely the finiteness
of certain moments. We also present empirical results on 2.2 The Stochastic Mesh Method
the estimator’s behavior on the test problems in Broadie
and Glasserman (1997c). In reviewing the method, we follow Broadie and Glasserman
This paper is organized as follows. Section 2 contains (1997c). The mesh method generates a stochastighof
brief background on the problem of pricing American options  sample state{sS’lj},j —=1,2,....bforeacht =1,...,T. For
and a description of the stochastic mesh method. Section 3 potational convenience, we defih@onrandom mesh points
contains our main theoretical result, namely an asymptotic 4 siage O,S(J)' —x0.j =1,2,...b. Fort =1,2,.., T,
bound on the probability of error of the mesh estimator with e o.(.) denote the probability density from which the
respect' to the numbeér of states sgmpled at each stage. points {S;j}b-_l are sampled (to be specified later), and
In Section 4 we present computational results on the test ot Sfr(x, ) denote the conditional risk-neutral density of
problems in Broadie and Glasserman (1997c) and in Section S,.1givens, — x. (We assume throughout the paper the

5 we offer conclusions. existence of such densities.) Lét= {0,1,..., T — 1}
denote the index set @&arly-exercise opportunitiesnd let

7T =1{1,2,...,b}denote the index set of sampled points per
stage. The Broadie-Glasserman mesh estimator is calculated
as a backward recursion for=7,7 —1,...,0:

2 BACKGROUND
2.1 American Option Pricing

Let S, denote the vector of stochastic factors underlying the

option, modeled as a Markov process Rfi with discrete- qu(T, S;) _ | T $7) o €l

time parameter = 0, 1, 2, ..., 7. The argument indexes maxh(t, S}), ¢, S)} jeT.te€
the set of times when the option is exerciseable, also called

exercise opportunitieer Simp'ystages Let I’l(f, )C) denote Y\/here the estimate of the continuation value funcﬁ(mx)
the payoff to the option holder from exercise at timen IS

statex, discounted to time 0 with the possibly stochastic b ~ j j

discount factor recorded ix. This view of i(z, x) as 3t x) = Z qu(t +1, St+1}fz(x, Sz+1). @
the discounted-to-time-0 payoff is adopted to simplify the = 8+1(S), 1)

notation and does not reduce the generality of the method. )
Note that the poimeJrl is weighed by the likelihood ratio

fix, 8L/ 8i1(S, ).
In Broadie and Glasserman (1997c), it is argued that
the choice of sampling densitieg;1(-) is crucial to the
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success of the method; and the choice recommended by the f,4( } r2+1)
authors is as follows. We simulate independentlpaths o m =C/8 8)
of S; starting fromxg at time 0 and IetStJ denote the state
of the j-th path at timer; and then we "forget" the path to L
which a point belongs. This is called by the authors the maxE TG ©)
stratified implementatianFor anyz, j, we call the ordered te€ FASS, S}H)
pair (S, S/, 1) aparentand child, respectively. .

We clarify some properties of the stratified imple- Theorem 1. Supposeb mesh paths{(S] : ¢ =
mentation. Letr be a random permutation of the in- g 1v-~~»T)}I}—1 are generated independently W'lfé = X0

tegers in{1, 2, ..., b} chosen with equal probability from
all possible such permutations, and &t be theo-field
F, =o(S} 82, ..., 8P). Then

forall j € {1, 2, ..., b}, wherexg € R is known at time 0.
Under assumptions (5)-(9),

~ 8
Conditional onF, s {|CIH(O’ x0) —¢(0, x0)| > (1 + b7)T - 1}
1 @2 b
(7T 5D STV a0 o= § 0 £ e
id. — i , .
where ~ means "are identically distributed with density Proof. We start with a few definitions. Unless explicitly
". Note that the density;1(-) is defined conditionally stated, the time index e &. Let

onZF,. Also note thats;7,s7%.....57%} are conditionally

foranyé >0, 0 <y < 1/4

dependent random vectors. On the other hand, T }Xb: at+1, S,+l)f(x, Sz+1)
Conditional onZF;, @) b j=1 gt+1(S,+1)
(L, 24, ... 8,1} are independent

