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ABSTRACT

We consider importance sampling (IS) to increase the ef-
ficiency of Monte Carlo integration, especially for pricing
exotic options where the random input is multivariate Nor-
mal. When the importance function (the product of inte-
grand and original density) is multimodal, determining a
good IS density is a difficult task. We propose an Auto-
mated Importance Sampling DEnsity selection procedure
(AISDE). AISDE selects an IS density as a mixture of
multivariate Normal densities with modes at certain local
maxima of the importance function. When the simulation
input is multivariate Normal, we use principal component
analysis to obtain a reduced-dimension, approximate im-
portance function, which allows efficient identification of a
good IS density via AISDE in original problem dimensions
over 100. We present Monte Carlo experimental results
on randomly generated option-pricing problems (including

where E denotes expectation under the new dengity
Monte Carlo estimation with importance sampling proceeds
as follows:

1. GeneratqZ;}!_; as independent, identically dis-
tributed (u.d) underg.
2. Calculate
~ _ (h- HZ)
V() = 12 P70

= &)
We will refer tov(g) as animportance sampling estimator
of v. The densityg is called theimportance sampling
density We call the product of integrand and original
density, (h - f)(z) = h(z) f(z), the importance function
Sampling fromg may be more (or less) costly than sampling
from f, which affects theestimation efficiengydefined as
the inverse product of an estimator’s variance times the

path-dependent options), demonstrating large and consistentassociated computing cost.

efficiency improvement.

1 INTRODUCTION

Consider the problem of estimating the integral

v=E/[h(Z)] = /h(z)f(z)dz < 00, 1)

via Monte Carlo sampling for eesponse functioh : R¢ —
[0, o0), where Z is a d-dimensional random vector with
known density functionf.

Importance sampling (IS) is known as a very effective
method for reducing the variance (more generally, increasing
the efficiency) of the Monte Carlo estimate wf Let g be
any d-dimensional density that is positive on the support
of f,i.e., f(z) > 0= g(z) > 0. We write

=]

h(z )% g()dz=E

f(2)

h(Z
[()(Z)
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The class of integration applications that motivated this
work is pricing high-dimensional exotic options with option-
pricing models where the stochastic factors are multivariate
Normal. In exotic option pricing, when cast as an integration
problem as in (1) withf being the multivariate standard
normal density, the importance function may be multimodal
and possibly have modal regions far from each other. In this
setting, selecting a good IS density is a nontrivial problem.
We give background on option pricing and review existing
IS methods in this context in Section 2.

In this paper, we are interestedantomatedandrobust
methods for identifying an IS density. By “automated”, we
mean that no analytical manipulation of the integral is per-
formed, except for the trivial rewriting of the integral to
account for the choice of sampling density. By “robust”,
we loosely mean that efficiency improvement should be
obtained over a wide class of response functions—in par-
ticular, including the case where the importance function
is multimodal. IS density selection methods that fit this
loose definition of robustness have been proposed in the
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past, most notably in the context of Bayesian integration The prevailing class of pricing models postulates that the
by Oh and Berger (1993) and West (1993). We discuss the vector of stochastic factors follovisdimensional Geometric
difficulties that arise in implementing these procedures in Brownian motion. In these models, under the risk-neutral
the next section. measure, we have

Our main contribution is an automated, general-purpose,
and robust algorithmic framework for IS density selection. o
A specialized?mplementation within this framevnv/ork is pre- Ri =INS;-/Si0) ~ Ne (M(Ii ~ i1, BV - ti_l)’
sented as a procedure for Automated Importance Sampling
DEnsity selection (AISDE). AISDE delivers an IS density
with multivariate Normal components centered at certain

