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To generate random variates from an unknown continuous
distribution, we present procedure IDPF — a flexible technique
for estimating the associated inverse distribution function from
sample data and for generating variates from the fitted distribu-
tion by inversion. To motivate IDPF, first we examine a prede-
‘cessor due to Hora, and we expiain how Hora’s method can fail
in either the distribution-fitting or variate-generation stage of
application. We apply IDPF as follows. After selecting an initial
inverse distribution function by a standard technique, we esti-
mate a polynomial “filter” for the random-number input by
constrained nonlinear regression to achieve minimum “dis-
tance” between the empirical inverse distribution and the final
fitted inverse distribution obtained by composition of the initial
inverse distribution with the polynomial “filter.” The regression
constraint ensures that the fitted inverse distribution function is
nondefective and monotonically nondecreasing. A portable,
public-domain implementation of IDPF is based on weli-known
techniques for selecting initial distributions from the Johnson
translation system. A Monte Carlo study illustrates the effec-

tiveness of IDPF. Compared to initial Johnson distributions -

selected by matching moments, IDPF-based fits are closer on
the average to the corresponding empirical and theoretical
inverse distribution functions. Similar conclusions apply to
other initial distributions selected by other methods.

In the development of discrete-event simulation models,
we frequently need to generate independent observations
of a continuous random variable X having an unknown
cumulative distribution function (c.d.f) F(-). To facilitate
the use of standard variance reduction techniques, we seek
to sample X by inversion; and this approach requires a
suitable approximation to the inverse F~1(:) of the target
c.d.f. Typically a random sample (X, X, -, X,} from F(-)
is available, and this sample defines the associated empiri-
cal c.df. F(). The conventional approach to simulation
input modeling involves (a) identifying an appropriate
family of distributions to model the behavior of X; (b)
estimating the corresponding parameter values that yield
the “best” fit to the sample data set; and (c) invoking some
standard sampling scheme to generate observations from
the fitted distribution. Most of the well-known families of
distributions have a fixed number of parameters, which
implies a limited variety of distributional shapes and thus

a limited capability for approximating the target empirical
or theoretical distributions.

Horal"®! proposed an alternative method for simulation
input modeling which has received substantial attention
because of its flexibility and simplicity.!'”- % Hora’s method
uses the inverse of a known continuous c.d.f. Fy(+) (the
so-called reference distribution) as the starting point for esti-
mating the target inverse c.d.f. F~'(-). Hora assumed that
F~'(-) has the functional form

¢ k_l
F Y p) = Fo‘l{exp[ao log(p)+ Y ak(Lk—)}}

k=1

forall p € (0,1), (€8]

where t and Fy(*) are suitably chosen by the modeler. This
method attempts to reduce the problem of estimating an
inverse c.d.f. to that of selecting a reference distribution
and then performing linear regression to estimate the pa-
rameters {o;:k = 0, 1,..., ¢} in (1). The obvious advantage
of this approach is that the statistical theory for linear
regression is well known and widely applied. Hora's
method is also highly flexible since it allows the introduc-
tion of an arbitrarily large number of parameters to com-
pensate for any inadequacies in the reference fit. On the
other hand, Hora’s method has some drawbacks: (a) The
statistical model that underlies the procedure for estimat-
ing the {a;} has an exponentially distributed, multiplicative
error term; and thus we cannot apply standard inferential
procedures based on classical linear regression analysis. (b)
The fitted inverse c.d.f. of the form (1) may fail to be
monotonically nondecreasing; and in addition to being il-
logical, this condition can destroy the effectiveness of stan-
dard variance reduction techniques such as common ran-
dom numbers and antithetic variates.”® (c) The fitted in-
verse c.d.f. of the form (1) may be undefined for some
values of p in the unit interval (0, 1); and this means that
the fitted distribution is defective (dishonest) and that the
inverse-transform method of variate generation will ulti-
mately fail for this distribution.

