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A simulation-based quantile estimator measures the level of system performance that can be deliv-
ered with a prespecified probability. To estimate selected quantiles of the response of a finite-horizon
simulation, we develop procedures based on correlation-induction techniques for variance reduction,
with emphasis on antithetic variates and Latin hypercube sampling. These procedures achieve im-
proved precision by controlling the simulation’s random-number inputs as an integral part of the
experimental design. The proposed multiple-sample quantile estimator is the average of negatively
correlated quantile estimators computed from disjoint samples of the simulation response, where
negative correlation is induced between corresponding responses in different samples while mutual
independence of responses is maintained within each sample. The proposed single-sample quantile
estimator is computed from negatively correlated simulation responses within one all-inclusive sam-
ple. The single-sample estimator based on Latin hypercube sampling is shown to be asymptotically
normal and unbiased with smaller variance than the comparable direct-simulation estimator based
on independent replications. Similar asymptotic comparisons of the multiple-sample and direct-
simulation estimators focus on bias and mean square error. Monte Carlo results suggest that the
proposed procedures can yield significant reductions in bias, variance, and mean square error when
estimating quantiles of the completion time of a stochastic activity network.

Subject classifications: Simulation, efficiency: variance reduction techniques. Simulation, design
of experiments: antithetic variates, Latin hypercube sampling. Simula-
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2 INTRODUCTION

In this paper we formulate and analyze procedures for estimating selected quantiles of the response
Y of a finite-horizon stochastic simulation experiment based on the variance reduction technique of
correlation induction. Let F (·) denote the (unknown) cumulative distribution function (c.d.f.) of Y .
For any r with 0 < r < 1, the rth quantile ξr of the random variable Y is the smallest value t such
that F (t) ≡ Pr{Y ≤ t} ≥ r. Most of the literature on simulation output analysis is concerned with
estimating the mean of the response Y or the mean of some known function of Y . Unfortunately
estimation of a quantile is fundamentally different from estimation of a mean in the sense that
an arbitrary quantile of Y cannot generally be expressed as the mean of a known function of Y .
Quantiles provide additional information about the distribution of Y , and in certain cases they may
be of more interest than the mean. For example, to meet the scheduled completion date δ of a large
engineering project with a specified degree of confidence (say, 95%), the project manager may use
a simulation model of the project to obtain an estimator ξ̂0.95 of the 95th percentile (quantile) ξ0.95

of the project duration Y ; and then the required project starting time is estimated by δ − ξ̂0.95.

As detailed in Subsection 1.1 below, the direct-simulation method for estimating the rth quan-
tile ξr of the response Y is based on the order statistics of a sample of independent identically
distributed (i.i.d.) observations of Y . Variance reduction techniques seek to restructure the sim-
ulation experiment to improve the efficiency of the estimation procedure—that is, to reduce the
estimation error for a fixed computing budget. The problem of variance reduction for quantile
estimation has received relatively little attention in the simulation literature. To address this prob-
lem, Ressler and Lewis (1990) extended the method of control variates to apply to a nonlinear
transformation of an auxiliary simulation response that has known quantiles. Specifically they
proposed using as a control variate a transformation of the direct-simulation estimator of the rth
quantile of the auxiliary response, where the transformation is chosen to improve the correlation
between the target response and the control variate. Hsu and Nelson (1990) also used a control
variate with known quantiles that results from inverting a classical linear control-variate estimator
for probabilities. Hesterberg and Nelson (1995) exploited control variates with known quantiles to
estimate either the target c.d.f. at selected cutoff values or selected quantiles of the target distribu-
tion. In a Monte Carlo performance evaluation involving inventory, project-planning, and queueing
examples, Hesterberg and Nelson obtained reductions in mean square error ranging from 10% to
80% when estimating quantiles of order 0.90, 0.95, and 0.99. In practice the main drawback of all
of these quantile-estimation methods seems to be the difficulty of identifying control variates with
known quantiles (as opposed to identifying control variates with known means) that are strongly
correlated with the response variable.

The objective of this work is to develop practical, effective variance reduction techniques for esti-
mating selected quantiles of the response in large-scale, finite-horizon simulation experiments. The
rest of this paper is organized as follows. In Section 1 we begin by discussing quantile estimation via
direct simulation; and we establish some basic results on correlation-induction techniques for vari-
ance reduction, with emphasis on the methods of antithetic variates and Latin hypercube sampling.
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In Section 2 we formulate and analyze multiple-sample quantile estimators wherein negative corre-
lation is induced between the corresponding simulation responses in disjoint samples while mutual
independence of the simulation responses is maintained within each sample. Section 3 treats quan-
tile estimators resulting from correlation induction within a single sample of simulation responses.
In Section 4 we summarize the results of a Monte Carlo study designed to gauge the reductions
in bias, variance, and mean square error that are achieved by the proposed quantile-estimation
techniques in the context of simulating stochastic activity networks; moreover, we validate all the
assumptions underlying our main theoretical results in a broad class of activity-network simulations
that includes the two networks used in the Monte Carlo study. Finally in Section 5 we recapitulate
our main findings, and we make recommendations for follow-up work.

1 BACKGROUND

1.1 Quantile Estimation via Direct Simulation

We consider finite-horizon simulation experiments in which the response has the form Y ≡ y(U),
where U ≡ (U1, . . . , Ud) is composed of d independent random numbers—i.e., random variables
that are uniformly distributed on the unit interval (0, 1). The dimension d of the random-number
input vector U is a finite constant. In terms of the (unknown) inverse c.d.f. of Y ,

F−1(u) ≡ min{t : F (t) ≥ u} for all u ∈ (0, 1) ,

the rth quantile of the distribution of Y is

ξ ≡ F−1(r) for 0 < r < 1.

Throughout the rest of this paper, we assume that a single value of r is specified; and we suppress
the dependence of ξ on r for notational simplicity.

In a direct-simulation experiment, we perform n independent replications that yield i.i.d. obser-
vations {Yi : i = 1, . . . , n} of the target response. The direct-simulation estimator of ξ based on n

independent replications is denoted by

ξ̂DS(ψ, n) ≡ ψ(Y1, Y2, . . . , Yn), (1)

where we will consider several choices for the function ψ(·). The most natural approach to estimating
ξ is to use ξ̂DS = min{t : Fn(t) ≥ r}, where Fn(·) is the empirical c.d.f. based on the sample
{Yi : i = 1, . . . , n}. In terms of the order statistics Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) obtained by sorting the
observations {Yi : i = 1, . . . , n} in ascending order, the usual definition of Fn(·) is

Fn(t) ≡


0, if t < Y(1) ,

i/n, if Y(i) ≤ t < Y(i+1) and 1 ≤ i ≤ n− 1 ,

1, if Y(n) ≤ t ;

(2)
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and this choice for Fn(·) corresponds to taking ψ(·) = ψ1(·) in the general definition (1) of the
direct-simulation quantile estimator, where

ψ1(Y1, Y2, . . . , Yn) ≡ F−1
n (r) = Y(dnre) (3)

and dxe denotes the smallest integer that is greater than or equal to x. See David (1981) for
properties of ξ̂DS(ψ1, n).

A second quantile estimator that is used, for example, in the S statistical package (Becker and
Chambers 1984) results from taking a piecewise linear version F̃n(·) of the empirical c.d.f. such that
F̃n[Y(i)] ≡ (i − 0.5)/n for i = 1, . . . , n − 1 and limε→0+ F̃n[Y(n) − ε] ≡ (n − 0.5)/n, with F̃n(t) ≡ 0
for t < Y(1) and F̃n(t) ≡ 1 for t ≥ Y(n). This choice for the empirical c.d.f. corresponds to taking
ψ(·) = ψ2(·) in the general definition (1), where

ψ2(Y1, Y2, . . . , Yn) ≡ F̃−1
n (r) = (4)

Y(1), if r ≤ 0.5/n ,

ϑnY(dnr+0.5e−1) + (1− ϑn)Y(dnr+0.5e), if 0.5/n < r < (n− 0.5)/n ,

Y(n), if (n− 0.5)/n ≤ r,

and
ϑn ≡ dnr + 0.5e − (nr + 0.5) for n = 1, 2, . . . . (5)

A more general quantile estimator can be based on a linear combination of the order statistics;
and in this case we take ψ(·) = ψ3(·) in the general definition (1), where

ψ3(Y1, Y2, . . . , Yn) =
n∑

i=1

λi,nY(i) , (6)

and {λi,n : i = 1, . . . , n} are constants. For example, the quantile estimator proposed by Yang
(1985) has the form (6). The statistic proposed by Kappenman (1987) appears to be the only
quantile estimator in the literature that is a function of the {Yi : i = 1, . . . , n} alone but yet is not
a linear combination of the corresponding order statistics.

1.2 A General Scheme for Correlation Induction

To provide a general framework for correlation induction, we introduce the notion of negative
quadrant dependence, which was defined by Lehmann (1966).

Definition 1 The bivariate random vector (A1, A2)T is negatively quadrant dependent (n.q.d.) if

Pr{A1 ≤ a1, A2 ≤ a2} ≤ Pr{A1 ≤ a1} · Pr{A2 ≤ a2} for all a1, a2.

Equivalently, we will say that the distribution of (A1, A2)T is n.q.d. We will exploit this concept
in Result 2 below to provide the desired sufficient condition for negatively correlated simulation
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responses. Moreover, we use the concept of negative quadrant dependence to define a special class
G of distributions for the random-number inputs. Every distribution G ∈ G must have the following
correlation-induction properties:

CI1 For some k ≥ 2, G is a k-variate distribution with univariate marginals that are uniform
on the unit interval (0, 1).

CI2 Each bivariate marginal of G is n.q.d.

When it is desirable to indicate explicitly that a distribution in G is k-variate, we will write G(k) ∈ G
rather than G ∈ G.

Next we discuss how k-dimensional vectors of (uniform) random numbers sampled according to
G(k) ∈ G are used to generate k negatively correlated observations of the simulation response Y,
where each Y -value is assigned to a different sample of simulation responses; and if this procedure
is independently replicated m times, then we obtain k random samples of size m from the target
distribution F (·) such that the quantile estimators of the form (1) computed from each of these k
samples are also negatively correlated. Using a k-variate distribution G(k) selected from the special
class G of distributions, we induce negative quadrant dependence between k replications of Y as
follows. We perform k dependent replications yielding outputs

Y (i) = y
[
U

(i)
1 , . . . , U

(i)
d

]
for i = 1, . . . , k (7)

by sampling the column vectors of input random numbers,

Uj ≡
[
U

(1)
j , . . . , U

(k)
j

]T
for j = 1, . . . , d, (8)

according to a scheme satisfying the following conditions:

SC1 For each j (1 ≤ j ≤ d), the random vector Uj has distribution G(k).

SC2 The column vectors U1, . . . ,Ud are mutually independent.

Sampling condition SC1 specifies that for each j ∈ {1, . . . , d}, we induce dependence between
the outputs

{
Y (i) : i = 1, . . . , k

}
by arranging a negative quadrant dependence between the jth

random numbers sampled on each pair of replications. Sampling condition SC2 requires mutual
independence of the random numbers used within the ith replication to generate the output Y (i);
and together with property CI1, this guarantees that each Y (i) has the target distribution F (·).