modes (local maxima) of the importance functionf. To where “./” denotes element-wise division~* means “is
identify the modes, AISDE performs repeated maximiza- (istributed as”; Ny(u, =) denotes thek-variate Normal
tions of - f invoking a generic unconstrained optimization  dijstribution with meanx and covariance matrie; u is
routine. Each maximization is initialized at a good point, the risk-neutral drift vectorE is the covariance matrix of
determined on the basis of a random sample from a sampling factor log-returns over one time unit. (For brevity, we skip
density. When the random input is multivariate Normal, the details of determination of the drift vectarunder the
we use principal components analysis to obtain a reduced- risk-neutral measure.) We defer the remaining details of
dimension, approximate importance function, which allows casting option pricing as in (1) to Section 6.
efficient identification of a gOOd IS density via AISDE in In exotic option pricing, the importance function may
original problem dimensions over 100. be multimodal and possibly have modal regions far from
This paper is organized as follows. In Section 3 we re- each other, making the determination of a good IS density a
view methods for identifying a good IS density, withfocus on  gifficult task. This is typically the case for a call option on

robust methods. In Section 4 we motivate and develop Pro- the maximum ofk > 1 factors and for an outperformance
cedure AISDE. Section 5 develops the dimension-reduction option, which is a call option on the difference between

technique and the corresponding Monte Carlo estimation wo factors.

with importance sampling. In Section 6 we report results Notably, the IS density proposed in Glasserman et al.
of a Monte Carlo study demonstrating the effectiveness of (1999) typically fails for such options, often substantially
AISDE in the application of pricing high-dimensional ex-  increasing the variance. Another IS density selection proce-
otic options. We summarize our findings and suggest some dure that in our experience proved ineffective (the variance

R;.i=1,...,m are independent (2)

extensions in Section 7. was roughly unchanged) is the algorithm by Lepage (1978)
that appears in the clasdtumerical Recipes in ®y Press
2 IMPORTANCE SAMPLING FOR PRICING et al. (1992). Closer inspection of the reason of failure
EXOTIC OPTIONS of these methods reveals that they are designed for rela-
. tively narrow classes of response functions and/or original
Let §/,j = 1,...,k denote the time-value of thek densitiesf. In the case of Glasserman et al. (1999), the

stochastic factors underlying the option. These factors may effectiveness of the density is shown under the assumption
correspond directly to the price of a tradeable assets such a(roughly) that the logarithm of the importance function is
stocks, or, they may be pricing-model parameters such as 3 concave function on the support of the response function
an interest rate, forward rate, or stochastic volatility. The (the option payoff), which may be violated by exotic-option
values of factors are monitored in discrete time over the payoffs. The Lepage procedure is designed to identify the
set of monitoring times; = i7T/m,i =0, ..., m, equally variance-minimizingseparablelS density, i.e., a density
Spaced between time 0 and tifiewhereT is the calendar that is the product of univariate densities.

option expiration time. At time O, the factor vector has

known valueSo = (s3s . . . s)- 3 IMPORTANCE SAMPLING WITH
Let S, = (S¢ S7 ...S;) denote the vector of all MULTIMODAL IMPORTANCE FUNCTIONS

stochastic factors at time,i = 1,...,m. The option

payoffis some nonnegative functiop(-) applied to the  we assume throughout this paper that) > 0 andv > 0.

set of all factor valuess,,i = 1,...,m. From arbitrage-  Qur entire development extends easily to arbitrarpy

pricing theory, the arbitrage-free price of the option is the \writing v = [ 1t (@) f(2)dz — [ h™(2) f(z)dz, whereht

expectation ofp(-) with respect to a so-calledsk-neutral andh ™~ are the positive and negative part of the integrand

measure For a rigorous treatment of arbitrage pricing respectively, and then estimating separately the two integrals
theory, see Duffie (1996) and Harrison and Pliska (1981); of nonnegative functions.

for an excellent and mathematically lighter treatment, see
Baxter and Rennie (1996).
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Importantly for simulation efficiency, theariance-
minimizing IS densitys

g () = %h(z)f (2) (3)
since it would lead to a zero-variance estimator if it were
possible to both sample from it and evaluate it in closed form.
However, actually evaluating*(Z) is clearly infeasible, as

v is the unknown quantity to be estimated. The message
from (3) is that, to reduce variance, an IS density should

approximate—as much as possible—the importance function.