Subject classifications: Simulation, random variable generation: method of inversion.
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Starting from Hora’s original concept of adjusting a ref-
erence distribution based on regression analysis of a sam-
ple data set and taking the formulation (1) as a point of
departure, we propose a method for fitting an Inverse
Distribution with a Polynomial “Filter” (IDPF). Given a
reference c.d.f. Fy(-) representing an initial estimate of the
unknown c.d.f. F(-) that is to be sampled by inversion, we
seek an improved estimate of F~'(:) based on the assump-
tion that this inverse c.d.f. can be adequately modeled with
the functional form

r—1 r—1
FY(p) = Fo“[ Y Bipt+ (1 - X Bk)p’]
k=1 k=1

forall p € (0,1). 2)

In the approximation (2), the coefficient estimates {ék:k =
1,...,7 — 1} are computed so that the corresponding in-
verse c.d.f. estimate F~!(-) minimizes an appropriately
weighted sum of squared deviations of the form [F-Yp) -
E; Y p)]2 taken over selected values of p € (0, 1). For a
given degree r of the polynomial ““filter” within the square
brackets on _the right-hand side of (2), the least-squares
estimates { Bk = 1,..., r — 1} of the filter coefficients are
computed subject to the constraint that the corresponding
filter is a strictly increasing function of p for p € (0, 1). The
degree r of the filter is estimated by a likelihood ratio test.

This paper is organized as follows. Section 1 contains a
detailed analysis of Hora’s method and its potential prob-
lems. In Section 2 we discuss the basis for procedure IDPF,
and we describe a portable, public-domain implementation
of this procedure using reference distributions from the
Johnson translation system.'*) In Section 3 we present an
example illustrating the use of IDPF for simulation input
modeling. In Section 4 we summarize a comprehensive
experimental performance evaluation of IDPF when refer-
ence distributions from the Johnson translation system and
the triangular distribution family are obtained by matching
moments. The main conclusions of this work are recapitu-
lated in Section 5. Although this paper is based on [2],
some of our results were originally presented in [3].

1. Hora's Method for Estimating a Continuous inverse C.D.F.
1.1. Basis for Hora's Method

Hora’s method for estimating F™'(-) requires several key
assumptions. A fundamental requirement is that the target
cd.f. F(:) and the reference c.d.f. Fy(-) must respectively
possess continuous densities f(-) and fy() with the same
support; moreover f(-) must be differentiable except possi-
bly at the end points of its support. Let {X;,X,,..., X,}
denote a random sample from F(-), and let x,=F~'(p)
denote the pth quantile of this distribution for p € (0, 1).
The main assumption underlying Hora’s method is that x
can be adequately represented by the functional form (1),
where t and F(-) are appropriately chosen by the user. To
provide a basis for his input-modeling technique, Hora
defined the function

d
y(p)= pd—plog[ Fo(x,)] forall pe (0,1); (1.1

and it is easy to see that (1) is equivalent to the condition

:
y(p) = Y a,pFforall pe (0,1). (1.2)

k=0

To estimate the coefficients {o;:k = 0, 1,...,t} in (1.2) by
classical linear regression analysis, Hora formulated a de-
pendent (response) variable with appropriate asymptotic
properties as n — . Let X;, denote the ith order statistic
associated with the random sample {X,..., X,} so that
Xy < Xpy € -+ € X(,- The dependent variable derived
by Hora is

MEi(IOg{Fol X(i+ 1)]} - log{Fol X(,-)]})
fori=1,2,...,n—1.