Definition 2 The sample
{
Y (i) : i = 1, . . . , k

}
is called a G(k)-sample of Y if it is generated as

in (7) and (8) subject to conditions SC1 and SC2.

The next two results provide the justification for using correlation-induction techniques to reduce
the variance of simulation-generated statistics.
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Result 1 If G(k) ∈ G, if
{
Y (i) : i = 1, . . . , k

}
is a G(k)-sample of Y, and if y(·) is a monotone

function of each argument individually, then
[
Y (i), Y (`)

]T
is n.q.d. for i 6= `.

Result 1 is essentially Theorem 1(ii) of Lehmann (1966).

Result 2 If the bivariate random vector (A1, A2)T is n.q.d., then Cov(A1, A2) ≤ 0, with equality
holding if and only if A1 and A2 are independent.

Result 2 is Lemma 3 of Lehmann (1966).
For an elaboration of the general framework for correlation induction presented in this section,

see Avramidis and Wilson (1996). In the next subsection we give examples of correlation-induction
techniques that are special cases of the general scheme described above, and in each case we prove
that the relevant distribution G belongs to the class G. Avramidis and Wilson (1995) provide
additional examples illustrating the correlation-induction scheme detailed in this section.

1.3 Special Cases of Correlation Induction

1.3.1 Antithetic Variates (AV)

To generate k = 2 correlated replications of the simulation response by the method of antithetic
variates, we sample the random numbers {U?

j : j = 1, . . . , d} independently and compute the
column vectors of (8) according to the relation

Uj =
(
U?

j , 1− U?
j

)T
for j = 1, 2, . . . , d .

(Throughout the rest of this paper, we reserve the notation U? to denote a random number that is
sampled independently.) We let G(2)

AV denote the distribution of Uj . It is straightforward to check
that G(2)

AV satisfies conditions CI1 and CI2 so that G(2)
AV ∈ G. The method of antithetic variates is

clearly a special case of the general correlation-induction scheme described by (7) and (8).

1.3.2 Latin Hypercube Sampling (LHS)

To generate k correlated replications of the simulation response via Latin Hypercube Sampling
(LHS) for k ≥ 2, we compute the input random numbers according to the relation

U
(i)
j =

πj(i)− U?
ij

k
for i = 1, . . . , k and j = 1, . . . , d, (9)

where

a. π1(·), . . . , πd(·) are permutations of the integers {1, . . . , k} that are randomly sampled with
replacement from the set of k! such permutations, with πj(i) denoting the ith element in
the jth randomly sampled permutation; and
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b. {U?
ij : j = 1, . . . , d, i = 1, . . . , k} are random numbers sampled independently of each other

and of the permutations π1(·), . . . , πd(·).

We let G(k)
LH denote the distribution of each k-dimensional column vector of input random numbers

generated in this way so that

Uj ∼ G
(k)
LH ⇐⇒ Uj =

[
U

(1)
j , . . . , U

(k)
j

]T
is generated according to (9). (10)

The key property of LHS is that for each j (j = 1, . . . , d), the components of the column vector Uj

form a stratified sample of size k from the uniform distribution on the unit interval (0, 1) such that
there is a single observation in each stratum and the observations within the sample are negatively
quadrant dependent; moreover, different stratified samples of size k are independent. Since πj(·) is
a random permutation of the integers {1, . . . , k}, each element πj(i) for i = 1, . . . , k has the discrete
uniform distribution on the set {1, . . . , k}; and thus in the definition (9), the variate πj(i) randomly
indexes a subinterval (stratum) of the form

(
(` − 1)/k, `/k

]
for some ` ∈ {1, . . . , k}. Since U?

ij is

a random number sampled independently of πj(i), we see that U (i)
j is uniformly distributed in the

subinterval indexed by πj(i); and it follows that U (i)
j is uniformly distributed on the unit interval

(0, 1). Moreover, since πj(·) is a permutation of {1, . . . , k}, every subinterval (stratum) of the
form

(
(` − 1)/k, `/k

]
for ` = 1, . . . , k contains exactly one of the negatively quadrant dependent

random numbers
{
U

(i)
j : i = 1, . . . , k

}
so that the components of Uj constitute a stratified sample

of the uniform distribution on (0, 1). Finally, we notice that the column vectors U1, . . . , Ud

are independent since the random permutations {πj(·) : j = 1, . . . , d} and the random numbers
{U?

ij : i = 1, . . . , k; j = 1, . . . , d} are all generated independently. This discussion is formalized in
the following result.

Proposition 1 For any k ≥ 2, the distribution G
(k)
LH defined in (10) is in the class G.

Proof. Choose j ∈ {1, . . . , d} arbitrarily. For the random permutation πj(·) of the integers
{1, . . . , k}, it is straightforward to check that the random vector [πj(1), πj(2)]T is n.q.d.—this is
done, for example, in the proof of the theorem in McKay, Beckman, and Conover (1979, p. 245).
If U?

1j and U?
2j are random numbers sampled independently of each other and of πj(·), then

[
U

(1)
j , U

(2)
j

]T
=

πj(1)− U?
1j

k
,
πj(2)− U?

2j

k

T

is n.q.d.

by Theorem 1(iii) of Lehmann (1966); and it is obvious that the distribution of
[
U

(1)
j , U

(2)
j

]T

coincides with all bivariate marginals of G(k)
LH. Clearly U

(1)
j has a uniform distribution on the

interval (0, 1) and all univariate marginals of G(k)
LH are equal, so conditions CI1 and CI2 are satisfied

by G(k)
LH for any k ≥ 2. This completes the proof of Proposition 1.

In view of Proposition 1, we can take G(k) = G
(k)
LH in (7) and (8); and thus we see that LHS is a

special case of correlation induction. First devised by McKay, Beckman, and Conover (1979), LHS
was subsequently studied by Stein (1987) and Owen (1992a, b).
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2 CORRELATION INDUCTION ACROSS SAMPLES

Motivated by the need to estimate the variance of a quantile estimator, Schafer (1974) suggested
computing the sample mean and the corresponding sample standard error from k independent
quantile estimators that are respectively based on k disjoint samples, where each sample consists
of m = bn/kc independent observations of the response Y . To simplify the exposition, we assume
throughout this paper that n is an integral multiple of k so that n = km. Letting ξ̂ (i)

DS(ψ,m) denote
the direct-simulation estimator of ξ computed by applying the function ψ(·) to the ith random
sample of size m for i = 1, . . . , k, we define the direct simulation–multiple sample estimator of ξ,

ξ̂DS–MS(ψ, k, n) ≡ k−1
k∑

i=1

ξ̂
(i)
DS(ψ, n/k), (11)

where we have substituted n/k for m on the right-hand side of (11) to emphasize the exact de-
pendence of ξ̂DS–MS(ψ, k, n) on the function ψ(·), the parameter k, and the total sample size n.
Although the direct simulation–multiple sample estimator does not use any variance reduction
techniques, we introduce it because it will simplify the statement of some of our results.

If we forgo having a variance estimator associated with our estimator of ξ, then we can improve
upon (11) by inducing negative correlation between the k direct-simulation quantile estimators that
are averaged to obtain (11). Let G(k) be a k-variate distribution selected from G. We generate m
column samples of the simulation response with the following properties:

CI–MS1 The jth column sample
[
Y

(1)
j , . . . , Y

(k)
j

]T
is a G(k)-sample of Y for j = 1, . . . ,m.

CI–MS2 The column samples
{[
Y

(1)
j , . . . , Y

(k)
j

]T
: j = 1, . . . ,m

}
are mutually independent.

The total set of Y -observations can also be arranged in k row samples,{[
Y

(i)
1 , . . . , Y (i)

m

]
: i = 1, . . . , k

}
. (12)

Condition CI–MS2 guarantees that each row sample consists of m independent observations of
Y , and condition CI–MS1 suggests that we have induced dependence between the row vectors
enumerated in (12). From this sampling scheme we can compute ξ̂CI–MS

(
ψ,G(k), n

)
, the correlation

induction–multiple sample estimator of ξ based on the k-variate distribution G(k). Specifically,
ξ̂CI–MS

(
ψ,G(k), n

)
is obtained by applying the function ψ(·) to the ith row sample,

ξ̂
(i)
DS(ψ,m) = ψ

[
Y

(i)
1 , . . . , Y (i)

m

]
for i = 1, . . . , k,

and then averaging the resulting correlated quantile estimators to obtain

ξ̂CI–MS

(
ψ,G(k), n

)
≡ k−1

k∑
i=1

ξ̂
(i)
DS(ψ, n/k). (13)
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We substituted n/k for m in the right-hand side of (13) to emphasize the exact dependence of the
estimator ξ̂CI–MS

(
ψ,G(k), n

)
on the function ψ(·), the distribution G(k), the parameter k, and the

total sample size n. We will occasionally suppress the dependence of ξ̂CI–MS on some or all of its
three arguments when no confusion can result from this usage.

2.1 Mean Square Error of Multiple-Sample Quantile Estimators

With respect to the performance measure of mean square error (MSE), we compare the correlation
induction–multiple sample estimator ξ̂CI–MS

(
ψ,G(k), n

)
with the direct simulation–multiple sample

estimator ξ̂DS–MS(ψ, k, n).

Theorem 1 If y(·) and ψ(·) are monotone functions of each of their arguments individually, then

MSE
[
ξ̂CI–MS

(
ψ,G(k), n

)]
≤ MSE

[
ξ̂DS–MS(ψ, k, n)

]
(14)

for any k-variate distribution G(k) ∈ G and any sample size n.

Proof. Consider the scheme for generating the column samples of the simulation response that
are required to compute (13). To index specific elements Y (i)

j and Y
(`)
j of the jth column sample,

choose i, ` ∈ {1, . . . , k} arbitrarily so that i 6= `. Since y(U1, . . . , Ud) is a monotone function of
each of its arguments individually, it follows from (7), (8), and Result 1 in Subsection 1.2 that the

random vector
[
Y

(i)
j , Y

(`)
j

]T
is n.q.d. for each j = 1, . . . ,m. Moreover, by property CI–MS2, the

pairs
{[
Y

(i)
j , Y

(`)
j

]T
: j = 1, . . . ,m

}
are mutually independent. Since ψ(Y1, . . . , Ym) is a monotone

function of each of its arguments individually, it also follows from Theorem 1(ii) of Lehmann (1966)

that
[
ξ̂

(i)
DS, ξ̂

(`)
DS

]T
is n.q.d.; and by Result 2 in Subsection 1.2, we see that Cov

[
ξ̂

(i)
DS, ξ̂

(`)
DS

]
≤ 0. Thus

we have

Var
[
ξ̂CI–MS

(
ψ,G(k), n

)]
= k−2


k∑

i=1

Var
[
ξ̂

(i)
DS

]
+ 2

k−1∑
i=1

k∑
`=i+1

Cov
[
ξ̂

(i)
DS, ξ̂

(`)
DS

]
≤ k−1Var

[
ξ̂

(1)
DS

]
= Var

[
ξ̂DS–MS(ψ, k, n)

]
,

since ξ̂DS–MS(ψ, k, n) is the average of k independent replications of ξ̂DS(ψ, n/k). Clearly

E
[
ξ̂CI–MS

(
ψ,G(k), n

)]
= E

[
ξ̂

(1)
DS

]
= E

[
ξ̂DS–MS(ψ, k, n)

]
,

so

Bias
[
ξ̂CI–MS

(
ψ,G(k), n

)]
= Bias

[
ξ̂DS–MS(ψ, k, n)

]
= Bias

[
ξ̂DS(ψ, n/k)

]
, (15)

and the desired result (14) follows from the basic relation MSE = Bias2 + Var.
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Remark 1 Typically the function ψ(·) satisfies the monotonicity requirement in Theorem 1. Both
ψ1(·) and ψ2(·) satisfy this requirement, and so does ψ3(·) in (6) if λi,n ≥ 0 for all i and n.

