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1. Introduction

When applying the method of control variates (CV) to a simulation experiment

with a univariate response Y whose mean is to be estimated, we identify a 1× q vector

of concomitant random variables C = (C1, . . . , Cq) having known, finite expectation

µC ≡ E[C] and a strong linear association with Y . To estimate θ ≡ E[Y ], we try

to predict the unknown deviation Y − θ as a linear function of the known deviation

C− µC and adjust the response accordingly:

YCV(a) ≡ Y − a(C− µC)T.

For any constant 1× q vector a of control coefficients, the controlled response YCV(a)

is an unbiased estimator of θ. Let ΣY C ≡ cov(Y,C) and ΣC ≡ cov(C), where we

assume that all of the elements of these matrices are finite and that det(ΣC) > 0. The

variance of YCV(a) is minimized by the optimal control coefficient vector

β = ΣY CΣ−1
C ; (1)

see [10]. Even though in some applications ΣC may be known, ΣY C is almost always

unknown; and therefore β must be estimated.

We consider estimators of β and θ based on a random sample of n observations

{(Yi,Ci) : i = 1, . . . , n}. The most commonly used control coefficient vector is the

sample analog of β,

b = SY CS−1
C , (2)

computed from the given data set, where SY C is the vector of sample covariances

between the response and the controls, and SC is the sample covariance matrix of the

controls. Using the control coefficient vector in (2), we obtain the classical control-

variate estimator of θ

θ̂CV(n) ≡ Ȳ − b(C̄− µC)T, (3)

where Ȳ and C̄ are the sample means of {Yi : i = 1, . . . , n} and {Ci : i = 1, . . . , n}
respectively. Without some additional assumptions about the joint distribution of

each pair (Yi,Ci), the controlled estimator θ̂CV(n) is, in general, biased. In addition,

there is no known unbiased internal estimator of var[θ̂CV(n)] (that is, an unbiased

estimator calculated from the same set of observations used to calculate θ̂CV(n)); hence

we must generate independent replications of θ̂CV(n) to obtain a reliable estimator of

the sampling error in this statistic. Intuitively, this is not efficient, since each estimate

of β is based on a small subset of the available observations.
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Splitting is a well-known remedy that provides unbiased CV point estimators.

The key idea, in its simplest form, is to split the complete sample into two groups,

compute the estimator b from the observations in the first group, and use this estimator

to control the observations in the second group. By the independence of random

variables computed from different groups, the split-CV estimator is unbiased. However,

this means wasting the Y -observations in the first group. Tocher [16] and Nelson

[12] considered other splitting schemes that use all of the Y -observations, but there

appear to be difficulties with variance estimation in these schemes. One approach by

Tocher uses two groups ([16], pp. 115–116) and lacks a variance estimator. Nelson’s

scheme is a special case of another approach discussed by Tocher ([16], p. 116) and

attributed to Tukey. Nelson gave a variance estimator that is generally biased and

usually underestimates the variance. Nelson also constructed confidence intervals based

on his split-CV point estimator and the associated variance estimator; and he found

that these intervals typically have lower-than-nominal coverage for small sample sizes.

In this paper we propose a new control-variate estimation procedure based on

splitting. In Section 2, we develop an unbiased point estimator of θ, an unbiased in-

ternal estimator of the variance of the first estimator, and an approximate confidence

interval for θ. In Section 3, we calculate the variance of our split-CV point estimator

when the response and the controls are jointly normal; and under much more gen-

eral conditions on the joint distribution of the response and the controls, we derive

some fundamental asymptotic properties of the point estimator, the variance estima-

tor, and the confidence-interval estimator based on our splitting scheme. In Section 4

we present the results of an empirical performance comparison of our split-CV estima-

tion procedure versus the classical CV procedure and Nelson’s procedure in the context

of estimating the mean completion time for stochastic activity networks. Although this

paper is based on [3], a precursor of the splitting scheme detailed in this paper was

originally presented in [5].