It can be shown that for a fixed set of points {p;:j =1,
2,...,min(0, 1),

D )
Winsnpy 7= Y(peg forj=1,2,...,m, (1.3)

D TP T .
where — denotes convergence in distribution and {e;:j =

1,..., m} are independent exponential random variables
with mean 1. See Avramidis and Wilson!*! for a complete
justification of (1.3). Hora also asserted that if y(-) is a
bounded function, then the analogue of (1.3) for, conver-
gence of first-order moments also holds:

lim E[Wl(,,ﬂ)m] =y(ppforj=12,..m (14
n-ow

Taking m=n — 1 with p;=j/(n+1Dforj=12,...,m,
Hora concluded that (1.2) and (1.4) provide some basis for
the statistical model

¢ N
W, = [kgoak(" i 1) ]ej forj=1,2,...,n—1; (1.5)
and he recommended that the coefficients {a} in (1.5)
should be estimated by ordinary least-squares regression to
obtain an estimate of F~'(-) having the form (1).

There are several gaps in the basis for this development.
First, Hora provided no justification for (1.3) when both m
and the points {p;:j = 1,..., m} are allowed to vary arbi-
trarily with the sample size n. Second, Hora gave no proof
that boundedness of y(-) is sufficient to ensure the validity
of (1.4) even in the case that m and (p,-:j =1,...,m} are
fixed for all values of n—and in general for each value of j
with p; fixed, a moment-convergence property like a4
requires uniform integrability of the family of random
variables {W,, +up it =1, 2,...} on the left-hand side of
display (1.4) rather than boundedness of the limiting func-
tion (-) on the right-hand side of that display.®! Finally, it
is inappropriate to apply ordinary least-squares regression
to the statistical model (1.5) since the error term ¢; in this
model is nonnormal and multiplicative, while standard
inferential procedures of classical regression analysis
(specifically, procedures for testing hypotheses and con-
structing confidence regions) are based on the assumption
that the error term is normal and additive.®! As discussed
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in the next section, difficulties can also arise in practical
applications of this method.

1.2. Potential Problems with Hora's Method
To illustrate the difficulties that can occur in practice, we
discuss the application of Hora’s method to a data set that
arose in a simulation study of medical decision making. A
random sample of n =80 glucose (blood sugar) levels
(expressed in milligrams per deciliter) was taken from a
population of elderly diabetics enrolled in a monitoring
program of a general medicine clinic. First we fitted a
Johnson distribution!'*! to this data set by matching the
first four sample moments using a modified version of the
moment-matching algorithm AS 99 of Hill, Hill and
Holder!"?! (In §2.2 below, we give a brief overview of the
Johnson translation system of distributions as well as the
modified moment-matching procedure that was used to fit
reference distributions from the Johnson system.) In Figure
1 the empirical c.d.f. F,(-) for this data set is plotted as a
step function, and the moment-matching Johnson c.d.f. is
plotted as a dashed curve. Visual inspection of Figure 1
reveals that the moment-matching fit to this data set is
reasonably close. Sample goodness-of-fit statistics also sup-
port this conclusion—the Kolmogorov-Smirnov statistic is
0.069, and the chi-squared statistic (with 4 degrees of free-
dom) is 8.65. We then applied Hora’s method to this data
set, taking the reference c.d.f. Fy(-) to be the Johnson c.d.f.
estimated by matching moments. In Figures 1, 2, and 3, the
solid smooth curve represents the fitted c.d.f. F(-) obtained
with Hora’s method using polynomials of degree t =90, 1,
and 2 respectively. In each of these figures, the correspond-
ing inverse c.d.f.’s F;!(-), F; (), and F~'() can be seen by
rotating the figure counterclockwise by 90°.

By any reasonable criterion for measuring goodness of
fit, none of the distributions obtained with Hora’s method
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Fgure 1. Glucose data set—empirical c.d.f. (step function),
reference fit (dashed curve), and Hora fit with a polyno-
mial of degree ¢ = 0 (solid curve).

describes the glucose data set as well as the reference
distribution; moreover, some of the fits based on Hora’s
method are simply unacceptable. In particular, the follow.
ing anomalies are apparent:

1. With the fit of degree t = 0, the estimated inverse cdf.
F~'(p) differs substantially from the empirical inverse
cd.f. F;'(p) for all p € (0, 1).