Many of the IS density selection methods that have

been developed are designed for a unimodal importance

function. When the importance function is multimodal,
there can be serious difficulties in finding a good density
(van Dijk and Kloek 1980). We focus our review on two
approaches for the multimodal case; both are motivated by
integration (and more generally, inference) with Bayesian
posterior distributions.

West (1993) proposes a kernel density estimation tech-
nigue. Based on a sample from an appropriate density,
the candidate IS density is a mixture of kernels (densities)
centered at each of the sampled points. Kernel density
estimation is extremely intensive computationally, as it in-
volves by definition a number of density components equal
to the sample size. To make the IS density practical to use,
West proposes a heuristic procedure for iteratively collaps-
ing pairs of the mixture components to a single component
until the total mumber of components in the mixture is as
small as deemed appropriate by the analyst.

Oh and Berger (1993) use as importance sampling
density a mixture of multivariate density functions in
dimensioni. Mixtures oft's have many attractive properties:

(a) Theycanrepresentvery irregular forms of functions
(van Dijk and Kloek 1980).

(b) They allow easy and fast random variate generation.

(c) They allow flexibility in controlling the tail behavior
(thickness of tails) of the density.

The authors assume a capability to identify theortant

modesof the importance function. [They do not define pre-
cisely this notion. Loosely speaking, a mode is important
if the function is large at the mode (or the integral is large
at a region appropriately linked to the mode) relative to the

other modes.] They choose the degrees of freedom for each

t component based on application-specific considerations.
Their procedure performs constrained continuous minimiza-
tion of a Monte Carlo estimate of the squared coefficient of
variation, where: (a) the components are initially centered

In implementing the Oh-Berger (OB) procedure, there
is a key difficulty. Quoting the authors, “Note that we thus
assume a capability to identify the modes (or at least the
important modes) of the integrand. This can, of course, be
a difficult task”. (In our terminology, the integrand of Oh
and Berger is the importance functian, f, the product of
response function times the original density’.) Beyond
this difficulty, there is another important issue that must
be addressed with respect to efficiencyzif f has many
modes, then even if it were feasible and computationally
viable to identify all modes, the efficiency of a mixture IS
density with too many components would suffer from the
high cost of evaluating the IS density.

4 FRAMEWORK FOR
IMPORTANCE SAMPLING
SELECTION (AISDE)

AUTOMATED
DENSITY

In this paper, the candidate IS densities considered belong
to the family

g() =) aip(:6)

i=1

(4)

wherem is a positive integery;, i =1, ..., m are positive
mixing weights such thab " ,o; = 1; 6; € RY,i
1,...,m; andgy(-; 0) is the density of the-variate Normal
distribution with meand and identity covariance matrix.
This family is flexible in terms of location and weighing of
the component densities, while being constrained to have
unit covariance on each component. The choice of unit
covariance is made to simplify our subsequent exposition,
but is not restricting on our development. In view of
the covariance restriction, unless otherwise stated, we will
assume that the original densifyis the product of univariate
densities with unit variance.

Our approach to density selection is logically positioned
before the OB procedure in the density selection process. We
do not require a priori knowledge of any of the modes of the
importance functioti - f and focus on efficiently identifying
modes that are important in reducing the variance.

To begin our development, we define the variance and
the second moment under importance sampling, respectively,
as functions of the IS density:

o2(g) = va(g) — v2

where

3 F(Z)\?
v2{g) = Eg[(h(z)g@)) ]

at the known modes; and (b) the decision variables are theA mixture IS densityg with many components is typi-

mixture weights, the mean vectors, and covariance matrices

of all the components.
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cally substantially costlier to evaluate thgh To model
the efficiency of candidate IS densities, we use the follow-



Avramidis

ing simple model that captures the essential Monte Carlo
computing cost components. Define the constants,,

and cs as the expected per-replication computing cost of
random-variate generation (i.e., sampling frofy, eval-
uation of the response functiol, and evaluation ofp,
respectively. Writingg (M) to explicitly denote the number
of components og, the efficiency ofg relative to f is

o2(f) ¢+ cn
o2(g(M)) cy+cp+ (M + 1)y

Eff (g(M)) = ®)

In practice, good estimates of the computing-cost constants
may be either a priori known or estimated dynamically
during the density estimation itself. In the remainder, we
assume these as known constants.