2. Control-variate estimation with splitting

Let {(Yi,Ci) : i = 1, . . . , n} be the observations obtained from n independent

replications of the simulation experiment. The complete sample is split into m groups

(m ≥ 2) of k ≡ n/m observations each so that the `th group H` ≡ {(Yi,Ci) : i ∈ I`}
consists of the observations with indices in the set

I` ≡ {(`− 1)k + 1, (`− 1)k + 2, . . . , `k}, ` = 1, . . . ,m.
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In this paper, n is always assumed to be an integral multiple of m with n = km.

Recommendations on how to choose m are given in Section 3.

Let b` = b`(H`) be the control coefficient estimator (2) computed solely from the

observations belonging to the `th group H`. Thus in terms of the sample statistics

Ȳ` ≡ k−1
∑
i∈I`

Yi and C̄` ≡ k−1
∑
i∈I`

Ci,

we have

b` =

∑
i∈I`

(Yi − Ȳ`)(Ci − C̄`)

∑
i∈I`

(Ci − C̄`)
T(Ci − C̄`)

−1

for ` = 1, 2, . . . ,m. To simplify subsequent expressions, we define the group-membership

function γ(i) ≡ b(i − 1)/kc + 1, i = 1, . . . , n, where bxc denotes the greatest integer

≤ x so that (Yi,Ci) ∈ Hγ(i) for i = 1, . . . , n. Using the auxiliary function δ(`) ≡
` (mod m) + 1, ` = 1, . . . ,m, we define the control-assignment function τ(i) ≡ δ[γ(i)],

i = 1, . . . , n, specifying for each observation (Yi,Ci) the corresponding “control” group

Hτ(i) from which to compute the control coefficient vector bτ(i). Thus the ith controlled

response is

Zi ≡ Yi − bτ(i)(Ci − µC)T for i = 1, . . . , n. (4)

Notice that Ci and bτ(i) are independent since they are respective functions of two dis-

joint groups Hγ(i) and Hτ(i) of independent identically distributed (i.i.d.) observations.

It follows immediately that each controlled response (4) is an unbiased estimator of θ.

Furthermore, we have the following basic property of the controlled responses.

Proposition 1 If m ≥ 3, then the controlled responses {Zi : i = 1, . . . , n} are pairwise

uncorrelated.

Proof. For 1 ≤ i 6= j ≤ n, we have

cov(Zi, Zj) = E[ZiZj]− E[Zi]E[Zj]

= E[YiYj]− E[Yibτ(j)(Cj − µC)T]− E[Yjbτ(i)(Ci − µC)T]

+E[bτ(i)(Ci − µC)Tbτ(j)(Cj − µC)T]− E[Yi]E[Yj]. (5)

Observe that the first and the fifth terms on the right-hand side of (5) cancel each

other. In the second term, we observe that Yibτ(j) is independent of Cj since these

two quantities are respective functions of two disjoint sets of mutually independent

random vectors. Specifically, Yibτ(j) is a function of {(Yi,Ci)} ∪ Hτ(j) while Cj is a

function of {(Yj,Cj)}; and these two sets of i.i.d. observations are disjoint since i 6= j
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and Iτ(j) ∩ Iγ(j) is empty. Thus for the second term on the right-hand side of (5), we

have

E[Yibτ(j)(Cj − µC)T] = E[Yibτ(j)]E[(Cj − µC)T] = 0. (6)

A similar argument shows that the third term in (5) also vanishes. Finally we consider

the fourth term in (5). Since m ≥ 3, the definition of τ(·) ensures that one of the

following must occur: τ(j) 6= γ(i) or τ(i) 6= γ(j). If τ(i) 6= γ(j), then by an argument

similar to that given for equation (6), we see that the quantities bτ(i)(Ci − µC)Tbτ(j)

and (Cj − µC)T are respective functions of two disjoint sets of mutually independent

random vectors—namely, Hτ(i) ∪ {(Yi,Ci)} ∪ Hτ(j) and {(Yj,Cj)}; and thus

E[bτ(i)(Ci −µC)Tbτ(j)(Cj −µC)T] = E[bτ(i)(Ci −µC)Tbτ(j)]E[(Cj −µC)T] = 0. (7)

On the other hand, if τ(j) 6= γ(i), then we apply the argument given for equation (7)

with the roles of i and j reversed.