2. With the fit of degree ¢ = 1, the estimated inverse cd.f.
F~!(p) is not even defined for all p € (0, 1). The long-
dashed vertical line in Figure 2 indicates that for 0.6 < p
< 1 (roughly), the expression expldylog(p) +
Zk-18(p* ~ D/k] in display (1) is greater than one;
and thus F~'(p) is not defined for p € (0.6, 1). In effect
the fitted Hora distribution is defective (or dishonest) so
that lim, ,, F(x) < 1; and this is clearly an unaccept-
able result.

3. With the fit of degree t = 2, the estimated inverse c.d.f.
F~!(p) fails to be monotonically nondecreasing for all
p € (0, 1); and thus the corresponding c.d.f. F(x) is not
even a single-valued function of the cutoff value x for
all real x. Since monotonicity is an essential property of
a legitimate inverse c.d.f,, the fitted Hora distribution of
degree t = 2 is also unacceptable.

Although plots of the fitted Hora c.d.f’s of degrees 3
through 5 were omitted to conserve space, we remark that
all of these c.d.f.’s are defective; moreover, all of the corre-
sponding inverse c.d.f’s fail to be monotonically nonde-
creasing. Kline, Bender and Nieber!!”) observed similar lack
of monotonicity in some of the estimated inverse c.d.f.s
they obtained by Hora’s method when n < 50 and ¢ > 3
and they attempted to avoid this problem by imposing the
constraint ¢ < 3 in small samples (that is, when n < 50).
Our example demonstrates the need for a thorough exami-
nation of the potential problems with Hora’s method.

To diagnose the cause of the poor performance of Hora’s
method in the glucose data set, we examined Figures 4, 5,
and 6, which show plots of the sample points {[i /(1 + 1),
Wi =1,...,n — 1} superimposed on fitted polynomials
of degree t for t =0, 1, and 2 respectively. Thus the solid
curve in each of these figures represents the corresponding
estimate of the function y(p) for p € (0, 1). Clearly the
point [1/81,W,]7 is an outlier. The effect of this outlier is to
“pull up” the left-hand end of the estimated regression
curve. In the case that t = 0, this outlier causes long runs of
negative residuals to alternate with short runs of positive
residuals as shown in Figure 4. In the cases that ¢ = 1 and
t = 2, this outlier causes long runs of negative residuals to
alternate with long runs of positive residuals as shown in
Figures 5 and 6 respectively. Standard techniques for ana-
lyzing the residuals in a regression suggest that all of these
polynomial models for the function y(:) are inadequate!®);
and increasing the degree of the polynomial approximation
to y() does not guarantee that a better approximation to
the target inverse c.d.f. F~'() will be obtained. A popular
remedy for this problem is to discard outliers and perform
a new regression. However, there is no clear-cut procedure
for discarding outliers in this context; and the following
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figurs 2. Glucose data set—empirical c.d.f. (step function), reference fit (dashed curve), and Hora fit with a polynomial of

degree t = 1 (solid curve).
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Fgwre 3. Glucose data set—empirical c.d f. (step function),

reference fit (dashed curve), and Hora fit with a polyno-
mial of degree ¢ = 2 (solid curve).

analysis shows that even after outliers have been deleted,
the anomalies observed in this example can still occur.
The difficulties encountered in applying Hora’s method
to the glucose data set ultimately stem from the way that
errors in the regression-based estimate of the function y(-)
are transformed into errors in the final estimate of the
target inverse c.d.f. F7'(:). To describe the relevant charac-
teristics of this transformation, we let ¥(p) = i &, p*
denote the regression-based estimate of y(p) for p € (0, 1),
where {&,:k =0, 1,...,t} are the ordinary least-squares
estimates of the coefficients in the regression model (1.5).
Suppose that in some nonempty open interval (p,, p,) < (0,
1) we have %(p) <0 for all pe (p1,p2)- The estimate
= F~!(p) of the inverse c.d.f. is implicitly defined by the
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Agure 4. Polynomial of degree t =0 fitted to the points