In other wordsc(z, x) is the natural estimate we would
Also note that{S? 1 z+1~ . t+1} are conditionallynot make ofc(z, x) if g(r + 1, -) were known (which of course

identically distributed; they are unconditionally independent 1S Not the case). Fi%¥ > 0 and 0< y < 1/4, and define
and identically distributed. the events

3 CONVERGENCE IN PROBABILITY AL(t) = {a) e, Sy — e, S| < o Vie I}

Under an assumption on the finiteness of certain moments, and
we will show that the estimatafy (0, xo) with the strati-
fied implementation converges in probability¢@0, xg) as ;
b — oo; in fact, we derive an asymptotic upper bound on  A,(;) = . M 1| < L2 VieT
2 w . = ’ J

the probabilty of error, where both the error size and the b o1 g,+1(S,+l) by
probability upper bound vanish @&s— oo.

We require the following moment assumptions, where wherew denotes a generic point in the sample space, and
St,52,52 denote paths which are independent of each other where for notational simplicity we suppress the dependence

and have the distribution of; conditioned undesy = xo, of all random variables om. Let A, be the event that
and whereC is a constant that will appear on the probability A, () holds for eachr € &, i.e.,
bound.
Aq = NiegA1(D).
maxE[ max {h*(r, S,l)}} <C/8 (5)
te€ | t+l=r=T Similarly, defineA, = N;cg A2(2). Finally, define the event
of direct interest
maxE | max (h“(r. S )}M <C/8 (8 A=o: 130030 — 0. x0) < 1+ )T —1
ree | rHlsrs NSRS | T S V=T '

Claim 1. A D> A3 N Ao,

} <oo (7) Proof. We assume that events; and A, hold and
show by a recursive argument going backwards in time that
eventA must hold. We start by showing that an error bound
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that holds uniformly over all estimates at time- 1 can be
iterated backwards in time. Fix > 0 and suppose that

for somer (0 <t < T — 1) the error of the estimates at
the forward points satisfies

Gt +1, 8, ) —qt+1,8 Dl <e forall j eZ. (10)
Then

1| & Gn+1,8. D fitx, S0
2122

=1 gt+l(S,j+1)

qr+1, t+l)ff(x’ Sr+1)
gl+l(St+]_)

Jj=

S

(qH(t +1,8),0 - qt+1.8,p)

S S
g,+1(5,+1>

fl(-x» I+1

b gaa(S)y)

IA

8
s(1+b—y) for all x € {S%, 52,.., 8%}, (11)

where the last inequality follows sincé, holds. So if
(10) holds, then the error @fy at stagee (O <t <T —1)
can be bound uniformly oni as follows:

[Gue. sh—qa. s/

‘max{h(z, $7), 3, S})} — maxth(t, $7), c(t, s,f)}‘

< [ewsh—ca.s/
< [ew, s —ca, sH| + |e@, STy — @, S

8 )
e(1+ b_V) + o forall jeZ (12)
where in the last inequality we used (11) and that event
holds.

Now the recursive bounding is as follows. We start the
error bounding with the special case= T — 1, where we
observe that(T — 1, S}_;) — &(T — 1, 87_,) = 0 for all
Jj,» and so the definition of the eveAt (T — 1) implies that
(12) holds forr = T —1 with e = 0. Iterating the bounding
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argument in (12) with =7 -2, 7 — 3, ..., 0, we get

G0, x0) — q(0, x0)| < Z( +—>f
8 (1+b—y)T—1
b 14 S -1
$ T
= (l+b_7) —

which completes the proof of Claim 1. O
Letting A denote the complement of the eveht we
haveP(A°) < P(A{)+ P(A5). To complete the proof, we
will show that P(A§) < 843}7€T4y + 0~ and P(AS)
< 25 + 0(b72),
We first obtain the upper bound f@t(A9). Define the

event
A1(t,i) = { Le, SH(@) — c(t, SH ()| < b%}
Recall thatA; = N5 A1(r) = N5 nP_, A1(r, i), so
P(AS) < =Ttsb  PAS @, i) = b=l P(AS(, ),
(13)

since{{s!, {Stj}b l} _, are identically distributed. We will
show that

3c
PUASH D) = gy + 0BG forall € £, (14)

which, in view of (13), proves thaP(Af) < 2% +
o~ 2+4y)