Next we wish to compare the correlation induction–multiple sample estimator ξ̂CI–MS

(
ψ,G(k), n

)
with the direct-simulation estimator ξ̂DS(ψ, n) based on a single overall sample of n independent
simulation responses. Without any assumptions about the distribution of the simulation response,
it is difficult to compare the bias, variance, and MSE of these two estimators for finite n because
there are no closed-form expressions for the bias and variance of the relevant order statistics.
To characterize adequately the asymptotic behavior of the moments of the relevant order statistics
together with the resulting bias and variance of the estimators ξ̂DS(ψ, n) and ξ̂CI–MS

(
ψ,G(k), n

)
, we

introduce the following regularity conditions for an arbitrary inverse c.d.f. Q(·) and its derivatives.

RC1 There exist nonnegative integers a and b such that Q(u)ua(1−u)b is bounded for u ∈ (0, 1).

RC2 There is an open subinterval S ⊂ (0, 1) containing r such that the second derivative Q′′(·)
is continuous on S.

RC3 The first derivative Q′(r) > 0.

RC4 The third derivative Q′′′(·) is bounded on the subinterval S of condition RC2.

The following lemma describes the bias and variance of the direct-simulation quantile estimator
ξ̂DS(ψc, n) for c = 1 and 2, respectively, as these quantities depend on the sample size n. This result
is proved in the Appendix.

Lemma 1 If conditions RC1–RC3 hold for Q(·) = F−1(·), then

Bias
[
ξ̂DS(ψc, n)

]
= o

(
n−1/2

)
Var

[
ξ̂DS(ψc, n)

]
=

r(1− r)

n[F ′(ξ)]2
+ o

(
n−1

)
 for c = 1, 2. (16)

Now we are able to make an asymptotic comparison of the MSEs of the single- and multiple-
sample direct-simulation quantile estimators that are based on ψ1(·) or ψ2(·). Let k be fixed. In
view of (16), we have

lim
n→∞

nMSE
[
ξ̂DS–MS(ψc, k, n)

]
= lim

n→∞
nBias2

[
ξ̂DS–MS(ψc, k, n)

]
+ lim

n→∞
nVar

[
ξ̂DS–MS(ψc, k, n)

]
= lim

n→∞
nBias2

[
ξ̂DS(ψc, n/k)

]
+ lim

n→∞
n

k
Var

[
ξ̂DS(ψc, n/k)

]
= 0 +

r(1− r)
[F ′(ξ)]2

= lim
n→∞

nMSE
[
ξ̂DS(ψc, n)

]
for c = 1, 2. (17)

Finally we compare, in an asymptotic MSE sense, the correlation induction–multiple sample
estimator ξ̂CI–MS

(
ψc, G

(k), n
)

with the direct-simulation estimator ξ̂DS(ψc, n) based on a single
overall sample of n independent simulation responses, where c = 1 and 2, respectively.
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Theorem 2 If y(·) is a monotone function of each of its arguments individually and if conditions
RC1–RC3 hold for Q(·) = F−1(·), then

lim sup
n→∞

nMSE
[
ξ̂CI–MS

(
ψc, G

(k), n
)]
≤ lim

n→∞
nMSE

[
ξ̂DS(ψc, n)

]
=
r(1− r)
[F ′(ξ)]2

(18)

for any distribution G(k) ∈ G and for c = 1, 2.

Proof. For c = 1 and 2 respectively, the result follows by taking ψ(·) = ψc(·) in (14), multiplying
both sides of (14) by n, taking the limit superior of each side as n→∞, and applying (17).

2.2 Bias of Direct-Simulation Quantile Estimators

For each quantile estimator ξ̂ discussed in the previous section, we saw that as the total sample
size n becomes large, the ratio Bias2

[
ξ̂

] /
Var

[
ξ̂

]
goes to zero, i.e., the component of MSE due to

bias becomes insignificant relative to the component of MSE due to variance. However, the bias
component can be significant or can even dominate the variance component when the sample size
is small, especially when we estimate extreme quantiles. This consideration is particularly relevant
for correlation induction–multiple sample estimators because, as seen in (15), a multiple-sample
estimator based on k samples with total sample size n has the same bias as the direct-simulation
estimator with total sample size n/k. Thus we would like to identify a function ψ(·) with good bias
properties, i.e. with small bias even for small sample sizes. Based on the following result, we will
argue that the function ψ2(·) is preferable to ψ1(·) for quantile estimation. The proof of this result
is given in the Appendix.

Proposition 2 If conditions RC1–RC4 hold for Q(·) = F−1(·), then

Bias
[
ξ̂DS(ψ1, n)

]
=

1
n

dnre − nr − r

F ′(ξ)
−
r(1− r)F ′′(ξ)

2[F ′(ξ)]3

 + o
(
n−1

)
(19)

and

Bias
[
ξ̂DS(ψ2, n)

]
=

1
n

0.5− r

F ′(ξ)
−
r(1− r)F ′′(ξ)

2[F ′(ξ)]3

 + o
(
n−1

)
. (20)

The bias expansions in Proposition 2 explain the well-known fact that bias is severe when we
estimate extreme quantiles, since typically these quantiles are associated with very small values of
F ′(·). Suppose the assumptions of Proposition 2 are valid and suppose that F ′(·) is unimodal with
mode tmo, so that F ′′(ξ) > 0 if ξ < tmo and F ′′(ξ) < 0 if ξ > tmo. Equation (20) then shows that
the two leading terms in the bias expansion for ξ̂DS(ψ2, n) are of opposite sign for all n if

r < min{F (tmo), 0.5} or max{F (tmo), 0.5} < r. (21)

Moreover, (19) shows that ξ̂DS(ψ1, n) does not have this property. Specifically, for all r ∈ (0, 1),
we have the following behavior. The sign of the first term within the large curly braces on the
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right-hand side of (19) alternates infinitely often as n→∞, except for r = 1/2, in which case the
first term vanishes for all odd values of n. On the other hand, the second term within this set
of curly braces has the same sign for all n. These observations suggest that ξ̂DS(ψ2, n) should be
preferred over ξ̂DS(ψ1, n) when (21) holds. Of course, since F (tmo) is unknown to the simulation
practitioner, it is generally impossible to verify that (21) holds. However, as discussed above,
typically bias is only important for small values of F ′(ξ). In the case of a unimodal distribution,
small values of F ′(ξ) occur for r near 0 or 1; and this is precisely the situation described by (21).
Based on these considerations, we recommend using the function ψ2(·) rather than ψ1(·) in all the
quantile estimators discussed so far—especially when bias is expected to contribute significantly to
MSE. Further evidence of the effectiveness of ψ2(·) in reducing bias is given by the Monte Carlo
results in Section 5.

3 CORRELATION INDUCTION WITHIN A SAMPLE

As discussed in the first paragraph of Subsection 2.2, multiple-sample quantile estimators are more
prone to suffer from bias than single-sample estimators. If the bias component of MSE is expected
to be dominant (due to a small sample size n, a value of r near 0 or 1, or both of these conditions),
then using a multiple-sample quantile estimator might actually increase MSE by increasing bias
as well as variance. This is the motivation for considering correlation induction within a sample—
we use a single-sample estimator based on an all-inclusive set of dependent observations of the
simulation response. In Section 3.1 we discuss a general quantile estimator based on correlation
induction within a sample, and in Section 3.2 we study a special case of this estimator based on
Latin hypercube sampling.

3.1 Correlation Induction–Single Sample Estimators

We compute ξ̂CI–SS

(
ψ,G(n)

)
, the correlation induction–single sample estimator of ξ based on the

function ψ(·) and the n-variate distribution G(n) ∈ G, by generating a G(n)-sample of Y and
applying ψ(·) to this single comprehensive sample of n correlated responses:

ξ̂CI–SS

(
ψ,G(n)

)
≡ ψ

(
Y (1), . . . , Y (n)

)
, where

{
Y (1), . . . , Y (n)

}
is a G(n)-sample of Y.

The dependence of ξ̂CI–SS on the sample size n is implicit in the distribution G(n).
We emphasize the requirement that the distribution G(n) used for inducing dependence must

have dimension equal to the sample size n. Thus in order for ξ̂CI–SS to be well defined for all
sample sizes, we must use distributions in G that are defined for any given dimension. Now strictly
speaking, the distribution G

(2)
AV is only defined as a two-dimensional distribution; and there is no

clear-cut extension of G(2)
AV to higher dimensions such that negative correlation is achieved between

each pair of coordinates in the column vector of input random numbers (8). On the other hand, for
each n the distribution G(n)

LH is readily defined and sampled, achieving a uniform negative correlation
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between each pair of coordinates in the column vector of input random numbers (8); and thus G(n)
LH

is particularly appropriate for use with ξ̂CI–SS. See Avramidis and Wilson (1995) for additional
examples of distribution families that are readily used with ξ̂CI–SS.

The estimator ξ̂CI–SS is fundamentally different from the estimators discussed previously—it is
computed by applying the function ψ(·) to a single sample of dependent observations of the simula-
tion response Y, whereas the estimators ξ̂DS–MS and ξ̂CI–MS of Section 2 are computed by repeatedly
applying ψ(·) to samples of independent Y -observations. To motivate the estimator ξ̂CI–SS, we show
that for each cutoff value t, the estimator Fn(t) based on (2) has smaller variance if we induce neg-
ative quadrant dependence between each pair of observations in the sample

{
Y (i) : i = 1, . . . , n

}
.

If we let 1{·} denote the indicator function for an event so that

1
{
Y (i) ≤ t

}
≡

 1, if Y (i) ≤ t,

0, otherwise,

then we have

Var[Fn(t)] = Var

[
n−1

n∑
i=1

1
{
Y (i) ≤ t

}]

= n−1F (t)[1− F (t)] + 2n−2
n−1∑
i=1

n∑
`=i+1

Cov
[
1
{
Y (i) ≤ t

}
, 1

{
Y (`) ≤ t

}]
. (22)

Notice that 1
{
Y (i) ≤ t

}
is a nonincreasing function of Y (i) for each fixed t and for i = 1, . . . , n.