Let M = {z1,z22,..., 20|} be the set of all modes
(local maxima) ofk - f. We will select an IS density by
attempting to obtain a good solution to the optimization
problem

max Eff(g(N)) (6)
st. N M (1)
§N) =3 e b (z)) 8)

zj € M, eachj 9)

o (h-)(z) (10)

D NN

That is, the selection problem restricts attention to densities
in the class (4), further restricted as follows:

Constraint (8) says that each componerdf g is
centered at (has mean) a mode of the importance
functionh - f.

Constraint (10) says that the mixture components
are weighed in proportion to the value of the im-
portance function at the corresponding mode.

Briefly, our approach to obtaining a good solution to (6)
is as follows. In view of the constraints (8) and (9), it is
necessary to identify some or all of the modek-gf. Forthis
task, we simply use a standard off-the-shelf unconstrained
optimization routine, say MAXIMIZE. The remaining work
is to find a good\/.

There are two main considerations in the search for a
good N. The first one has to do with the impact &f
to efficiency, as opposed to simply variance. In general,
for N1 C N>, we expect Vafg(N2) < Var(g(N1), by ar-
guing that a larger set of modes allowsmore flexibility
to approximate: - f. However, the computing-cost com-
ponent of efficiency decreases with'|, so we may have
Eff (g(N2) < Eff (g(N).

The second, more important consideration is the practi-
cal issue of controlling the maximization computing effort.
We focus our discussion on the effects of problem dimen-
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siond. Actual integration via Monte Carlo require3(d)
work, i.e., itis linear in problem dimension. In contrast, the
work of MAXIMIZE is typically O(d®) or O(d*), when
derivatives are user-provided or approximated via finite dif-
ferences within MAXIMIZE, respectively. Thus, as the
dimensiond increases, invoking MAXIMIZE will be not
practical. However, for moderate problem dimension (say
< 30), the work per call to MAXIMIZE may be quite small
relative to the Monte Carlo total budget. With this case in
mind, and considering that- f may have many modes, the
main consideration is to identify modes efficiently, namely:

Identify a new mode with each call to MAXIMIZE.
Identify earlier (rather than later) the modes with
higher impact on reducing variance.

With these considerations, we propose Procedure
AISDE (Automatic Importance Sampling Density Estima-
tion). In the following paragraph, we summarize the key
steps of AISDE, accompanied with motivating comments
and discussion. A commented pseudocode of AISDE with
full details is given in Figure 1.

1. Generate a samplg;,i = 1,...,n, independent
and identically distributed (i.i.d.) from sampling
density For simplicity, use the sampling density
f.

At iteration 0, initialize the candidate IS density
go to f. Note that for any densityg constructed
independent of the sample, an unbiased estimate
of the second momenkb(g) is

h(Z;) f (Zi ))

Z ( 8(Z)

_12 h*(Zi) f(Zi h“(Z)f(Zi)

g(Z)
(At the M-th update iteration, use the following
notation: Ny, is the set of all known modes of
h - f; and gy is the candidate IS density.) Until
a certain termination criterion is met, do:

g(Zy)
f(Zi)

v2(g)

(a) Identify the sample point that contributes most
to the estimate of the variane€?(gu),

h*(Zi) f(Zi)
* = argmay_; ., —————.

g a)i_zfn M(Zl)
We can expect to most improyeg; by increas-
ingitnearZ;«. Thusthe most promising region
in which to look for undiscovered modes of
h- f is nearZ;«.
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(b) Invoke MAXIMIZE to maximizerh- f, starting Procedure AISDE (Automatic Importance Sampling
at the pointZ;-: DEnsity Selection)
M=0, S=0; Nog=9¢

1. Generate aniid. sample of sizex from density f

7 = MAXIMIZE (h - f; start atZ;»).