The key for proving that(z, 1) — c(t, S} is small
with high probability ash — oo is that it can be written
as the sum ob random variables which conditionally have

mean 0 and are independent.
Claim 2. &(t, S} — c(t. SH = : ¥-%_; 2/ (1), where

gt +1, 8., ) f(SE S

g+1(S7, 1)
e [

q(t+1,8. ) fSL S
where we recall thaf, is thes -field 7; = o (S2, S, ..., S).

ZJ(1)

fl} ) J € I’
gl+1(st+l)
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Proof.
b
1 )
> > 7w
j=1
q(r+1, z+1)f(S1 St]+1

i

&

gt+l(St+]_)
q(r+1, SH—l)f(Sl’ Sz+1)
gt+1(St+1)

d

t+1,5/ sis
= c(t, Szl)—E —ZQ( t+1)f( t+1) 7
[, b 7(j) 1 gm()
1 t+1,8 st
= &t SH-E _2‘1( t+1)f(§)r S|,
B g’+1(Sz+1)
= [q(r+ 1, X)f (S, X) :|
= &, 8H—E F
l L 8r+1(X) !

whereX represents a random variable which is obtained by J
choosing one of the points!,,, 52 ,, .., S?,; at random
with equal probability. The key behind the third step is the

invariance of the sum inside the expectation with respect to
permutations of theS’ 1}”_l The conditional distribution
of X when condltloned undef, has the densitg;1(-) in

(3), so
7|

i

which completes the proof of Claim 2. O

Conditional on F;, each of the variables
., ZP} is a function of the single random
varlable{S,Jrl, Sz+1’ e Sf’+l}, respectively. As such, the
(z] (t)}j:1 have two key properties: (a) they have condi-
tional mean 0; and (b) they are conditionally independent,
in view of (4). Our upper bound for the probability of
P(Af(z,1) will use Markov's inequality with the 4th
moment of the deviatioa(z, S*) — c(t, S}). We will show
that this 4th moment goes to zero sufficiently fast with
via the following two lemmas.

Lemma 1. SupposeY is a nonnegative random variable
with E[Y4] < oo. ThenE[(Y —E[Y|F]*] < 8E[Y?], where
F is an arbitrary o -field.

gt + 1, X)f(SE Xx)
gr+1(X)

Elg(t + 1, S} )| 7]

c(t, SH

(7}, 7?

1564

Matzinger

Proof.

EL(Y — E[Y|FD*
E (y“ — 4Y3E[Y|F] + 6Y2E2[Y|F]

—4YE3[Y|F] + E4[Y|f])

< E[Y*+ 6E(Y?E?[Y|F]) + E(E*[Y|F])
< E[Y* + 6VE[Y4y/EEYY|F]) + EE[Y*F])
< 2EY*+6VE[Y4VEYY

= B8EYY.

In the second step, we dropped nonpositive random variables
from the expectation. In the third step, we used the
Cauchy-Schwartz inequality for the secod term and Jensen’s
inequality for the third term, and in the fourth step we used
again Jensen’s inequality inside the second square raot.

Lemma 2. Let F denote an arbitraryo-field, and
let Z41, Zo, ..., Z;, be random variables which, conditional
on F have mean 0, are conditionally independent of each
other, and such thaE[Z]] < co and E[Z“] < C for each
Jj # 1, where the expectations are uncondmonal and Cis
a constant. Then

a_sc
E[( > 7) } <27+ 007,

Proof. E[(Y%_; Z))* = SE[E[Z),Z, Zis Zj, F1I,
where the four indices are ranging independently from 1
to b. Since EZ;, |F] = 0, the conditional independence of
the Z’s implies that the summand vanishes if there is one
index different from the three others. This leaves terms
of the form E[E[Zj‘1|]-"]], of which there areb, and terms
of the form HE[ZZ Z2|F]] for j1 # jo, of which there
are (b — 1). For each of the two different forms, the
number of terms with any index equal to 1055~1) of the
total number of such terms, and so the finiteness [af‘l‘E
implies that the relative contribution of these terms to the
total isO (b~—1). Now focusing on terms where all indices are
different than 1, we have[E[Z4 |F1l = E[Z4] <, and

E[E[Z2 Z2|F]] = E[Z27%] < JE[Z}1/E[Z] < C.