Thus if each pair of Y -observations is n.q.d., then each covariance on the right-hand side of (22)
is nonpositive by Theorem 1(ii) of Lehmann (1966) and Result 2 of Subsection 1.2. On the other
hand, if the Y -observations are i.i.d., then the variance of Fn(t) is given by the first term on the
right-hand side of (22). It follows that inducing a negative quadrant dependence between each
pair of Y -observations in a single sample will yield an empirical c.d.f. Fn(·) that is everywhere
a more accurate estimator of the underlying theoretical c.d.f. F (·) than could be obtained with
random sampling. Since all the proposed quantile estimators that use the function ψ1(·) are based
on the inverse of an empirical c.d.f. having the form of Fn(·), it is plausible that inducing negative
correlation between the Y -observations in a single sample will yield a more precise quantile estimator
based on ψ1(·) than a comparable single- or multiple-sample estimator based on applying ψ1(·) to
independent Y -observations. Although a similar argument for the quantile estimators based on
ψ2(·) is not obvious, in Theorem 3 below we show that for a special case of ξ̂CI–SS based on Latin
hypercube sampling, the same asymptotic performance is achieved with ψ1(·) and ψ2(·).

3.2 Latin Hypercube–Single Sample Estimators

We define the Latin hypercube–single sample estimator of ξ as

ξ̂LH–SS(ψ, n) ≡ ξ̂CI–SS

(
ψ,G

(n)
LH

)
.
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Thus ξ̂LH–SS(ψ, n) is a function ψ(·) of a G(n)
LH-sample of Y ; and we will refer to such a sample as

a Latin hypercube sample of size n. By Proposition 1 in Subsection 1.3.2 and by Results 1 and 2
in Subsection 1.2, any two Y -observations in a Latin hypercube sample of any size are n.q.d. and
hence negatively correlated if y(·) is a monotone function of each of its arguments individually;
and in such a case, we have the intuitive motivation for inducing correlation between responses
that was elaborated in the last paragraph of the previous subsection. However, we will see that
monotonicity of y(·) is not necessary to guarantee improved precision in our quantile estimators, at
least for the special case of Latin hypercube sampling. We will derive the asymptotic distribution
of ξ̂LH–SS(ψc, n) for c = 1 and 2 under appropriate conditions on the response Y ; and as a by-
product, we will see that the Latin hypercube–single sample estimators ξ̂LH–SS(ψc, n) for c = 1, 2
are asymptotically more precise than the direct-simulation estimators ξ̂DS(ψc, n) for c = 1, 2.

Some additional nomenclature is required to proceed. Let U ≡ (U1, . . . , Ud) denote the vector of
random-number inputs to the simulation and let u ≡ (u1, . . . , ud) denote a realization of U. Given
an arbitrary real-valued, square-integrable function ϕ(·) defined on the d-dimensional unit cube
[0, 1]d, we decompose ϕ(·) as in Stein (1987). We define the following functionals of ϕ(·): a) the
mean of ϕ(·),

µϕ ≡ E[ϕ(U)] =
∫

[0, 1]d

ϕ(u) du ;

b) the jth main effect of ϕ(·),

ϕj(uj) ≡ E[ϕ(U)|Uj = uj ]

=
∫

[0, 1]d−1

ϕ(u1, . . . , uj , . . . , ud)
d∏

α = 1
α 6= j

duα for uj ∈ [0, 1] and j = 1, . . . , d;

c) the additive part of ϕ(·),

ϕadd(u) ≡
d∑

j=1

ϕj(uj)− (d− 1)µϕ for u ∈ [0, 1]d;

and d) the residual from additivity of ϕ(·),

ϕres(u) ≡ ϕ(u)− ϕadd(u) for u ∈ [0, 1]d.

We observe that E[ϕj(Uj)] = E[ϕadd(U)] = µϕ for each j, and E[ϕres(U)] = 0. Moreover,

E
[
ϕ2

res(U)
]

= Var[ϕres(U)] = Var[ϕ(U)]−
d∑

j=1

Var[ϕj(Uj)] , (23)

where the last equality follows by observing that Cov[ϕ(U), ϕj(Uj)] = Var[ϕj(Uj)] for each j.
Recalling the representation of the simulation response Y = y(U) as a function of the input

random vector U, we define χ(u) ≡ 1{y(u) ≤ ξ}; and we let χj(·), χadd(·), and χres(·) respectively
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denote the jth main effect, the additive part, and the residual from additivity of χ(·). The asymp-
totic distribution of ξ̂LH–SS(ψc, n) for c = 1, 2 is given by Theorem 3 below in which D−→ denotes
convergence in distribution (Billingsley 1986, pp. 338–339) and N(µ, σ2) denotes a normal random
variable with mean µ and variance σ2.

Detailed proofs of the next two key results (namely, Theorem 3 and Proposition 3 below) are
given in Avramidis and Wilson (1995); and only the main steps in the proof Theorem 3 are outlined
here. We believe that the assumptions underlying both of these results are reasonable in practice,
and in Subsection 4.2 below we explicitly validate these assumptions in our simulations of stochastic
activity networks.

Theorem 3 Suppose that the following continuity conditions hold:

CC1 The function y(·) has a finite set of discontinuities D.

CC2 There exists a neighborhood N (ξ) of ξ such that for each x ∈ N (ξ) and for each j = 1, . . . , d,
there exists a finite set Qj(x) such that

Pr{y(U) = x|Uj = uj} = 0 for every uj ∈ (0, 1)−Qj(x). (24)

If F (·) has a bounded second derivative in a neighborhood of ξ, and if F ′(ξ) 6= 0, then

n1/2
[
ξ̂LH–SS(ψc, n)− ξ

] D−→ N
(
0, σ2

LH–SS

)
as n→∞ for c = 1, 2, (25)

where

σ2
LH–SS =

Var[χres(U)]

[F ′(ξ)]2
.

Proof. First we prove the result for ψ1(·) and then easily extend the proof for ψ2(·). Let F (LH)
n (·)

denote the empirical c.d.f., defined as in (2), based on a Latin hypercube sample of size n. Fix a
real t. Then

γn(t) ≡ Pr
{
n1/2

[
ξ̂LH–SS(ψ1, n)− ξ

]
≤ t

}
= Pr

{
ξ̂LH–SS(ψ1, n) ≤ ξ + n−1/2t

}
= Pr

{
r ≤ F (LH)

n (ξ + n−1/2t)
}

= Pr
{
r ≤ F (ξ + n−1/2t) + F (LH)

n (ξ + n−1/2t)− F (ξ + n−1/2t)
}
. (26)

Taking a second-order Taylor expansion of F (·) centered at ξ and using the assumed properties
that F ′(ξ) 6= 0 and F ′′(·) is bounded in a neighborhood of ξ, we have

F (ξ + n−1/2t) = r + n−1/2tF ′(ξ) +O(n−1) as n→∞. (27)
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Defining
∆(LH)

n ≡ F (LH)
n (ξ + n−1/2t)− F (ξ + n−1/2t) , (28)

we complete the proof of Theorem 3 by exploiting the following key result,

n1/2∆(LH)
n

D−→ N{0, Var[χres(U)]} as n→∞ , (29)

which requires the continuity conditions CC1 and CC2. The Appendix contains a sketch of the
main steps in the proof of (29), and a complete justification of this result is provided in Lemma 6
of Avramidis and Wilson (1995). Using (27), we can rewrite (26) as

γn(t) = Pr

{
n1/2∆(LH)

n

F ′(ξ)
+O(n−1/2) ≥ −t

}
. (30)

From (29), (30), and Slutsky’s Theorem (Serfling 1980, p. 19), it follows that

lim
n→∞

γn(t) = 1− Φ
{
−tF ′(ξ)

/√
Var[χres(U)]

}
= Φ

{
tF ′(ξ)

/√
Var[χres(U)]

}
, (31)

where Φ(·) is the standard normal c.d.f. This completes the proof of (25) for ψ1(·).
To prove (25) for ψ2(·), we let F̃ (LH)

n (·) denote the piecewise linear version of the empirical c.d.f.
that corresponds to the definition (4) of ψ2(·) and that is based on the same Latin hypercube
sample of size n as for F (LH)

n (·). Fix a real t. We proceed along the lines of the proof of (25) for
ψ1(·) to obtain

γ̃n(t) ≡ Pr
{
n1/2

[
ξ̂LH–SS(ψ2, n)− ξ

]
≤ t

}
= Pr

{
ξ̂LH–SS(ψ2, n) ≤ ξ + n−1/2t

}
= Pr

{
r ≤ F (ξ + n−1/2t) + ∆(LH)

n + Ω(LH)
n

}
,

where ∆(LH)
n is defined in (28) and

Ω(LH)
n ≡ F̃ (LH)

n (ξ + n−1/2t)− F (LH)
n (ξ + n−1/2t) .

¿From the definitions of F (LH)
n (·) and F̃ (LH)

n (·), it follows immediately that∣∣∣F̃ (LH)
n (z)− F (LH)

n (z)
∣∣∣ ≤ 1/(2n) for all z;

and thus
n1/2Ω(LH)

n
P−→ 0 as n→∞, (32)

where P−→ denotes convergence in probability (Serfling 1980, p. 6). In this situation the analogue
of (30) is

γ̃n(t) = Pr

{
n1/2∆(LH)

n

F ′(ξ)
+
n1/2Ω(LH)

n

F ′(ξ)
+O(n−1/2) ≥ −t

}
. (33)
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From (29), (32), (33), and Slutsky’s Theorem, it follows that limn→∞ γ̃n(t) is also equal to the
right-hand side of (31). This completes the proof of (25) for ψ2(·).

To compare the asymptotic performance of the Latin hypercube–single sample quantile estima-
tors ξ̂LH–SS(ψc, n) for c = 1, 2 with the asymptotic performance of the direct-simulation estimators
ξ̂DS(ψc, n) for c = 1, 2, we establish results analogous to Theorem 3 for the direct-simulation esti-
mators. If F (·) is differentiable at ξ and F ′(ξ) 6= 0, then ξ̂DS(ψ1, n) is asymptotically normal:

n1/2
[
ξ̂DS(ψ1, n)− ξ

] D−→ N
(
0, σ2

DS

)
as n→∞, (34)

where

σ2
DS =

r(1− r)
[F ′(ξ)]2

=
Var[χ(U)]
[F ′(ξ)]2

(Corollary 2.3.3.A of Serfling 1980). The following proposition establishes that ξ̂DS(ψ2, n) has the
same asymptotic distribution as ξ̂DS(ψ1, n).

Proposition 3 If F (·) is differentiable at ξ and F ′(ξ) 6= 0, then

n1/2
[
ξ̂DS(ψ2, n)− ξ

] D−→ N
(
0, σ2

DS

)
as n→∞ . (35)

The proof of Proposition 3, which is similar to that of Theorem 3, is given in Avramidis and Wilson
(1995).

Applying (23) to the function χ(·), we see that

σ2
LH–SS = Var[χ(U)]−

d∑
j=1

Var[χj(Uj)] ≤ Var[χ(U)] = σ2
DS.

Hence Theorem 3, result (34), and Proposition 3 ensure that quantile estimators of the form
ξ̂LH–SS(ψc, n) for c = 1, 2 are asymptotically more accurate than quantile estimators of the form
ξ̂DS(ψc, n) for c = 1, 2. This result and Proposition 2 strongly suggest that ξ̂LH–SS(ψ2, n) is superior
to all of the other quantile estimators considered in this paper that are based on direct simulation
or LHS. In the next section we quantify the improvements in accuracy that are achievable with the
various single- and multiple-sample quantile estimators based on Latin hypercube sampling and
antithetic variates in some common simulation applications.