To build a control-variate procedure for estimating θ based on this splitting scheme

with m groups and a total of n observations, we define the split-control-variate estima-

tor of θ

θ̂SP(m,n) ≡ n−1
n∑

i=1

Zi

and the variance estimator

S2
SP(m, n) ≡ (n− 1)−1

n∑
i=1

[Zi − θ̂SP(m,n)]2 .

For simplicity, we will occasionally suppress the arguments m and n when referring to

the estimators θ̂SP(m,n) and S2
SP(m, n). Now we are ready to state the main result of

this section.

Theorem 1 The statistic θ̂SP(m,n) is an unbiased estimator of θ. Furthermore, if

m ≥ 3, then S2
SP(m,n)/n is an unbiased estimator of var[θ̂SP(m, n)].

Proof. The unbiasedness of θ̂SP(m,n) follows from the unbiasedness of the controlled

responses {Zi : i = 1, . . . , n} as discussed immediately following equation (4). If m ≥ 3,

then by Proposition 1 we have

var[θ̂SP(m, n)] =
1

n2

n∑
i=1

n∑
j=1

cov(Zi, Zj) =
var(Z1)

n
. (8)

It also follows from Proposition 1 and equation (8) that

E[S2
SP(m, n)/n] =

1

n(n− 1)
E

[
n∑

i=1

Z2
i − nθ̂2

SP(m, n)

]
=

var(Z1)

n
= var[θ̂SP(m, n)].
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Restricting the proposed splitting scheme to m = 2 groups yields Tocher’s two-

group splitting scheme with n0 = n1 = n/2 as detailed on pp. 115–116 of [16]. (Due

to a typographical error, n0 and n1 are changed to n1 and n2 respectively in the latter

parts of Tocher’s development.) The problem with Tocher’s scheme is that the Zi’s

are, in general, correlated when m = 2; and this does not allow unbiased estimation

of var[θ̂SP(m, n)]. Similar difficulties arise with Tukey’s generalized splitting scheme;

and Tocher’s formula for the variance of Tukey’s split-CV estimator (namely, the last

equation on p. 116 of [16]) appears to be incorrect. As Proposition 1 shows, these

difficulties can be avoided by using m ≥ 3 and a suitably chosen control-assignment

function to guarantee that the Zi’s are uncorrelated.

To construct an approximate 100(1 − α)% confidence interval for θ, we apply a

standard technique for approximating the distribution of the variance estimator S2
SP

using a chi-square distribution with “effective” degrees of freedom

νeff ≡
2E2[S2

SP]

var[S2
SP]

;

see p. 283 of [8]. If the Zi’s were independent instead of just being uncorrelated, then

the variance of S2
SP would be given by

n

(n− 1)2

{
E
[
(Z1 − θ)4

]
− E2

[
(Z1 − θ)2

]}
to terms of order n−1 ([15], p. 338). This motivated the following heuristic formula for

the effective degrees of freedom assigned to S2
SP:

ν̂eff ≡
⌈
2S4

SP

/
n

(n− 1)2

{
1

n

n∑
i=1

(Zi − θ̂SP)4 − S4
SP

}⌉
, (9)

where dxe denotes the smallest integer ≥ x. (To simplify the notation, we suppress the

dependence of ν̂eff on n and m.) In view of (9), an approximate 100(1−α)% confidence

interval for θ is

θ̂SP ± t1−α/2(ν̂eff)
SSP√

n
, (10)

where t1−α/2(ν̂eff) denotes the quantile of order 1−α/2 for Student’s t-distribution with

ν̂eff degrees of freedom.
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3. Properties of the splitting scheme

3.1 Efficiency of the splitting scheme under normality

In this subsection we derive the variance of the split-CV estimator under the

assumption that the response and the controls observed on each replication have a

multivariate Normal distribution:{[
Yi

CT
i

]
: i = 1, . . . , n

}
i.i.d.
∼ Nq+1

([
θ

µT
C

]
,

[
σ2

Y ΣY C

ΣT
Y C ΣC

])
. (11)

For this case, Lavenberg, Moeller, and Welch [10] showed that the classical CV esti-

mator θ̂CV(n) is unbiased and has variance

var[θ̂CV(n)] =
σ2

Y ·C
n

· n− 2

n− (q + 2)
, where σ2

Y ·C = σ2
Y −ΣY CΣ−1

C ΣT
Y C .