If.z is not in Ay, then theM-th update is (Ziyr, i.i.d. 7
' M=M+1. 2. Calculate unbiased estimatesigfo?(f), andv?:
ii. Add the mode to the set of known modes R L
Nu; V2: n- Z,‘:llh(zi) ) X
— J— - n . —_ =Y
iii. Update the IS density,, as in (8)-(10) SAZ == 22i=1h (Zi) —nv
where N = Ny. Ve =V —n" 5%
iv. Update estimates of the variance and ef- 3. Initialize the first candidate 1S density
ficiency of gy. g0()=f()
4. Output densityga as the one with maximum es- 4. Each sample point gives an estimatevpfgo)
timated efficiency over all update iterations. O _ RZDFEZ) ;1 o
Yo =z =12
4.1 Convergence and Statistical Properties of AISDE While (Termination Condition)

] ) ) ) ) 5. Find the sample point that contributes mostr?c/[g\M)
We briefly discuss the asymptotic behavior of AISDE with o argmag{Yi(M) i ¢ S)

respect to the sample sizend the number of maximizations S =8U(i*}
no. Of course in practice AISDE will likely be most useful o .
with modestn and smallng. We need the notion of 6. Maximizeh - f, starting atZ;«

attraction set of a mode;, defined as the setl; = {z € z = MAXIMIZE (h - f; start atZ;«)
R¢: MAXIMIZE (k- f;start atz) returnsz;}. 7. Check if the maximizer is valid and new
The maximum necessary value of is n (in this If (MAXIMIZE Converged andz ¢ Ny )

case, each sampled point serves as a starting point for one

maximization.) First consider a fixed sample size As 8. Update mode information

no increases to, the set of modes of the importance M=M+1 zu=2z Nu=Ny-1Ufzm)
function identified by AISDE N/, increases to a (possibly 9. Set IS density mixture weights

strict) subset ofM (the strict case occurs if there exists ay = =New

a modej of h - f such that none of the sampled points 2 j=1h-)z))

{Zi}}_, belongs toA;. Now lettingn = no — oo, under 10. Update the IS density (evaluated at the sample points)
the mild assumption that the attraction set of each point in em(Z) = amd(Ziszm) + (L — ap)gm—1(Z)),

M has positive probability undef, N converges toM, i=1...,n

and the associated weights, i = 1, ..., NV converge. In

11. Update the individual-point estimatesaf(gs)

M) _ h2@Z)f(Z)
Y, = AR i=12,...,n

summaryga converges to a density whose components are

in one-to-one correspondence with the modek-of as the

compl_Jter budget allocated to AISDE grows appropriately. 12. Estimate the efficiency ofy relative to f
Given thatg,, was constructed explicitly to reduce the 5 i D)

sample-based variance estimate at the previdtiteration, SMj i Y = ‘Lf e

52, we expect the variance estima$é, to be biased Eff(gm) = (SZ/Sﬁ)m

low, i.e., underestimate the true variane&(g,). Recall, End If

however, that the reason for obtaining these estimates is to o i

comparethe successive candidate density variances and ef- ENd (Termination Condition)

ficiencies, so the quantity we are implicitly estimating isthe  13. Output density with maximum estimated efficiency

difference (or ratio) of varianceacross update iterations, M* = argmax{Eff (). i = 1...., M}

which is expected to be less biased than the individual vari- _NoME

ance estimates. Our computational experience confirmed ga () = Zf:la’(b(" Z))

this negative bias. Ultimately, however, the really relevant

quantity is the efficiency oka, evaluated empirically in

Section 6.

Figure 1: AISDE Pseudocode
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5 DIMENSION REDUCTION FOR IMPORTANCE
SAMPLING VIA PRINCIPAL COMPONENT

ANALYSIS

We restrict attention to the special case with simulation
input X ~ Ny(ux, Xx), where means “is distributed
as”; N; denotes thei-variate Normal distributionuy is
the mean vectorXx is a nonsingular covariance matrix.
The problem is to estimate E[h1(X)] for a given
function k1(+). In this case, the importance function can
often be well-approximated by lower-dimensional functions,
thus enabling effective use of procedures such as AISDE
requiring maximization in high dimension.

From standard linear algebra, there existel & d
orthogonal matrixU such that

won
~

U'sxU=A, A=dagr3, 13, ...,13)
where the “diag” notation means thatis a diagonal matrix
whose diagonal elements are the argument of diag.