4 APPLICATION TO STOCHASTIC ACTIVITY NETWORKS

We illustrate the application of our quantile-estimation techniques to the simulation of stochastic
activity networks (SANs). In Section 4.1 we describe the simulation experiments that were per-
formed. In Section 4.2 we validate the assumptions required to apply the main theoretical results
of this paper in our activity-network simulations. In Section 4.3 we summarize the results of our
Monte Carlo experiments.
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4.1 Description of the Simulation Experiments

The Monte Carlo study is designed to estimate the reductions in bias, variance, and mean square
error that are achieved by the proposed multiple- and single-sample quantile estimators in the
context of simulating SANs. Specifically, we estimate the 5th, 25th, 50th, 75th, and 95th percentiles
(quantiles) of the network completion time, i.e., the longest directed path from the source node to
the sink node; and we use two SANs for the experimental performance evaluation. To facilitate our
description of the simulation experiments as well as our validation of the assumptions underlying
each quantile-estimation technique, we define some general notation for specifying and simulating
an arbitrary SAN.

The graph-theoretic structure of a stochastic activity network is described by the pair (W, A),
where the nodes in the network constitute the set W ≡ {1, . . . , ν} and the activities in the network
constitute the set

A ≡
{
(βj , γj) : activity j has start node βj ∈ W and end node γj ∈ W, j = 1, . . . , d

}
.

The network is assumed to be acyclic with a source node and a sink node in W. Each activity j
has a random duration Vj with c.d.f. Hj(·), and the individual activity durations are independently
sampled by inversion so that

Vj = H−1
j (Uj) for j = 1, . . . , d . (36)

The objective of simulating the network is to estimate the rth quantile of the time to realize the
sink node for r = 0.05, 0.25, 0.50, 0.75, and 0.95. Let τ denote the number of directed paths from
source to sink, and let

A(ω) ≡ {j : activity j is on ωth source-to-sink path} for ω = 1, . . . , τ. (37)

The duration of the ωth path is the random variable

Pω ≡
∑

j∈A(ω)

Vj for ω = 1, . . . , τ ; (38)

and thus the basic simulation response is the network completion time

Y ≡ max
1≤ω≤τ

{Pω} = max
1≤ω≤τ

 ∑
j∈A(ω)

H−1
j (Uj)

 ≡ y(U1, . . . , Ud) . (39)

For the duration Vj of the jth activity in a given network, the associated distribution is taken to
be either a) a normal distribution with a nominal mean µj and standard deviation σj = µj/4 whose
probability mass below the origin has been relocated to the origin; or b) an exponential distribution
with a specified mean µj . Network 1 is taken from Elmaghraby (1977, p. 275), and it is depicted in
Figure 1. For network 1 the set of activities with “adjusted” normal durations as in a) is taken to be
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{(1, 2), (1, 3), (2, 4), (6, 9), (7, 8)}; all other activities are taken to be exponentially distributed as in
b). Network 2 is taken from Antill and Woodhead (1990, Figure 8.5(b), p. 180), and it is depicted
in Figure 2. For network 2 the set of activities with “adjusted” normal durations is taken to be
{(0, 2), (1, 5), (1, 3), (7, 10), (9, 12), (11, 17), (15, 16), (16, 20), (16, 22), (16, 18), (17, 18), (22, 23)}.
In Figures 1 and 2, the mean duration is shown next to each nontrivial activity.

The following quantile estimators are evaluated for c = 1 and 2, respectively: the conven-
tional direct-simulation estimator ξ̂DS(ψc, n); the antithetic variates–multiple sample estimator
ξ̂CI–MS

(
ψc, G

(2)
AV, n

)
; the antithetic variates–single sample estimator ξ̂AV–SS(ψc, n) that results from

applying ψc(·) to a sample of size n consisting of n/2 independent pairs of antithetic responses;
the Latin hypercube–multiple sample estimator ξ̂CI–MS

(
ψc, G

(k)
LH, n

)
for a set of selected values of

k; and the Latin hypercube–single sample estimator ξ̂LH–SS

(
ψc, G

(n)
LH

)
.

4.2 Validation of the Quantile-Estimation Procedures

The key assumptions in the development of Sections 1–3 are the monotonicity of y(·) together with
requirements RC1–RC4, CC1, and CC2; and in the context of simulating networks 1 and 2, we
validate all these assumptions along with the standard requirement for estimating the quantile ξ
that F ′(ξ) 6= 0 and F ′′(·) is bounded in a neighborhood of ξ. Since the network completion time
(39) is a nondecreasing function of the arc durations {Vj} and each Vj is a nondecreasing function
(36) of the corresponding random number Uj , it follows that y(U1, . . . , Ud) is a monotone function
of each of its arguments individually as required by Theorems 1 and 2. For the sake of clarity and
simplicity, we limit most of the following discussion on validating requirements RC1–RC4, CC1,
and CC2 to consideration of network 1; but for each requirement to be checked, the corresponding
analysis also applies to network 2.

We check the regularity requirements RC2–RC4 as follows. In each network, we can choose a
uniformly directed cutset L—that is, a set of activities such that each directed path from source
to sink contains exactly one activity in L (Sigal, Pritsker, and Solberg 1980); and then we obtain
an integral expression for F (·) by applying the law of total probability and conditioning on all
activity durations except for the activities in L. To exploit this representation of F (·), we require
the following additional properties of the network:

i) For each activity g ∈ L, the first three derivatives H ′
g(v), H

′′
g (v), and H ′′′

g (v) of the activity-
time c.d.f. Hg(v) are bounded and continuous for all v > 0.

ii) For each activity j (1 ≤ j ≤ d), the first derivative H ′
j(v) > 0 for all v > 0.

iii) For each activity j 6∈ L, the activity-time c.d.f. Hj(·) has at most a single discontinuity at
zero.

In network 1, we take L = {(3, 6), (2, 6), (4, 5), (4, 7)}; and in network 2, we take L = {(2, 9),
(4, 7), (5, 7), (1, 6), (3, 6), (3, 8)}. Since all nontrivial activity durations have “adjusted” normal or
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exponential distributions, clearly networks 1 and 2 possess properties i) through iii).
For every activity j in network 1 (1 ≤ j ≤ d), we define Z(j) ≡ {ω : 1 ≤ ω ≤ τ and j ∈ A(ω)}

to be the collection of indexes of source-to-sink paths that contain activity j. Let

{jc : c = 1, . . . , α} ≡ {1, . . . , d} − L

be an enumeration of all activities that are not in the cutset L. Using this notation, we can express
the target c.d.f. F (x) for each x > 0 as

F (x) =
∫
· · ·

∫
−∞ < vjc < ∞

c = 1, . . . , α

Pr
{
Y ≤ x

∣∣∣Vjc = vjc for c = 1, . . . , α
} α∏

c=1

dHjc(vjc)

=

λ1(x)∫
vj1

=0

· · ·
λα(x)∫

vjα=0

∏
g∈L

Hg

x− max
ω∈Z(g)

 ∑
jc ∈ A(ω)

vjc


 dHjα(vjα) · · · dHj1(vj1), (40)

where for c = 1, . . . , α, the upper limit λc(x) of the cth outermost iterated integral on the right-hand
side of (40) is defined as follows:

λ1(x) ≡ x and λc(x) ≡ x− max
ω∈Z(jc)


∑

js ∈ A(ω)

1 ≤ s ≤ c− 1

vjs

 for c = 2, . . . , α. (41)

Property i) of network 1 ensures that both the integrand (40) and the limits of integration in (41)
have first-, second-, and third-order derivatives with respect to x that are bounded and continuous
for all x > 0. We can therefore apply the chain rule for partial differentiation to the right-hand
side of (40) three times to conclude that the first, second, and third derivatives (that is, F ′(x),
F ′′(x), and F ′′′(x), respectively) of the target c.d.f. are bounded, continuous functions of x for
all x > 0. Applying property ii) of network 1 to the integral expression that results from taking
the first derivative with respect to x of the right-hand side of (40), we see that F ′(x) > 0 for
all x > 0. We have assumed throughout the paper that r > 0, which implies ξ > 0. Since
Q′(r) = 1/F ′(ξ), condition RC3 is satisfied; moreover it follows from the existence of F ′′(·) and
F ′′′(·) in a neighborhood of ξ together with the chain rule for ordinary differentiation that Q′′(·)
and Q′′′(·) are bounded and continuous in a neighborhood of r so that conditions RC2 and RC4

are also satisfied. Notice that as a by-product of this argument, we also validated the requirement
that F ′(ξ) 6= 0 and F ′′(·) is bounded in a neighborhood of ξ.

The following auxiliary result provides a technique for validating regularity requirement RC1

that should be useful in applications of the proposed quantile-estimation techniques to more general
stochastic simulations. The proof of this lemma is given in Avramidis and Wilson (1995).

Lemma 2 If the random variable X has c.d.f. FX(·) and inverse c.d.f. QX(·) each with a finite
number of discontinuities and if E[|X|] < ∞, then u(1 − u)QX(u) is bounded for all u ∈ (0, 1) so
that RC1 is satisfied for the inverse c.d.f. QX(·) with a = b = 1.
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We show that in network 1, the completion time Y satisfies the conditions of Lemma 2. From the
discussion following (41), we have already seen that F ′(x) > 0 for all x > 0; and it follows that
F (·) has at most a single discontinuity at zero while Q(·) is continuous on (0, 1). Moreover, the
response Y has a finite mean since E[Y ] ≤

∑d
j=1 µj <∞ so that Lemma 2 applies to Y .

Finally we consider the applicability to network 1 of the continuity requirements CC1 and CC2.
Since the network completion time (39) is a continuous function of the arc durations {Vj} and
each Vj is a continuous function (36) of the corresponding random number Uj , it follows that
y(U1, . . . , Ud) is a continuous function of (U1, . . . , Ud) and the requirement CC1 is satisfied with
D = ∅.

To check the continuity requirement CC2 in network 1, we select an arbitrary positive cutoff
value x. Given the jth input random number Uj = uj (1 ≤ j ≤ d), we see by properties i) and iii)
of network 1 and by Lemma 1 in Section V.4 of Feller (1971) that the conditional c.d.f. of the ωth
path duration Pω (1 ≤ ω ≤ τ) has at most the following single discontinuity:

a. at zero, if j 6∈ A(ω) and Hc(·) has a discontinuity at zero for each c ∈ A(ω); or

b. at H−1
j (uj), if j ∈ A(ω) and Hc(·) has a discontinuity at zero for each c ∈ A(ω)− {j}.