In view of (8), we can easily calculate var[θ̂SP(m,n)] from the variance of a single

controlled response Z1. From (4) and the unbiasedness of Z1, we have

var(Z1) = E[Y 2
1 ]− 2E[Y1b2(C1 − µC)T] + E[(C1 − µC)bT

2 b2(C1 − µC)T]− E2[Y1]

= σ2
Y − 2E[b2]Σ

T
Y C + tr(ΣCE[bT

2 b2]), (12)

where tr(·) denotes the trace operator. To continue the calculation of var(Z1), we need

the following results:

E[b`] = ΣY CΣ−1
C (13)

and

E[bT
` b`] = Σ−1

C ΣT
Y CΣY CΣ−1

C +
σ2

Y ·C
k − (q + 2)

Σ−1
C . (14)

A sketch of the proof of (13) and (14) is given on p. 126 of [13]; a complete argument

is given on pp. 25–28 of [3]. Substituting (13) and (14) into (12) and letting Iq denote

the q × q identity matrix, we obtain

var(Z1) = σ2
Y − 2ΣY CΣ−1

C ΣT
Y C + tr

[
ΣT

Y CΣY CΣ−1
C +

σ2
Y ·C

k − (q + 2)
Iq

]

=
k − 2

k − (q + 2)
σ2

Y ·C .

Using (8), we have

var[θ̂SP(m, n)] =
σ2

Y ·C
n

· n− 2m

n− (q + 2)m
. (15)
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We see that var[θ̂SP(m, n)] ≥ var[θ̂CV(n)] for any number of groups m ≥ 2 and

var[θ̂SP(m, n)] increases with m. This is to be expected: as the number of groups

m increases, the estimate b` from group H` is based on fewer observations and there-

fore has larger variability. Recalling that we obtain an unbiased variance estimator

only when m ≥ 3, we recommend using m = 3 groups. This is based on the result (15)

for the normal case as well as Monte Carlo experience for the nonnormal case.

3.2 Large-sample properties of the point estimators

In this subsection, we relax the normality assumption (11), and we derive some

asymptotic properties of the splitting scheme as the total sample size, n, becomes large

while the number of groups, m, remains fixed. Since we will be dealing with vectors,

the notions of convergence with probability 1 (denoted by
w.p.1−→) and convergence in

probability (denoted by
P−→) are understood to be with respect to the usual Euclidean

topology. First we show that the control coefficient vector b defined in (2) is strongly

consistent, i.e., it converges with probability 1 to the optimal control coefficient vector

β in (1) as n →∞.

Lemma 1 Let β and b be as in (1) and (2) respectively, where det(ΣC) > 0. Then

b
w.p.1−→ β as n →∞.

Proof. Let Ai (respectively, Bi) denote the matrix formed from SC (respectively, ΣC)

by replacing the ith row of SC (respectively, ΣC) with SY C (respectively, ΣY C). Using

Cramer’s rule (§5-3 of [9]), we see that bi = det(Ai)/det(SC) and βi = det(Bi)/det(ΣC)

for i = 1, . . . , q. By the strong law of large numbers (Theorem 22.1 of [7]), each element

of SY C (respectively, SC) converges with probability 1 to the corresponding element of

ΣY C (respectively, ΣC) as n → ∞. Since det(·) is a continuous function, we see that

det(Ai)
w.p.1−→ det(Bi) for i = 1, . . . , q, and det(SC)

w.p.1−→ det(ΣC) > 0 as n → ∞. The

desired conclusion follows immediately.

It is well known that the classical CV estimator θ̂CV(n) is asymptotically Normal

with mean θ and variance parameter σ2
Y ·C as n →∞; see [12]. Next we show that the

split CV estimator θ̂SP(m, n) with a fixed number of groups m has the same asymptotic

distribution and that it is strongly consistent.