{li/n+DW]I%i=1, 2,...,n—1} for the glucose data
set.

differential equation
d
¥(p) = pElog[ Fo(#,)]forall p € (0,1); (1.6

and since the functions log(-) and Fy(-) are monotonically
nondecreasing and differentiable on their respective do-
mains, it follows from (1.6) and the chain rule that %, is a
strictly decreasing function of p in the interval (py, p,)-
Thus the failure of Hora's method to yield an estimator of
#, that is monotonically nondecreasing for all p € (0, 1) is
a dxrect consequence of allowing %( p) to be negative over
nonempty subintervals of (0, 1).
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FAigure 6. Polynomial of degree t = 1 fitted to the points
{li/n+DW]ITi=1, 2,...,n—1} for the glucose data

set.
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Aigwe B. Polynomial of degree t = 2 fitted to the points
{li/(n+ DW,]I%i=1, 2,...,n~1} for the glucose data
set.

The failure of Hora's method to yield a nondefective
(honest) c.d.f. F(x) is also a direct consequence of allowing
¥(p) to be negative for some p € (0, 1). Solving for %, in
equation (1.6), we have

u)
du” forall p € (0,1),

1.7)

which yields equation (1) after carrying out the integration,
If /1[&(u)/u] du < 0 for some p € (0, 1), then the argu-
P

ment of Fy'(-) in (1.7) will be greater than one for thig
value of p. Thus the estimated inverse c.d.f. F~( p) will be

undefined for all values of p such that / 1[i'( u)/uldu < 0
p

In several applications of Hora’s method, we have ob-
served that the closeness of the fit to a sample data set can
deteriorate significantly as the degree t of the polynomia]
approximation (1.2) increases. This is a highly surprising
drawback for a regression-based estimation method. Even
when the estimate $(-) of the function y(-) improves as the
degree of the polynomial increases, this does not necessar-
ily imply a corresponding improvement in the estimate
F7'() of the target inverse c.d.f. F~!(). This paradoxical
behavior can be explained partially as follows. Suppose
that in some appropriate metric, the estimated degree-d
polynomial #,(*) is closer to the function y(-) than the
estimated degree-c polynomial 9.(-), where d > c. For con-
creteness, we consider a situation in which

fol[v(p) — (P Pdp < ];)l[y(p) ~ 3(pPdp < =; (1.8)

specifically we assume y(p)=1 (so the reference distribu-
tion provides a perfect fit to the underlying distribution),
d=1,and ¢ = 0 with

%(p) =5 — V5 pand $,(p) = 2 forall pe(0,1). (1.9

If we take u,=(Y5 — 2)/V5 = 0.106, then it follows from
(1.9) that

(1.10)

If we take p(=7.70 X 1075, then it also follows from (1.9)
that

() < 3.(u) < y(u) forall u < (0, ).

1 %,(u) 1y(u)
- /

p u

3.(u)
du<—[12——du<— du
p U

P

forall p € (0, py). 11D

Equation (1.7) shows that the corresponding inverse c.d.f.’s
E7'), E7(), and F~U(-) are obtained respectively from
(1.11) by applying the monotonically nondecreasing trans-
formation Fy' [exp(-)] to the three expressions in (1.11) so
that we have

Eri(p) < E-N(p) < F~'(p) forall p € (0, py); (1.12)

thus £;(-) is worse than E~1(-) as an estimate of F~1(-) on
a nonempty subinterval of (0, 1) even though condition
(1.8) holds. This example illustrates how in the chain of
operations required by Hora’s method to recover £~1(-)
from §(-), the estimation errors {y(p) — (p):p € (0, 1)}
can be greatly distorted as they are transformed into the
corresponding deviations {F~*(p) —~ F~'(p):p € (0, 1)}; and
an improved estimate of y(p) is not necessarily trans-
formed into an improved estimate of F~'(p) for any p €
©, .
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We concluded that a basic shortcoming of Hora’s method
is its attempt to estimate the nonnegative function y(-) as
an unrestricted polynomial based on classical linear regres-
sion. Thus we sought an alternative procedure for estimat-
ing F~1(-) that is based on dirgct consideration of the
squared deviations {{F;7'(p) = F!(p)]*:p € (0, D} and
that is appropriately constrained to yield a legitimate esti-
mated inverse c.d.f.