It follows that if x > 0 and we take Qj(x) to be the one-element set {Hj(x)} in condition CC2,
then for the ωth path in network 1 (1 ≤ ω ≤ τ), the conditional c.d.f. FPω |Uj

(· |uj) of the path
duration Pω given Uj = uj ∈ [0, 1]−Qj(x) is continuous at x. Moreover, we have

Pr{y(U) = x|Uj = uj} = lim
z→x−

Pr
{
z < Y ≤ x

∣∣∣Uj = uj

}
≤ lim

z→x−

τ∑
ω=1

Pr
{
z < Pω ≤ x

∣∣∣Uj = uj

}
=

τ∑
ω=1

{
lim

z→x−

[
FPω |Uj

(x |uj)− FPω |Uj
(z |uj)

] }
= 0, (42)

which establishes the continuity requirement CC2 with N (ξ) = (0,∞) and Qj(x) = {Hj(x)}.
To summarize, we validated all the assumptions underlying Propositions 2–3 and Theorems 1–3

for networks 1 and 2; and it is clear that the main theoretical results of this paper can be applied to
a large class of SANs that includes our networks. Development of general techniques for validating
these assumptions in a broader class of stochastic simulations is the subject of ongoing work.

4.3 Experimental Results

We begin by presenting some experimental evidence to complement the analysis given after Propo-
sition 2 for the claim that ξ̂DS(ψ2, n) has better bias properties than ξ̂DS(ψ1, n). For networks 1 and
2, the true values of the selected quantiles were estimated by direct simulation using 2,048 inde-
pendent macroreplications of a simulation experiment involving each network; and each simulation
experiment consisted of n = 131, 072 independent replications of the associated network. Thus we
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took for the “true” value of a selected quantile the grand average of 2,048 independent replications
of the corresponding direct-simulation estimator ξ̂DS(ψ2, 131,072). Figure 3 depicts plots of the
estimated bias squared, variance, and MSE of the two direct-simulation quantile estimators when
the 95th percentile of the network completion time is to be estimated so that r = 0.95. (Each
entry used for generating these plots was estimated with a relative error whose magnitude did not
exceed 5%.) The erratic behavior of ξ̂DS(ψ1, n) stands in sharp contrast to the smooth behavior
of ξ̂DS(ψ2, n). Avramidis and Wilson (1995) contains similar plots of the estimated bias squared,
variance, and MSE of the two direct-simulation quantile estimators for r = 0.05 and r = 0.50.

Based on the analytical results presented in Subsection 2.2, the Monte Carlo results presented
here, and additional computational experience not reported here, we conclude that ξ̂DS(ψ2, n)
should be preferred over ξ̂DS(ψ1, n)—particularly when squared bias is expected to contribute sig-
nificantly to MSE. As discussed earlier, the significance of bias becomes more important as n
becomes smaller or as r approaches 0 or 1. Consequently, we used the function ψ2(·) for all esti-
mators discussed in the rest of this section.

For the simulation experiments involving network 1, Tables I and II display estimated ratios
of the form MSE

[
ξ̂DS

] /
MSE

[
ξ̂CI

]
between the MSE of the direct-simulation estimator ξ̂DS and

the MSE of the correlation-induction estimator ξ̂CI for several choices of ξ̂CI and for the sample
sizes n = 2,048 and n = 8,192, respectively. For the simulation experiments involving network 2,
Tables III and IV display the corresponding results for the sample sizes n = 2,048 and n = 8,192,
respectively. Immediately below each estimated MSE ratio is its estimated standard error.

As expected from the results of Section 2, the multiple-sample estimators based on the meth-
ods of antithetic variates and Latin hypercube sampling achieve reductions in mean square error
when compared to the direct-simulation estimators. In almost all cases, the Latin hypercube–
multiple sample estimator ξ̂CI–MS

(
ψ2, G

(k)
LH, n

)
with k > 2 performed significantly better than the

single- and multiple-sample antithetic-variates estimators. This behavior was also observed in sev-
eral other experiments (not reported here); thus we recommend the Latin hypercube estimator
ξ̂CI–MS

(
ψ2, G

(k)
LH, n

)
with k > 2 rather than any of the quantile estimators based on the method

of antithetic variates. To use a Latin hypercube–multiple sample estimator, a practitioner would
probably have to choose k given the total number of replications n. For fixed n, variance is typically
decreasing in k (because of the more complete stratification), while bias is typically increasing in k
(because of the smaller subsample size m = n/k). The net effect is that MSE

[
ξ̂CI–MS

(
ψ2, G

(k)
LH, n

)]
is typically decreasing for k ≤ k0 and increasing for k ≥ k0, with the critical value k0 being an
increasing function of n. For example, in Table IV we see that k0 ≈ 64 for r = 0.50.

The Latin hypercube–single sample quantile estimator ξ̂LH–SS(ψ2, n) achieved substantial MSE
reductions relative to the direct-simulation estimator ξ̂DS(ψ2, n). In particular, ξ̂LH–SS(ψ2, n)
achieved the largest MSE reductions of all estimators considered here for the case r = 0.95. Al-
though ξ̂LH–SS(ψ2, n) was outperformed by the Latin hypercube–multiple sample estimators or
the antithetic-variates estimators in some cases for which r ≤ 0.75, the overall performance of
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Table I

Estimated Ratio MSE
[
ξ̂DS(ψ2, 2048)

] /
MSE

[
ξ̂CI(ψ2, · , 2,048)

]
± Its Estimated Standard Error

for Various Order-r Quantile Estimators ξ̂CI(ψ2, · , 2,048) in Network 1

Estimator Order r
0.05 0.25 0.50 0.75 0.95

ξ̂CI–MS(ψ2, G
(2)
AV, 2,048) 1.096 1.261 1.211 1.082 1.013

±0.018 ±0.020 ±0.019 ±0.016 ±0.015
ξ̂AV–SS(ψ2, 2,048) 1.099 1.265 1.212 1.075 1.009

±0.018 ±0.020 ±0.018 ±0.016 ±0.015

ξ̂CI–MS(ψ2, G
(2)
LH, 2,048) 1.068 1.263 1.238 1.123 1.010

±0.016 ±0.023 ±0.018 0.019 0.014
ξ̂CI–MS(ψ2, G

(4)
LH, 2,048) 1.178 1.523 1.665 1.311 1.033

±0.019 ±0.026 ±0.024 ±0.023 ±0.016
ξ̂CI–MS(ψ2, G

(8)
LH, 2,048) 1.231 1.704 2.091 1.849 1.146

±0.021 ±0.025 ±0.033 ±0.031 ±0.018
ξ̂CI–MS(ψ2, G

(16)
LH , 2,048) 1.203 1.810 2.446 2.498 1.332

±0.018 ±0.030 ±0.033 ±0.040 ±0.021
ξ̂CI–MS(ψ2, G

(32)
LH , 2,048) 1.060 1.752 2.517 3.093 1.830

±0.018 ±0.028 ±0.035 ±0.050 ±0.026
ξ̂CI–MS(ψ2, G

(64)
LH , 2,048) 0.533 1.367 2.256 2.974 2.261

±0.008 ±0.021 ±0.034 ±0.049 ±0.035
ξ̂LH–SS(ψ2, 2,048) 1.162 1.848 2.664 3.440 3.827

±0.018 ±0.029 ±0.038 ±0.057 ±0.057

Table II

Estimated Ratio MSE
[
ξ̂DS(ψ2, 8,192)

] /
MSE

[
ξ̂CI(ψ2, · , 8,192)

]
± Its Estimated Standard Error

for Various Order-r Quantile Estimators ξ̂CI(ψ2, · , 8,192) in Network 1

Estimator Order r
0.05 0.25 0.50 0.75 0.95

ξ̂CI–MS(ψ2, G
(2)
AV, 8,192) 1.085 1.290 1.162 1.090 1.044

±0.029 ±0.044 ±0.033 ±0.034 ±0.033
ξ̂AV–SS(ψ2, 8,192) 1.074 1.293 1.170 1.088 1.054

±0.029 ±0.043 ±0.032 ±0.034 ±0.035

ξ̂CI–MS(ψ2, G
(2)
LH, 8,192) 1.054 1.280 1.227 1.143 1.011

±0.031 ±0.042 ±0.039 ±0.033 ±0.030
ξ̂CI–MS(ψ2, G

(4)
LH, 8,192) 1.183 1.514 1.694 1.377 1.052

±0.037 ±0.055 ±0.058 ±0.044 ±0.036
ξ̂CI–MS(ψ2, G

(8)
LH, 8,192) 1.218 1.727 2.036 1.826 1.100

±0.043 ±0.057 ±0.066 ±0.061 ±0.031
ξ̂CI–MS(ψ2, G

(16)
LH , 8,192) 1.202 1.807 2.435 2.472 1.318

±0.033 ±0.060 ±0.075 ±0.079 ±0.040
ξ̂CI–MS(ψ2, G

(32)
LH , 8,192) 1.174 1.926 2.506 3.075 1.784

±0.044 ±0.068 ±0.084 ±0.094 ±0.060
ξ̂CI–MS(ψ2, G

(64)
LH , 8,192) 0.960 1.896 2.698 3.145 2.304

±0.029 ±0.062 ±0.090 ±0.088 ±0.084
ξ̂CI–MS(ψ2, G

(128)
LH , 8,192) 0.601 1.504 2.413 3.340 2.777

±0.017 ±0.051 ±0.077 ±0.109 ±0.093
ξ̂LH–SS(ψ2, 8,192) 0.966 1.725 2.578 3.470 3.873

±0.027 ±0.051 ±0.080 ±0.129 ±0.132
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Table III

Estimated Ratio MSE
[
ξ̂DS(ψ2, 2,048)

] /
MSE

[
ξ̂CI(ψ2, · , 2,048)

]
± Its Estimated Standard Error

for Various Order-r Quantile Estimators ξ̂CI(ψ2, · , 2,048) in Network 2

Estimator Order r
0.05 0.25 0.50 0.75 0.95

ξ̂CI–MS(ψ2, G
(2)
AV, 2,048) 1.065 1.199 1.145 1.090 1.036

±0.017 ±0.019 ±0.017 ±0.017 ±0.016
ξ̂AV–SS(ψ2, 2,048) 1.055 1.198 1.145 1.088 1.031

±0.016 ±0.019 ±0.017 ±0.017 ±0.016

ξ̂CI–MS(ψ2, G
(2)
LH, 2,048) 1.071 1.205 1.162 1.086 1.014

±0.016 ±0.018 ±0.018 ±0.018 ±0.017
ξ̂CI–MS(ψ2, G

(4)
LH, 2,048) 1.147 1.405 1.431 1.270 1.095

±0.016 ±0.019 ±0.022 ±0.021 ±0.018
ξ̂CI–MS(ψ2, G

(8)
LH, 2,048) 1.202 1.604 1.809 1.546 1.173

±0.021 ±0.025 ±0.026 ±0.023 ±0.018
ξ̂CI–MS(ψ2, G

(16)
LH , 2,048) 1.187 1.637 2.058 2.021 1.340

±0.018 ±0.025 ±0.031 ±0.034 ±0.022
ξ̂CI–MS(ψ2, G

(32)
LH , 2,048) 1.168 1.683 2.207 2.374 1.637

±0.019 ±0.028 ±0.034 ±0.041 ±0.025
ξ̂CI–MS(ψ2, G

(64)
LH , 2,048) 0.690 1.397 2.035 2.383 1.844

±0.009 ±0.020 ±0.030 ±0.039 ±0.032
ξ̂LH–SS(ψ2, 2,048) 1.172 1.766 2.253 2.584 2.346

±0.016 ±0.028 ±0.029 ±0.040 ±0.029

Table IV

Estimated Ratio MSE
[
ξ̂DS(ψ2, 8,192)