M=x3>...>x>0

The multivariate Normal distribution has the special property

that any linear transformation of a multivariate Normal vector

is also multivariate Normal. ThuX can be represented as
X=ux+UY, Y~ Ng(@0g A). (12)

where @ is a d-vector of zeros. Sinc& consists of

d independent Normal random variables with decreasing

variances, the parsimonious approach to approximafirg

to restrict the transformation implied Iy to the firstdr < d

elements inY. The reduced dimensiodir may be either

selected directly or determined by selecting the “proportion

of total variance to keep” via a parameter<0§ < 1. In

the latter case, we take

k d
dRzmin{k:ZA§382A§}
j=1 j=1

PartitionY = (Y Yp), whereYx andYp are the fistdr
and the remaining elements &f respectively. LetAx =
diagnZ, A3, ..., A3.); Ap = diagf 1. A3 0., AF).
Let Uk be thed x dg matrix formed by the firstir columns
of U; and letUp be thed x (d — dr) matrix formed by
the lastd — dr columns ofU.
The proposed approximation 0 is
X = pux + Uk Yk,

YK ~ Nag(Ogg, Ak), (12)
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where

d 2

AK =pdiag()»2,)é, '”’)\ER)’ p = W

j=1%j
The vectorYk is conceptually equivalent ti, except that
the sum of variances of its elements is adjusted via the
inflation factorp > 1 to equal the sum of variances of the
full-dimensional input’ in (11). Note tha has the original
dimensiond, but is generated as a linear transformation of
the dr-dimensionalYx .

Consider a hypothetical simulation (approximating the
original simulation) where the random imput ¥, of
dimensiondr, and the output whose expectation is to be
estimated ish1(X). Corresponding to the approximating
simulation is theapproximate importance function

r(@) = hi(ux + UcAk2)dap(z). z€ R®  (13)
whereg,y is thedr-dimensional standard Normal density.
It is important that there is flexibility in choosingr, with
the obvious tradeoff that adr is reduced, the accuracy
of (12) as an approximation to (11) will deteriorate.

Based on this flexible development of an approximate,
lower-dimensional importance function, we propose that
Monte Carlo estimation of via importance sampling can
proceed in two steps. Step 1isto determine an IS density for
the reduced-dimension, approximate importance function
in (13). Procedure AISDE may be used in this step to
obtain an IS density for samplingYx. This reduction
of dimension is crucial, in view of the very fast (cubic
or quartic) growth of the MAXIMIZE work with problem
dimension. Step 2 is estimation ofvia Monte Carlo with
importance sampling as follows( is sampled according to
the exact representation (11), where the elemeni&k cdre
sampled via a new densigy the elements ofp are sampled
via the original density,_4. The exact procedure for step
2 is listed in Figure 2. We name this procedimgortance
Sampling on Selected Principal Componefi&SPC).
Proposition 1.  For any densityg strictly positive on
(—00, c0)?R, (15) is an unbiased estimate Bfi1(X)].

Proof. The representation (11) is equivalent to the repre-
sentation

X=/1/X+UAzy ZNNd(Odvld)s

where I; is the identity matrix of dimensiorl. Under
the original Z-density ¢4, Zk ~ ¢ag, ZD ~ Pd—ds, and
Zk, Zp are independent. In view of the sampling Bk
and Zp in (14), the likelihood ratio equals

Gar(ZK)Pa—dr(ZD)
8(Zk)d—ar(Zp) '
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Importance Sampling on Selected Principal Components

INPUTS:

X ~ Ny(ux, Xx); wx is the mean vectokEy is
a nonsingular covariance matrix;

IS densityg (dr-dimensional)

¢d—dr IS the (d — dr)-variate standard Normal
density

GOAL: Estimatev = E[h1(X)].