Theorem 2 For any fixed m,

(i) θ̂SP(m, n)
w.p.1−→ θ as n →∞, and
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(ii) n1/2[θ̂SP(m, n)− θ]
D−→ N(0, σ2

Y ·C) as n →∞.

Proof. To prove part (i), we note that in the `th group H` (` = 1, . . . ,m), the

statistics Ȳ`, C̄`, and b` respectively converge with probability 1 to θ, µC, and β by

the strong law of large numbers and Lemma 1; and the desired conclusion follows since

θ̂SP(m,n) is the average of m terms of the form Ȳ` − bδ(`)(C̄` − µC)T.

To prove part (ii), we define the auxiliary quantities

V`,n ≡ (n/m)1/2 (Ȳ` − θ)

W`,n ≡ (n/m)1/2 (C̄` − µC)T

}
for ` = 1, . . . ,m and n = m, 2m, 3m, . . . .

Moreover, we define{(
V`

W`

)
: ` = 1, . . . ,m

}
i.i.d.
∼ Nq+1(0q+1, Σ) , (16)

where 0q+1 is a (q+1)-dimensional column vector with all components equal to zero and

Σ is the covariance matrix of (Y1, C1). Since convergence with probability 1 implies

convergence in probability (Theorem 20.5(i) of [7]), Lemma 1 yields

[b1, . . . ,bm]T
P−→ [β, . . . ,β]T as n →∞. (17)

It follows from (17), the multivariate central limit theorem ([1], Theorem 3.4.3), and

Theorem 4.4 of [6] that

Υn ≡



V1,n

W1,n
...

Vm,n

Wm,n

bT
1
...

bT
m



D−→ Υ ≡



V1

W1
...

Vm

Wm

βT

...

βT


as n →∞,

where
D−→ denotes convergence in distribution [7]. If {v1, . . . , vm} denote arbitrary

real numbers, if {w1, . . . ,wm} denote arbitrary q × 1 real vectors, and if {b1, . . . ,bm}
denote arbitrary 1× q real vectors, then the function

%(v1,w
T
1 , . . . , vm,wT

m,b1, . . . ,bm) ≡ m−1/2
m∑

`=1

[v` − bδ(`)w`]
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is continuous everywhere in m(2q + 1)-dimensional Euclidean space; and thus the con-

tinuous mapping theorem ([7], Theorem 29.2) implies that

n1/2
[
θ̂SP(m, n)− θ

]
= n1/2m−1

m∑
`=1

[
Ȳ` − bδ(`)

(
C̄` − µC

)T
− θ

]

= m−1/2
m∑

`=1

[
V`,n − bδ(`)W`,n

]
= %(ΥT

n )
D−→ %(ΥT) as n →∞;

and in view of (16), we see that %(ΥT) ∼ N(0, σ2
Y ·C) .

Now we show that the variance estimator S2
SP(m, n) with m fixed is strongly con-

sistent.

Theorem 3 For any fixed m,

S2
SP(m, n)

w.p.1−→ σ2
Y ·C as n →∞.

Proof. By elementary algebra,

S2
SP(m, n) =

1

n− 1

n∑
i=1

Z2
i −

n

n− 1

[
θ̂SP(m,n)

]2
. (18)

By Theorem 2(i),
n

n− 1

[
θ̂SP(m,n)

]2 w.p.1−→ θ2 as n →∞. (19)

Moreover,

1

n− 1

n∑
i=1

Z2
i =

n

n− 1
· 1

m

m∑
`=1

1

n/m

∑
i∈I`

Y 2
i + bδ(`)

∑
i∈I`

(Ci − µC)T(Ci − µC)

bT
δ(`)

−2bδ(`)

∑
i∈I`

Yi(Ci − µC)T


w.p.1−→ θ2 + σ2

Y ·C, as n →∞, (20)

where we have used Lemma 1 and the strong law of large numbers. Combining (19),

(20), and (18), we obtain the desired result.