] /
MSE

[
ξ̂CI(ψ2, · , 8,192)

]
± Its Estimated Standard Error

for Various Order-r Quantile Estimators ξ̂CI(ψ2, · , 8,192) in Network 2

Estimator Order r
0.05 0.25 0.50 0.75 0.95

ξ̂CI–MS(ψ2, G
(2)
AV, 8,192) 1.092 1.258 1.127 1.114 1.111

±0.039 ±0.044 ±0.032 ±0.035 ±0.046
ξ̂AV–SS(ψ2, 8,192) 1.099 1.250 1.117 1.114 1.090

±0.039 ±0.043 ±0.030 ±0.034 ±0.043

ξ̂CI–MS(ψ2, G
(2)
LH, 8,192) 1.098 1.295 1.231 1.092 1.074

±0.034 ±0.042 ±0.049 ±0.033 ±0.038
ξ̂CI–MS(ψ2, G

(4)
LH, 8,192) 1.165 1.446 1.414 1.258 1.133

±0.041 ±0.046 ±0.043 ±0.040 ±0.035
ξ̂CI–MS(ψ2, G

(8)
LH, 8,192) 1.223 1.717 1.846 1.572 1.225

±0.042 ±0.051 ±0.059 ±0.047 ±0.044
ξ̂CI–MS(ψ2, G

(16)
LH , 8,192) 1.209 1.825 2.107 2.048 1.342

±0.037 ±0.053 ±0.063 ±0.060 ±0.041
ξ̂CI–MS(ψ2, G

(32)
LH , 8,192) 1.263 1.838 2.177 2.300 1.620

±0.046 ±0.060 ±0.068 ±0.089 ±0.055
ξ̂CI–MS(ψ2, G

(64)
LH , 8,192) 1.058 1.794 2.307 2.526 1.808

±0.041 ±0.050 ±0.062 ±0.082 ±0.056
ξ̂CI–MS(ψ2, G

(128)
LH , 8,192) 0.818 1.542 2.270 2.596 1.876

±0.028 ±0.046 ±0.083 ±0.082 ±0.060
ξ̂LH–SS(ψ2, 8,192) 1.239 1.760 2.161 2.514 2.468

±0.050 ±0.054 ±0.076 ±0.084 ±0.085



§5. CONCLUSIONS AND RECOMMENDATIONS 25

ξ̂LH–SS(ψ2, n) was superior. Moreover, the asymptotic distribution of ξ̂LH–SS(ψ2, n) is given by
Theorem 3, and we derived an exact expression for the corresponding asymptotic variance parame-
ter σ2

LH–SS that clearly reveals the mechanism for achieving efficiency increases via Latin hypercube
sampling. In contrast, the asymptotic distribution of correlation induction–multiple sample estima-
tors is unknown—even for the special case of the Latin hypercube–multiple sample estimator. Based
on these considerations, we strongly recommend ξ̂LH–SS(ψ2, n) of all the estimators considered in
this paper.

5 CONCLUSIONS AND RECOMMENDATIONS

Both the theoretical and experimental results presented in this paper provide substantial evidence
that some of the proposed correlation-induction techniques for estimating quantiles can yield worth-
while improvements in estimator accuracy relative to direct simulation. In particular, the Latin
hypercube–single sample estimator appears to be effective for estimating the upper extreme quan-
tiles of the network completion time of a stochastic activity network.

Although several issues require follow-up investigation, perhaps the most urgent need is for
a more extensive experimental evaluation of the proposed quantile estimators. In particular, it
is unclear whether the efficiency improvements observed for the Latin hypercube–single sample
quantile estimator are typical of the gains that can be anticipated in practice. In the spirit of
Avramidis, Bauer, and Wilson (1991) for example, a comprehensive experimental evaluation is
required for the correlation-induction quantile estimators developed in this paper. Special emphasis
should be given to a study of the robustness of the proposed quantile estimators against violations
of the assumptions underlying the main theoretical results of this work (namely, Theorems 1, 2,
and 3 together with Propositions 2 and 3).

Follow-up methodological work is required in the following areas:

1. Extension of the theoretical development to cover a larger class of simulation experiments,
including formulation and justification of assumptions that yield the main results but are
simpler and less restrictive than the current assumptions (namely, RC1–RC4, CC1, and
CC2); and

2. Development of convenient methods for checking (validating) the assumptions underlying
the main results.

Although our development is limited to simulations for which the dimension d of the vector of
random-number inputs is fixed, we believe that much of this development can ultimately be ex-
tended to simulations where d is random. Such a complication naturally arises in the following
situations: a) a finite-horizon simulation involving, for example, the acceptance-rejection method
for generating random variates; and b) an infinite-horizon simulation potentially involving the gen-
eration of an unlimited number of random variates. Moreover, we believe that all of our results can
be extended to multiresponse simulations.
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In light of the demonstrated effectiveness of Latin hypercube sampling (LHS), we believe that
emphasis should be given to this technique in future research. The asymptotic distribution should
be established for the multiple-sample estimators ξ̂CI–MS

(
ψc, G

(k)
LH, n

)
with c = 1, 2 as n, k →∞. It

would also be highly desirable to have an analogue of LHS for infinite-horizon simulations. Another
direction along which LHS can be generalized is to stratify the marginal distributions of subvectors
of the vector of input random numbers, where the dimension of the subvectors is higher than one
(Owen 1992b). Finally, practical methods should be developed for constructing asymptotically
valid confidence regions for a vector of selected quantiles under Latin hypercube sampling.

APPENDIX

Proof of Lemma 1

The proof of Lemma 1 requires the following auxiliary result.

Lemma 3 Let {A(1), . . . , A(n)} denote the order statistics of a random sample of size n from a
distribution having inverse c.d.f. Q(·). Let {in} denote a sequence of positive integers such that
in/n = r +O(1/n), where r ∈ (0, 1). If conditions RC1 and RC2 hold for the function Q(·), then

E
[
A(in)

]
= Q

(
in

n+ 1

)
+Q′′

(
in

n+ 1

)
µ2(in, n)

2
+ o(n−1), (43)

and for every even positive integer w,

E
[ {
A(in) − E

[
A(in)

]}w ]
=

[
Q′

(
in

n+ 1

)]w

µw(in, n) + o
(
n−(w+1)/2

)
, (44)

where

µα(`, n) ≡
∫ 1

0

(
u−

`

n+ 1

)α

h`,n(u) du and h`,n(u) ≡
n!

(`− 1)!(n− `)!
u`−1(1− u)n−`

respectively denote the αth central moment (α = 2, 3, . . .) and the probability density function (p.d.f.)
of the beta distribution with shape parameters ` and n− `+ 1.

Proof. If condition RC1 holds and if condition RC2 holds with S = (0, 1), then (43) and (44) are
the conclusions of Lemmas 3.2.2 and 3.2.3 of van Zwet (1964), respectively. To handle situations
in which condition RC2 holds with S 6= (0, 1), we modify van Zwet’s arguments; and since the
modifications are very similar for the two results, we provide full details for (43) while merely
outlining the main steps in the proof of (44). Let

εn ≡ max

{∣∣∣∣ in

n+ 1
− r

∣∣∣∣, 2
∣∣∣∣ in − a

n− a− b+ 1
− r

∣∣∣∣, 1

log(n+ 1)

}
for n ≥ a+ b, (45)
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where a and b are the nonnegative integer constants of condition RC1. Clearly limn→∞ εn = 0; and
since r ∈ S, we can find a sufficiently large integer N such that

[r − εn, r + εn] ⊂ S, in > a, and n− in > b for all n ≥ N, (46)

where S is the subinterval containing r in condition RC2.
We establish first that the expectation on the left-hand side of (43) is finite for all n ≥ N . From

Stirling’s formula (Billingsley 1986, p. 246), we see that there is a finite constant M1 such that

n!

(in − 1)!(n− in)!
·
(in − a− 1)!(n− in − b)!

(n− a− b)!
≤M1 for all n ≥ N. (47)

Condition RC1 and relation (47) imply there is a finite constant M2 such that

|Q(u)hin,n(u)|

=

[
n!

(in − 1)!(n− in)!
·
(in − a− 1)!(n− in − b)!

(n− a− b)!

]
·
∣∣∣Q(u)ua(1− u)b

∣∣∣ · hin−a,n−a−b(u)

≤ M2hin−a,n−a−b(u) for all u ∈ [0, 1] and n ≥ N. (48)

Representing the order statistic A(in) according to the relation A(in) = Q
[
U(in)

]
, where U(in) is the

corresponding order statistic for a sample of n uniform random numbers so that U(in) has p.d.f.
hin,n(·), we see that

E
[
A(in)

]
=

∫ 1

0
Q(u)hin,n(u) du; (49)

and since the definition (46) implies that in − a > 0 and n− in − b > 0 for all n ≥ N , display (48)
ensures that E

[
A(in)

]
exists for all n ≥ N .

Starting from (49) and taking

Υn(u) ≡ Q(u)−Q

(
in

n+ 1

)
−Q′

(
in

n+ 1

)(
u−

in

n+ 1

)
−

1

2
Q′′

(
in

n+ 1

)(
u−

in

n+ 1

)2

(50)

for all u ∈ [0, 1] and n ≥ N , we see that∫ 1

0
Υn(u)hin,n(u) du = E

[
A(in)

]
−Q

(
in

n+ 1

)
−Q′′

(
in

n+ 1

)
µ2(in, n)

2
. (51)

To establish (43), we will show that the left-hand side of (51) is o(n−1). This is accomplished
by decomposing the left-hand side of (51) into two integrals over the subregions {u : 0 ≤ u ≤
1 and |u − r| ≤ εn} and {u : 0 ≤ u ≤ 1 and |u − r| > εn}, respectively, for n ≥ N , where the
constraint 0 ≤ u ≤ 1 is implicit in all subsequent integrals involving beta p.d.f.’s. ¿From the
definition (45) of εn, (47), and (48), we see that there is a finite constant M3 such that∣∣∣∣∣∣∣

∫
|u−r|>εn

Υn(u)hin,n(u) du

∣∣∣∣∣∣∣ ≤
∫

∣∣∣∣u− in − a

n− a− b + 1

∣∣∣∣ > 1
2
εn

M3hin−a,n−a−b(u) du (52)
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≤ M3
µ4(in − a, n− a− b)

(εn/2)4
(53)

= O

{
µ4(in − a, n− a− b)

[
log(n+ 1)

]4
}

(54)

= O

{ 1

n2

[
log(n+ 1)

]4
}

= o(n−1) for all n ≥ N. (55)

The Markov inequality (Billingsley 1986, p. 74) yields (53), and the definition (45) yields (54).
Relation (55) follows from Lemma 3.2.1 of van Zwet (1964) or from standard formulas for the
variance and fourth central moment of a beta distribution with shape parameters in − a and
n− b− in + 1; see Hahn and Shapiro (1967, p. 128).