1. Generate
Zk ~ & Zp ~ ¢i—dr; Zk, Zp independent
(14)
Yk = AxkZk; Yp=ApZp
2. Set
X = ux + UxYx + UpYp
3. Evaluate
dr (ZK)
h1(X)¢R— (15)
g(Zk)

Figure 2: Importance Sampling on Selected Principal Com-
ponents

completing the proof. |l

6 APPLICATION TO EXOTIC OPTION PRICING
AND EXPERIMENTAL EVALUATION

We focus on the application of the techniques of Sections 4
and 5 to pricing exotic options. Recalling (2), and defining
the vector of all log-returnX = (R4, R, ... R;,), we have
that X is d-variate Normal, where/ = km, with known
mean and covariance matrix. Observe that the vector of
factor prices is recovered frok as

S, = So. * exp( Z Rtj>.
=1

where “.*” denotes element-wise multiplication.
We report experimental results for two exotic option
payoff functions. The payoff of a call option on the maxi-
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mum of the path-wise arithmetic average of factors is
m +
-1 k
piX) = (mkax{m le,i} — K)
1=

wherex™ = max(x, 0); K is thestrike price The payoff
of a call option on the maximum of factors at expiration
with a down-and-out barrier on the minimum of factors is

po(X) = (mkaxs§ - K)+1{minks,’j >bi=1,..., m}

where b is the barrier value. A special feature is that
the corresponding importance functions are multimodal and
thus require techniques such as the ones developed in this
paper. Recalling the discussion of arbitrage pricing in
the second paragraph of Section 2, the option price is
ci =E[pi(X)],i =1,2.

We tested the robustness of AISDE against problem
instances that were generated randomly as follows. The
parameterg: and T in (2) were: ¥ is a diagonal matrix,
with diagonal equal t¢0.1e; +0.7U)?, wheregy is ak-vector
of ones;U is ak-vector uniformly distributed or0, 1)¥;
the squaring of the vector in parentheses is element-wise;
u = —0.05¢; — %diag(Z), where diagX) is the k-vector
of diagonal elements okE. The factor vector at time O
was Sy = 60e¢; + 30V, whereV is a k-vector uniformly
distributed on(0, 1)¥. For the barrier, we took = 30.

The strike priceK was set subsequently by increasikg

in small amounts until the coefficient of variation (CV) of
pi(X) exceeded 5. The large target CV value of 5 aims to
set up problem instances such that importance sampling is
most needed. The option expiration time wias= 1 year.

The number of monitoring times was = 10.

AISDE was implemented as follows. We toak =
10000. The termination condition inthe While statementwas
Eff (gp) < Eff (gr—1). The dimension reduction technique
was implemented by settinh= 0.9, i.e., we used as many
principal components as necessary to “cover” 90% of the
total problem variance.

Performance measures were estimated as follows. The
variance ratio, VR= o2(f)/o%(ga), was estimated as
the ratio of sample variances based on 10 independent
macroreplications of the standard and IS estimate, where
each of the latter estimates was the average over 32000
independent replications. The efficiency ratio, ER, was
estimated as in (5), where the variance ratio was estimated
as we just discussed, and the constantsc;,, andcy were
estimated to sufficient accuracy for the computing platform
MATLAB on which all experiments were performed.

Importance sampling estimation of the option price
based on a first-stage density estimation via AISDE has
two computing cost components: (1) The one-time cost of
IS density estimation, measured herefy, the CPU time
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consumed by AISDE; (2) Just as with standard Monte Carlo,  Table 1: Performance of AISDE-Based Importance

the cost per simulation replication. Legtdenote the target Sampling for Option Payofpy; k =3,5,7; m = 10
confidence level of a Monte-Carlo based confidence interval k Probl# dr M* VR ER BRA