3.3 Asymptotic exactness of the confidence interval

In this section we show that, under some moment conditions, the confidence in-

terval (10) is asymptotically exact, i.e., the probability that it covers θ converges to

1− α as n →∞.
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Theorem 4 Suppose that the following expectations are finite:

E[Y 4], E[Y 3Ci], E[Y 2CiCj], E[Y CiCjCk], and E[CiCjCkCl] (21)

for 1 ≤ i, j, k, l ≤ q. Then for any fixed number of groups m,

pn ≡ Pr

{
θ̂SP − t1−α/2(ν̂eff)

SSP√
n
≤ θ ≤ θ̂SP + t1−α/2(ν̂eff)

SSP√
n

}
→ 1− α as n →∞ .

Proof. We begin by establishing that

ν̂eff
w.p.1−→ ∞ as n →∞. (22)

By Theorem 3, S4
SP

w.p.1−→ σ4
Y ·C as n →∞. Proceeding along the same lines as in the proof

of Theorem 3 and exploiting the finiteness of the product moments (21), we can also

show that 1
n

∑n
i=1(Zi − θ̂SP)4 converges to a finite quantity with probability 1. In view

of the definition (9) of ν̂eff, relation (22) follows. Thus t1−α/2(ν̂eff)
w.p.1−→ z1−α/2, where

z1−α/2 denotes the quantile of order 1 − α/2 for the standard Normal distribution.

It follows from Theorem 2(ii), Theorem 3, Slutsky’s theorem ([14], p. 19), and the

continuous mapping theorem that∣∣∣∣∣n1/2(θ̂SP − θ)

SSP

∣∣∣∣∣− t1−α/2(ν̂eff) =

∣∣∣∣∣n1/2(θ̂SP − θ)

σY ·C
· σY ·C

SSP

∣∣∣∣∣− t1−α/2(ν̂eff)

D−→ |N(0, 1)| − z1−α/2 as n →∞ .

Finally we have

pn = Pr

{∣∣∣∣∣n1/2(θ̂SP − θ)

SSP

∣∣∣∣∣− t1−α/2(ν̂eff) ≤ 0

}

→ Pr{|N(0, 1)| − z1−α/2 ≤ 0} = 1− α as n →∞.

4. Experimental evaluation

We considered the problem of estimating mean completion time of a stochastic

activity network. We studied the behavior of four estimation procedures: (a) the direct-

simulation procedure (DI) based on independent replications without controls; (b) the

classical control-variate procedure (CCV); (c) Nelson’s split-control-variate procedure

(NSC) described in Section 6 of [12]; and (d) our split-control-variate procedure with

m = 3 groups (SC3) as described in Section 2. For each of these four procedures,
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we computed a point estimator and a confidence interval. The performance measures

of interest were (i) point-estimator mean square error (MSE); (ii) confidence-interval

coverage probability; and (iii) confidence-interval expected half-length.

For the experimental performance evaluation, we used two stochastic activity net-

works of realistic complexity. Network 1 was taken from page 190 of [2]; and the mean

activity durations were also taken from the figure given in that reference. Network 2

was taken from page 245 of [11]; and the mean activity durations were taken to be the

most-likely times shown in the figure given in that reference.

The simulation models for these activity networks were structured to operate as

follows. For each nondummy activity duration Vi in a given network, the associated

distribution was taken to be either (a) a normal distribution with a specified mean

µi and standard deviation σi = µi/4 whose tail was truncated below the value 0; or

(b) an exponential distribution with a specified mean µi. We chose the exponential

distribution as the nonnormal alternative for reasons elaborated in [4]. For network 1

the set of activities with durations as in (a) was taken to be {(1,3), (2,6), (2,4), (8,11),

(10,13), (12,18), (16,17), (17,21), (17,23), (17,19), (18,19), (23,24)}. For network 2 the

set of activities with durations as in (a) was taken to be {(1,2), (2,34), (2,23), (2,4),

(2,32), (24,25), (20,22), (20,21), (21,31), (12,13), (13,14), (14,15), (5,11), (3,9), (4,10),

(47,48), (41,42), (50,51)}.
The following rule was used for selecting control variates. Ranking the paths

in decreasing order of expected duration, we chose the first three path times as the

components of the control vector. We define relative dominance as the probability that

the first of these paths is the critical path (i.e., the longest path) in a single realization of

the network. For each of the selected networks, we simulated three variants exhibiting

progressively greater relative dominance.