1
b

J17J2 J17J2
Hence

4
E [(Z?:l Zj) }
<bC(1+00Bb™H)+3b(b-1C(1+00k™)

which completes the proof of Lemma 2. O

Claim 3. The Z/(r) satisfy the conditions of Lemma
2 for theo-field F = F;.
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Proof. Applying Lemma 1 with ¥ =
1
NS/ and 7 = 7, we get
1+1890r 41
E[(Z/ (1))
o g TUtLS 1)f4(S,1,S+1)]
gt+l(St+1)
4. oivy fAeel oJ
max e SHIFAsE sl |
< 8E Vjel.
gt+1(S+l)

The {Z/ (z)}b_2 are unconditionally identically distributed,
and we have

E[(Z2(t)*]
SE[ max_{h*(r, §%)}
t+1<r<T

2

s#1

IA

1 r4Sh S2 )

1 FAst 82 )
A4St S2 )

f4(SlS’ St+1)

(e

X
b

8 le max {h4(r 52)}
b | t+l<r

b—-1

N . FASE 82
b

ma h4 A Sj —_—

|

where for the first step we recall the definition gf.1 in
(3) and we use the fact (Jensen’s inequality) that for any

)

3 1C+b—1C
b8 b 8
C forallreg&,

IA

X1, X2, ..., xp > 0,
1 <1(1 . 1)
raad Sl Al
(xl b xb) b\~ *b

An analogous argument combined with assumption (7)

shows that EZ1(1))*] < oo for all ¢. O
Now we have
P(AS(1, 1) = P(|5(t, shH —c@, shH| > 1%)
1 )
= r(lzazol=5)
e (2t zw) ]
< 5 (15)
3c
< sgra t O (h~34%) (16)

1565

Matzinger

for eachr € £. In step three, we used Markov’s inequality
with power 4, and in step four we used Lemma 2 with
Z; = Z/(t) and F = F,. This is precisely what was
required in (14), and completes the proof thtA]) <
o 3CT + O(b—2+4y)

The probability boundP (4%) < 84b1 T + 0(b=2+4)
is proved by noting that$ can be written as an event of the
form A{ for the functionq(~, ) = 1, and then assumptions
(8) and (9) will serve in place of (6) and (7), respectively.
This completes the proof of Theorem 1. O

The following result shows that the rate of convergence
may be sharpened using moments of order higher than 4
as we did in assumptions (5)-(9).

Theorem 2. Suppose the mesh patf&’}’/’.zlare gen-

erated independently Witﬂé =xpoforall j €{1,2,..,b}
wherexg € R? is the known state at time 0. Under assump-
tions (5)-(9) where we replace the power 4 by the power 8
and letC1 be the corresponding constant,

1
< 220 + 0(b=5+®) foranys > 0, 0 <y < 5/8.

Sketch of Proof. One can show thaP(A{(z, 1)) <
1260 | 0 (b=6+8) by arguing analogously to (15)-(16),

§8p5—8y
using Markov’s inequality with power 8 instead of power
4 and a result analogous to Lemma 2 for the 8th moment.

The other steps in the proof are as in Theorem 1. [

~ )
P {mH(o, x0) — q(0, x0)| > (1 + b—yﬂ -

4 EMPIRICAL PERFORMANCE

We report empirical results on the performance of the mesh

estimator on the test problems in Broadie and Glasserman

(1997c¢) . Under the risk-neutral measure, theassets

are independent, and each follows a geometric Brownian

motion process:

dS. (k) = S (K)[(r — 8)dt +odW,(k)], k=1,....d,

whereW, (k),k =1, ..., d are independent Brownian mo-

tions,r is the riskless interest ratgis the divident rate, and

is a volatility parameter. Exercise opportunities occur at the

set of calendar timeg =¢7/T,t =0,1,..., T, whereT

is the calendar option expiration time. Under the risk-neutral

measure, the random variables (8g(k)/S:,_,(k)) for

k=1,...,d areindependent and normally distributed with

mean(r — 8 —o2/2)(t, — 1;_1) and variancer2(t; — 1,_1).
Tables 1-3 contain results fomaaximum optionwhich

is a call option on the maximum of the assets with payoff

equal to

J’_
h(t,(Stk),k=1,...,d)=e"" (1r§nka£>§S(k) — K)
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where (x)* := max(x,0). The parameters aré = 5,
r=0.0568=010=02 K =100,7 =3, andT = 3,

6, and 9, respectively. Tables 4-5 contain results for a
goemetric average optigrwhich is a call option on the
geometric average of the assets with payoff equal to

+
B, SE)k=1,....d) =™ (([T_y SE)T - K)

and parametergd = 5 and 7 assets respectively= 0.03,

§ =0.05,06 =04, K =100,7 =1, andT = 10. Within
each table, the two panels contain results for out-of-the-
money and in-the money cases, specifically wighik) =
x0,k = 1,...,d, wherexg = 90 and 110, respectively.
Within each panel, we set the mesh shz® the values 200,
400, 800, and 1600. The column labeled “CPU” measures
CPU time in seconds per replicationgf on a SUN Ultra

5 workstation. Our performance measures are the relative
bias (RB), relative standard error (RSE), and relative root
mean square error (RRMSE) @f;, defined as the bias,
standard error, and root mean square error (RMSE) divided
by the true option value, respectively. We approximated
the true option values using the results in Broadie and
Glasserman (1997c) as follows. For the max option, we

Matzinger

Table 2: Maximum Option on Five Asset§,= 6.

xo | » |CPU| RB RSE RRMSE
90 | 200 | 6.6 | 0402 0.098 0414
400 | 17.0 | 0.337 0.066  0.343
800 | 49.0 | 0.288 0.043  0.291
1600 | 158.5| 0.231 0.029  0.233
110| 200 | 6.6 | 0.370 0.066 0.376
400 | 16.9 | 0.331 0.038 0.333
800 | 48.7 | 0.256 0.023 0.257
1600 | 158.5| 0.203 0.018  0.204

Table 3: Maximum Option on Five Asset§,= 9.

xo | » |CPU| RBT RSE RRMSE
90 | 200 | 9.9 | 0557 0.096 0.566
400 | 25.6 | 0.521 0.064 0.525
800 | 73.2 | 0.466 0.042 0.468
1600 | 238.4| 0.402 0.032  0.403
110| 200 | 9.8 | 0.556 0.061  0.559
400 | 255 | 0.503 0.040 0.505
800 | 73.2 | 0.445 0.026 0.446
1600 | 239.4| 0.368 0.021  0.368

used the most accurate estimates in that paper, which have a

relative error less than 0.35% with 99% confidence. For the
geometric average option, the values are calculated from
a single-asset binomial tree, presumably with negligible
error. For completeness, these approximated “true” option
values are listed here in the order in which they appear in
the tables, i.e., Table 1, panel 1; Table 1, panel 2; Table
2, panel, 1; etc. The values are: 16.006, 35.695, 16.474,
36.497, 16.659, 36.782, 1.362, 10.211, 0.761, and 10. The
estimatesRB, RSE, andRRMSE in these tables are based
on 64 independent replications @f;.

Table 1: Maximum Option on Five Asset§,= 3.

xo | » |CPU| RB RSE RRMSE
90 | 200 | 3.3 | 0.175 0.093 0.198
400 | 8.4 | 0127 0052 0.137
800 | 24.1| 0.089 0.038 0.097
1600| 78.1 | 0.064 0.023  0.068
110 | 200 | 3.3 | 0.149 0.044 0.155
400 | 8.4 | 0115 0.036 0.121
800 | 24.3| 0.074 0.021 0.077
1600| 78.0 | 0.054 0.015 0.056