1 5 3 357 309 0.173

) _ ) 2 4 3 46.0 401 0.182

of the option price. To put the cost (1) in perspective, define 3 3 5 3 372 322 0134

the break-even relative accuracy 4 4 2 480 43.2 0.240

5 4 2 76,5 68.9 0.262

ER c¢y+an AVG 46.8 41.2

BRA(Ta, y) = x1-1,2CV

ER—1 Ta 1 7 3 478 436 0.169

2 8 5 320 279 0.146

where x1_, 2 is the (1 — y/2)-quantile of the standard S 3 7 5 375 328 0.1351
Normal distribution. It is easy to check that BRA has the 4 7 5 406 355 0.144
following property for any given confidence level BRA 5 7 5 338 295 0.135

is the minimum ratio (CI half-width/option price) such that AVG 379 334

standard Monte Carlo requires less CPU time than AISDE- 1 10 6 36.7 30.6 0.117
based importance sampling. 2 10 7 563 459 0.170
Tables 1 and 2 contain results for the option paypffs 7 3 10 7 580 473 0.252
and py, respectively. In each table, there are three panels 4 10 2 2974 2742 0.658
corresponding to different values of the number of factors 5 10 6 981 819 0.347
k. In each panel, each of the first 5 rows corresponds to one AVG 81.0 684
randomly generated problem instance and is correspondingly
numbered under the column labeled “Probl #”; the 6th row Table 2: Performance of AISDE-Based Impor-
labeled “AVG” gives the geometric average of the variance tance Sampling for Option Payofb; k = 3,5, 7;
ratio and efficiency ratio over the 5 problem instances. For m =10
each problem instance, we report: the reduced dimedgipn k Probl# dr M* VR ER BRA
the number of modesr* of the selected IS densiigp; the 1 4 3 144 131 0.235
estimated variance ratio VR; the estimated efficiency ratio, 2 5 3 150 135 0.171
ER; and the break-even relative accuracy BRA 95%). 3 3 4 3 19.7 179 0.193
Clearly densityga Yields large and consistent efficiency 4 4 2 154 143 0.111
improvement. In addition, the large values of the break- 5 4 3 156 14.2 0.158
even relative accuracy, BRA, indicate that the CPU cost of AVG 15.9 145
AISDE, Tp, is justified by the efficiency improvement. For 1 7 5 10.4 9.3 0.196
example, in Table 1, panel 1, Problem 1, unless the user is 2 7 5 127 11.3 0.217
satisfied with a ratio (CI half-width/option price) 0.173, 5 3 7 5 115 10.2 0.120
AISDE-based importance sampling is preferred to standard 4 7 5 12.1 10.8 0.282
Monte Carlo. 5 7 5 11.0 9.8 0.139

In a larger set of experiments than the one reported AVG 11.5 103

here, we tested AISDE on a wider selection of payoff 1 10 7 50 4.3 0.174
functions and in original problem dimension up to 140 (7 2 10 7 75 6.5 0.178
factors, 20 monitoring times). This experimental evaluation 7 3 10 7 7.8 6.8 0.163
over random problem instances demonstrated that AISDE is 4 10 7 55 48 0.150
powerful and robust—it yielded large efficiency improvement 5 10 7 86 75 0.140
in a very large percentage of randomly generated problems. AVG 6.7 5.9

7 CONCLUSION AND SUGGESTIONS FOR

tions. Our contribution is towards automating and making
FUTURE WORK

computationally efficient the task of locating the mixture
components at modes of the importance function, a central
Both the Oh-Berger (OB) and our new Procedure AISDE ;¢ that does not appear to have been previously addressed.
appear to be robust, i.e., yield efficiency improvement with  here is a natural combination of our Procedure AISDE and
a consistency that is hard to “break”. The power of these procedures such as OB, namely: first apply AISDE to obtain

procedures stems from the flexibility of mixtures of nor- 5 ~andidate densitya and then apply OB to improvea
mal or ¢ densities in approximating the many types of

importance functions that may be encountered in applica-
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via optimization over the component weights, modes, and
covariance matrices.

The idea of dimension reduction via principal compo-
nent analysis significantly increases the range of problem
dimensions that can be addressed effectively via AISDE.
Unfortunately, this development leverages special proper-
ties of the Multivariate Normal distribution and does not
immediately extend to other distributions.

The impressive performance of AISDE in our experi-
ments in option pricing does not of course guarantee effi-
ciency improvement in a given new integration application.
It would be interesting to study experimentally the proper-
ties of integration problems that may “break” the observed
robustness of AISDE. Such properties include the heaviness
of tails of the original density and perhaps more pathological
response functions than the ones we have encountered.
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