To estimate the mean completion time θ in each network with sufficient accuracy

for use as the “true” estimand in reporting confidence-interval coverage probability

and MSE in the main simulation study, we performed a large-scale pilot study using

only the direct-simulation estimator θ̂DI. Table 1 summarizes the results of the pilot

study, displaying for each network the observed value of θ̂DI and the corresponding

estimate of the standard error SE(θ̂DI). Inspection of Table 1 indicates that in each

network, the value of θ has been estimated to an accuracy of at least three significant

figures. Thus we considered the estimates in Table 1 to be the “true” values of θ

in the main simulation study. To ensure that the coverage probabilities reported for

the main simulation study were not significantly contaminated by errors in the “true”
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Table 1: Direct-simulation estimates of the mean completion time θ based on a pilot
study

Network Dominance θ̂DI SE(θ̂DI)
0.38 980.584 0.1335

1 0.65 1614.779 0.1084
0.81 2729.791 0.0917
0.30 68.367 0.0233

2 0.58 81.393 0.0241
0.95 141.660 0.0132

value of θ for each network, we performed the following sensitivity analysis on the

results of the main simulation study. Based on the standard errors given in Table 1, we

constructed 95% confidence intervals (θ̂L
DI, θ̂

U
DI). The coverages reported for the main

simulation study (Tables 2 and 4 below) were compared with the coverages obtained

by successively using θ̂L
DI and θ̂U

DI as the “true” values of θ; and the largest observed

difference from the reported coverages was found to be less than 1.3%.

In previous experimentation [4], we found that the assumption of joint normal-

ity (11) between the response and the controls becomes increasingly untenable as the

relative dominance increases; and this results in serious degradation in confidence-

interval coverage. To assess the effect on confidence-interval coverage of departures

from the normality assumption, we set the relative dominance at three broad levels

(low, medium, and high); and to assess the effect of sample size n, we performed

simulation experiments involving n = 48, 96, and 192 independent replications. Mo-

tivated by (15), we used m = 3 groups for all of the results reported here. For each

combination of relative dominance and sample size, we generated 1024 independent

experiments; and in each experiment we computed a point estimator of θ and a nom-

inal 90% confidence interval for θ based on the DI, CCV, NSC, and SC3 procedures.

By averaging the results across all 1024 experiments, we estimated point-estimator

MSE and confidence-interval coverage probability and expected half-length for all four

estimation procedures. The results of this experimental performance evaluation are

summarized in Tables 2 through 5. In these tables, we have ensured that each entry

has a relative error no larger than 5%.

The main conclusions that can be drawn from the results given in Tables 2 through

5 are the following:

1. All control-variate-based confidence intervals (CCV, NSC, and SC3) become
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Table 2: Confidence-interval evaluation for network 1

Relative Sample Coverage Half-length
Dominance Size n DI CCV NSC SC3 DI CCV NSC SC3

48 87.8 85.9 87.3 88.2 80.1 23.3 23.5 26.4
0.38 96 88.4 87.5 88.7 90.2 56.5 16.3 16.4 17.4

192 90.6 88.4 88.7 89.1 39.9 11.5 11.5 11.9
48 88.1 83.0 84.1 85.5 151.0 14.8 14.9 17.3

0.65 96 88.6 87.3 88.0 88.7 106.4 10.5 10.5 11.5
192 90.1 87.0 87.1 87.7 75.1 7.41 7.43 7.81
48 88.1 79.6 79.7 82.8 264.7 8.48 8.56 10.3

0.81 96 89.0 83.6 84.1 85.9 186.4 6.13 6.15 6.99
192 89.6 85.7 86.0 87.2 131.6 4.37 4.38 4.77