It is obvious that the mesh estimator is highly positively
biased, with (relative) bias being the dominant factor in the
estimator's overall error, as measured by RRMSE. The
number of exercise opportunitigs is an important factor,
with relative bias and overall error increasing fast with
T. This is expected in view of Theorem 1, which shows
a geometric growth of the estimator’'s error bound with
the number of exercise opportunities. In all cases, the
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Table 4: Geometric Average Option on Five Assets,
T = 10.

xo | » | CPU| RBT RSE RRMSE
90 | 200 | 10.9 | 0.621 0.320 0.699
400 | 28.4 | 0.610 0218 0.647
800 | 80.7 | 0.584 0.139  0.601
1600 | 260.3| 0.493 0.090  0.502
110 | 200 | 11.0 | 0533 0.101  0.542
400 | 28.6 | 0.460 0.061 0.464
800 | 81.7 | 0.367 0.042 0.370
1600 | 260.4| 0.277 0.032  0.279

bias decays slowly withh, and this appears to be the
general pattern over further experiments not reported here.
In view of the quadratic growth of work with, the obvious
extrapolation from these tables suggests that the large bias
will persist for most feasible sample sizes.

5 CONCLUSION

We have derived an asymptotic upper bound on the proba-
bility of error of the mesh estimator for pricing American
options with respect to the numbér of states sampled

at each stage. Both the error size and the upper bound
on the probability of error are functions éf that vanish
asb — oo. The constantC appearing on the probability
bound involves the fourth moment of the likelihood ratio of
1-step transition densities between a parent and a non-child



Avramidis and Matzinger

Table 5: Geometric Average Option on Seven Assets, Harrison, M., and S. Pliska. 1981. Martingales and stochastic

T =10. integrals in the theory of continuous tradir8tochastic

X0 b cPU| RB RSE RRMSE Processes and Their Applicatiodd:215-260.

90 | 200 | 154 | 0.628 0.336  0.712
400 | 39.5 | 0.635 0.269  0.690 AUTHOR BIOGRAPHIES
800 | 112.9| 0.605 0.198 0.636
1600 | 362.9| 0.610 0.141 0.626 ATHANASSIOS (THANOS) N. AVRAMIDIS is an In-

110 | 200 | 154 | 0.477 0.100 0.488 vited Researcher at the Département d’ Informatique et de
400 | 39.3 | 0.455 0.061 0.459 Recherche Opérationnelle at the Universite de Montréal in
800 | 112.6! 0.396 0041 0.398 Québec, Canada. He has been in the faculty at Cornell
1600| 365.3| 0.338 0029 0.340 University and a consultant with SABRE Decision Tech-

nologies. His recent research interests are in Monte Carlo
simulation methods with applications to derivative valuation,
hedging, and risk management. He holds M.S. and Ph.D.
degrees from the School of Industrial Engineering at Purdue
University and a diploma in Mechanical Engineering from
the University of Thessaloniki in Greece. He can be reached
via e-mail at<avramidi@iro.umontreal.ca>

to another non-parent and the same child multiplied by the
maximum future payoff over a path that starts at the child.
Despite the demonstrated guaranteed convergence of
the mesh estimator under our mild required assumptions,
our computational experience shows very poor behavior,
specifically large positive bias. The bias is present even for
small number of exercise opportunities, and decays slowly
with b. In view of our theoretical result, we conclude that HEINRICH MATZINGER
for the specific problems studied, the consténis very
large. This observation is consistent with the experience
of many researchers that likelihood ratios are often highly
variable random variables. We expect that the constant
C grows rapidly with the problem dimensiah and the
number of exercise opportunities, making the practical
viability of the method questionnable. From an application
perspective, we conclude that caution should be exercised
when using this method.

is an Invited Researcher at the
Department of Mathematics of the University of Bielefeld
in Germany. He has been lecturer in the Department of
Mathematics at MIT and a postdoctoral fellow at Eurandom
in Holland. His recent research interests are in discrete
probability. He holds a Ph.D. degree from the School of
Industrial Engineering and Operations Research of Cornell
University and a diploma of Mathematics from the Swiss
Federal Institute of Technology in Zurich. He can be reached
via e-mail at<kikimatz@yahoo.com>
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