Next we consider the other component
∫
|u−r|≤εn

Υn(u)hin,n(u) du of the integral on the left-hand
side of (51). By (46) and condition RC2, we see that for each n ≥ N and for each u ∈ [r − εn, r + εn],
we can take a second-order Taylor expansion of Q(u) centered at in/(n+ 1) with remainder of the
form 1

2Q
′′[z(u, n)][u− in/(n+ 1)]2, where z(u, n) is a point between u and in/(n+ 1). Combining

the definition (50) of Υn(·) with this Taylor expansion of Q(·), we obtain∣∣∣∣∣∣∣
∫

|u−r|≤εn

Υn(u)hin,n(u) du

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

|u−r|≤εn

1

2

{
Q′′[z(u, n)]−Q′′

(
in

n+ 1

)}(
u−

in

n+ 1

)2

hin,n(u) du

∣∣∣∣∣∣∣ (56)

≤
[

max
r−εn≤u1,u2≤r+εn

∣∣∣Q′′(u1)−Q′′(u2)
∣∣∣ ]
µ2(in, n)

2
= o(n−1) for all n ≥ N (57)

since Q′′(·) is continuous on [r − εn, r + εn] for n ≥ N . Combining (51), (55), and (57), we obtain
(43).

The main steps in the proof of (44) are similar to the main steps in the proof of (43). Given a
fixed positive even integer w, we define

ε∗n ≡ max

{∣∣∣∣ in

n+ 1
− r

∣∣∣∣, 2
∣∣∣∣ in − wa

n− wa− wb+ 1
− r

∣∣∣∣, 1

log(n+ 1)

}
for n ≥ w(a+ b), (58)

where a and b are the nonnegative integer constants of condition RC1. Along the lines of (46), we
can find a sufficiently large integer N∗ such that

[r − ε∗n, r + ε∗n] ⊂ S, in > wa, and n− in > wb for all n ≥ N∗, (59)

where S is the subinterval containing r in condition RC2. Moreover, there is a finite constant M∗

for which we have the following counterpart of (48),

|Qw(u)hin,n(u)| ≤M∗hin−wa,n−wa−wb(u) for all u ∈ [0, 1] and n ≥ N∗; (60)
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and since in − wa > 0 and n− in − wb > 0 for all n ≥ N∗, it follows that the wth central moment
(44) of A(in) exists for all n ≥ N∗.

Using an argument similar to (52)–(55), we can show that∣∣∣∣∣∣∣
∫

|u−r|>εn

{
Q(u)− E

[
A(in)

]}w
hin,n(u) du

∣∣∣∣∣∣∣ = o
(
n−(w+1)/2

)
for all n ≥ N∗. (61)

Finally applying regularity condition RC2 to obtain a second-order Taylor expansion of Q(u) cen-
tered at in/(n+ 1) and applying (43) to obtain a comparable expansion for E

[
A(in)

]
, we can show

that ∫
|u−r|≤εn

{
Q(u)− E

[
A(in)

]}w
hin,n(u) du =

[
Q′

(
in

n+ 1

)]w

µw(in, n) + o
(
n−(w+1)/2

)
; (62)

and paralleling the justification of (57), the key properties required to establish (62) are that Q′′(·)
is continuous on [r− ε∗n, r+ ε∗n] for n ≥ N∗ and that limn→∞ ε∗n = 0. Combining (61) and (62), we
finally obtain (44). This completes the proof of Lemma 3.

To prove Lemma 1, we apply (43) and (44) together with the following standard property of the
central moments of a beta distribution (see van Zwet’s Lemma 3.2.1),

µw(in, n) =


O

(
n−w/2

)
, if w is even,

O
(
n−(w+1)/2

)
, if w is odd,

to show that
sup

n
E

({
n1/2

[
ξ̂DS(ψc, n)− ξ

]}4
)
<∞ for c = 1, 2. (63)

Now condition RC3 implies that F ′(ξ) = 1/Q′(r) 6= 0; and thus we can apply (34) and (35) to
show that n1/2

[
ξ̂DS(ψc, n)− ξ

]
converges weakly to a distribution with mean zero and variance

σ2
DS = r(1− r)/[F ′(ξ)]2 for c = 1, 2. Display (63) and the corollary to Theorem 25.12 of Billingsley

(1986) imply that

lim
n→∞

E
{
n1/2

[
ξ̂DS(ψc, n)− ξ

]}
= 0

lim
n→∞

Var
{
n1/2

[
ξ̂DS(ψc, n)− ξ

]}
=
r(1− r)
[F ′(ξ)]2

 for c = 1, 2, (64)

which is the desired conclusion.

Proof of Proposition 2

Using the notation established in Lemma 3 with in ≡ dnre for all n, we detail the proof of (19).
Let δn ≡ dnre/(n+ 1)− r = O(n−1) for all n ≥ N . Lemma 3 implies that

E
[
Y(dnre)

]
= Q

( dnre
n+ 1

)
+Q′′

( dnre
n+ 1

)
µ2(dnre, n)

2
+ o(n−1) . (65)
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Into (65) we will insert (a) the asymptotic expansion µ2(dnre, n) = r(1 − r)/n + o(n−1) for all
n ≥ N (see, for example, van Zwet’s equation (3.2.1)); and (b) the following Taylor expansions
whose validity is guaranteed by condition RC4 together with the definitions (45) and (46):

Q

( dnre
n+ 1

)
= Q(r) +Q′(r)δn +O(n−2)

Q′′
( dnre
n+ 1

)
= Q′′(r) +O(n−1)


for all n ≥ N.

Thus we obtain

E
[
ξ̂DS(ψ1, n)

]
= E

[
Y(dnre)

]
= Q(r) +Q′(r)δn + 1

2Q
′′(r)

r(1− r)

n
+ o(n−1) , (66)

and (19) follows immediately from the definition of δn. To prove (20), we obtain expansions similar
to (66) for E

[
Y(dnr+0.5e−1)

]
and E

[
Y(dnr+0.5e)

]
; and we combine these expansions in accordance with

(4) and (5) to obtain the desired expression for E
[
ξ̂DS(ψ2, n)

]
.

Sketch of the Proof of Relation (29)

Some additional notation is required to justify (29). Let G(n)
IR denote the distribution of n inde-

pendent uniform random numbers. Clearly G(n)
IR satisfies conditions CI1 and CI2 so that G(n)

IR ∈ G.

Now the row vectors
{
U(i) ≡

[
U

(i)
1 , . . . , U

(i)
d

]
: i = 1, . . . , n

}
are generated under Latin hyper-

cube sampling (LHS) if the corresponding column vectors
{
Uj ≡

[
U

(1)
j , . . . , U

(n)
j

]T
: j = 1, . . . , d

}
are randomly sampled from the distribution G

(n)
LH. Similarly, the row vectors

{
U(i) : i = 1, . . . , n

}
are generated under i.i.d. sampling if the corresponding column vectors {Uj : j = 1, . . . , d} are

randomly sampled from the distribution G(n)
IR . Expectations, variances, and covariances under LHS

(respectively, i.i.d. sampling) will be denoted by the subscript LH (respectively, IR) when these

moments are potentially different under LHS and i.i.d. sampling. For a fixed real t and for any

positive integer n, we take

χ(n)(u) ≡ 1
{
y(u) ≤ ξ + n−1/2t

}
for all u ∈ [0, 1]d,

where we suppress the dependence of χ(n)(·) on t; and we let χ(n)
j (·), χ(n)

add(·), and χ(n)
res (·) respectively

denote the jth main effect, the additive part, and the residual from additivity of χ(n)(·).

The proof of relation (29) is based on arguments given by Stein (1987) and Owen (1992a)

to establish respectively the asymptotic variance and the asymptotic distribution of the mean of
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a Latin hypercube sample. The adaptation of these arguments depends on the basic property

that limn→∞ χ(n)(u) = χ(u) for all u ∈ [0, 1]d. By the definition of the sample c.d.f. in (2),

F
(LH)
n

(
ξ + n−1/2t

)
= n−1 ∑n

i=1 χ
(n)

(
U(i)

)
, where the

{
U(i) : i = 1, . . . , n

}
are sampled under LHS.

By decomposing χ(n)(·) into its additive part χ(n)
add(·) and its residual from additivity χ

(n)
res (·), we

have n1/2∆(LH)
n = An +Bn, where

An ≡ n−1/2
n∑

i=1

[
χ

(n)
add

(
U(i)

)
− F

(
ξ + n−1/2t

)]
and Bn ≡ n−1/2

n∑
i=1

χ(n)
res

(
U(i)

)
. (67)

The first step in the proof of (29) is to show that under LHS,

An
P−→ 0 as n→∞. (68)

Following closely the proof of Theorem 1 in Stein (1987) and using the function χ(n)
add(·) in place of

Stein’s function h(·), we obtain the following analogue of Stein’s Theorem 1 by applying Lemma 4
of Avramidis and Wilson (1995):

CovLH

[
χ

(n)
add

(
U(1)

)
, χ

(n)
add

(
U(2)

)]
= dn−1E2

[
χ

(n)
add(U)

]
− n−1

d∑
j=1

E
[
χ2

j (Uj)
]
+ o(n−1). (69)

Combining (67) and (69) and applying the bounded convergence theorem (Billingsley 1986, p. 214),
we have

VarLH[An] = Var
[
χ

(n)
add(U)

]
+ (n− 1)CovLH

[
χ

(n)
add

(
U(1)

)
, χ

(n)
add

(
U(2)

)]
= Var[χadd(U)]−

d∑
j=1

Var[χj(Uj)] + o(1) = o(1) as n→∞. (70)

Since E[An] = 0, (68) follows from (70) and Chebyshev’s inequality (Billingsley 1986, p. 75).
The second step in the proof of (29) is to show that under LHS,

Bn
D−→ N{0, Var[χres(U)]} . (71)

Adapting the proof of Theorem 1 of Owen (1992a) as detailed in Lemmas 5 and 6 of Avramidis
and Wilson (1995), we have that for any integer ν ≥ 1,

ELH[Bν
n] = EIR[Bν

n] + o(1) as n→∞. (72)

¿From the analysis given in displays (30.4)–(30.9) of Billingsley (1986), it follows immediately that

under i.i.d. sampling each moment of the standardized sum Sn ≡ Bn

/
E1/2

{[
χ

(n)
res (U)

]2
}

converges

to the corresponding moment of a standard normal random variable so that limn→∞ EIR[Sν
n] =

E{ [N(0, 1)]ν } for ν = 1, 2, . . . . This last result and the bounded convergence theorem imply that

lim
n→∞

EIR[Bν
n] = E

[ (
N

{
0, Var[χres(U)]

})ν ]
for ν = 1, 2, . . . . (73)
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Combining (72) and (73), we see that under LHS each moment of Bn converges to the corresponding
moment of a normal distribution with mean zero and variance Var[χres(U)] as n→∞. Thus (71)
follows from the method-of-moments theorem (Billingsley 1986, Theorem 30.2) and the fact that
the normal distribution is determined by its moments (Billingsley 1986, Example 30.1). Finally
(29) follows from (68), (71), and Slutsky’s Theorem.
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Figure 1. Network 1 with mean duration shown next to each activity.

Figure 2. Network 2 with mean duration shown next to each activity.

Figure 3. Bias squared, variance, and MSE of the estimators ξ̂DS(ψ1, n) and ξ̂DS(ψ2, n) as functions
of the sample size n in network 1 with r = 0.95.