Table 3: Point-estimator MSE for network 1

Relative Sample MSE
Dominance Size n DI CCV NSC SC3

48 2414.8 211.2 213.6 243.2
0.38 96 1262.0 100.8 101.1 108.7

192 574.7 52.0 52.0 55.2
48 8682.8 86.6 89.7 101.0

0.65 96 4468.6 41.4 42.0 45.7
192 2033.7 21.8 21.9 23.2
48 27022.2 32.5 34.6 40.9

0.81 96 13782.5 15.3 15.7 16.3
192 6246.8 7.44 7.53 7.89

Table 4: Confidence-interval evaluation for network 2

Relative Sample Coverage Half-length
Dominance Size n DI CCV NSC SC3 DI CCV NSC SC3

48 88.6 87.6 87.0 88.5 4.36 3.84 3.81 4.38
0.30 96 89.0 87.3 87.5 88.8 3.11 2.70 2.69 2.89

192 89.4 89.5 89.9 90.4 2.19 1.89 1.89 1.97
48 88.1 85.1 85.5 86.5 4.58 2.99 2.98 3.50

0.58 96 89.5 86.6 86.9 88.2 3.26 2.13 2.13 2.34
192 89.2 88.6 88.6 90.1 2.29 1.50 1.50 1.59
48 87.9 62.9 65.1 69.9 7.55 0.82 0.85 1.13

0.95 96 90.0 70.9 73.0 76.8 5.33 0.68 0.69 0.89
192 89.1 77.6 78.5 82.0 3.75 0.51 0.51 0.63
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Table 5: Point-estimator MSE for network 2

Relative Sample MSE
Dominance Size n DI CCV NSC SC3

48 7.05 5.38 5.42 7.14
0.30 96 3.59 2.79 2.78 2.98

192 1.73 1.26 1.26 1.30
48 7.94 3.49 3.54 4.71

0.58 96 3.86 1.80 1.80 1.95
192 1.96 0.82 0.82 0.85
48 21.4 0.49 0.54 0.77

0.95 96 10.2 0.27 0.28 0.32
192 5.34 0.13 0.14 0.14

shorter on the average as relative dominance increases; however, this is achieved

at the expense of some loss of coverage, which may be substantially lower than

the nominal level in extreme cases (see network 2 with high relative dominance).

2. As the sample size increases, the CCV, NSC, and SC3 confidence intervals ap-

proach nominal coverage. This was expected, since all confidence intervals are

asymptotically exact (see [10] for CCV; see Theorem 4 for SC3; the NSC confi-

dence interval can also be shown to be asymptotically exact).

3. In order of both increasing coverage probability and increasing expected half-

length of the confidence intervals, the procedures were almost always ranked as

follows: CCV, NSC, and SC3.

4. In order of increasing point-estimator MSE, the procedures were almost always

ranked as follows: CCV, NSC, and SC3.

Although the SC3 procedure does not appear to completely alleviate the loss

of coverage in cases of extreme nonnormality, it consistently proved to be the most

robust with respect to coverage probability in the examples presented here and in

further Monte Carlo experiments we have conducted. The price paid was a slight

increase in expected confidence-interval half-length and point-estimator MSE. When

the controls are expected to be strongly correlated with the response (that is, for cases

of large relative dominance in our experiments), one may expect all control-variate-

based procedures to achieve large reductions in expected confidence-interval half-length

and point-estimator MSE when compared to the direct-simulation procedure; and in
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these situations the price seems to be well justified. In such cases, the SC3 procedure

should be preferred, followed by NSC and CCV. When the controls are not expected

to be strongly correlated with the response (cases of low relative dominance in our

experiments), one may expect all control-variate-based procedures to achieve small

MSE reductions and nearly nominal coverage probabilities; and in such cases, the

CCV procedure should be preferred, followed by NSC and SC3.

An additional appealing feature of the SC3 procedure is the unbiasedness not

only of the point estimator θ̂SP but also of the associated variance estimator S2
SP/n,

irrespective of any distributional assumptions. We would recommend SC3 for situations

where joint normality of the response and the controls is suspect, especially when the

controls are expected to be strongly correlated with the response and the sample size

is relatively small.
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