2. The Estimation Procedure IDPF
2.1. Basis for Procedure IDPF
The assumptions underlying procedure IDPF parallel the
assumptions underlying Hora’s method. As with Hora's
method, we require that the target c.d.f. F(-) and the
reference c.d.f. Fy(-) must respectively possess continuous
densities f(*) and fy(+) with the same support; moreover,
f(-) must be differentiable except possibly at a finite num-
ber of points in its support. It is also highly desirable that
F; () should be selected from a functional family which is
sufficiently flexible to allow a close approximation to the
empirical inverse c.d.f. F;(-). (In §2.2.1 below, we describe
a specific family of reference distributions possessing these
properties.) We assume that the target inverse c.d.f. F~!(-)
can be adequately represented by the functional form
F~Yp) =FEyq(p)] forall p € (0,1), (¢))]
where q(-) is a polynomial function of p. In the spirit of
Hora's original concept of adjusting a reference distribution
based on sample data, we view the polynomial 4(:) as a
“filter”” for the random-number input to our scheme for

sampling X, where the coefficients of g(-) are estimated

from sample data using an appropriate least-squares proce-
dure. Thus the target random variate X is generated as
F;'[g(U)], where U is a random number uniformly dis-
tributed on the unit interval (0, 1). (In §2.2.3 below, we
describe a specific implementation of this variate-genera-
tion scheme for the family of reference distributions intro-
duced in §2.2.1)

For the right-hand side of (2.1) to define a legitimate
inverse c.d.f., we require that

0<qg(p)<ilforal pe(0,1) 2.2)

and

g(p) is strictly increasing in p for p € (0,1). (2.3)
Condition (2.2) guarantees that Fy '[g( p)] is defined for all
p € (0, 1), while condition (2.3) ensures that F5'{4(p)] is
monotonically nondecreasing in p for p € (0, 1). In addi-
tion, since F(-) and Fy(-) have the same support, we must
have the following boundary conditions for g(-):

q(0) = 0,and g(1) = 1. Q4
Observe that (2.3) and (2.4) imply (2.2). Our specification of
the inverse c.df. will be complete after we choose the

degree r and the coefficients { 8} of the polynomial 4(-). To
satisfy (2.4), we take g(-) to have the general form

r—1 r-1
q(p) = X Bp' + (1— Zﬁj)p’forallpe(o,l).
j=1 j=1
(2.5)

Procedure IDPF uses a nonlinear least-squares procedure
to estimate the coefficients { 8;} of the polynomial (2.5), and
the degree r of this polynomial is determined by a variant
of a likelihood ratio test due to Gallant.”! Assuming that r
is given and using the well-known approximation!”’

i-05

E[ X)) =F‘1( )fori=1,...,n, (2.6)

we formulate the problem of least-squares estimation of

{BI:j =1,2,...,r—1}as
2
)]} , 2.7)

-

where g(-) is given by (2.5) and is subject to (2.3). The
function to be minimized in (2.7) does not account for the
variance of each X;); thus we will refer to this version of
procedure IDPF as the ordinary least-squares (OLS) estima-
tion procedure.

To incorporate the variability of the order statistics { X;}
into the estimation procedure IDPF, we exploit a key
asymptotic property of these variates. Let p denote a fixed
quantity in (0, 1). As an estimator of the pth quantile x,,
the statistic X; ), is asymptotically normal with mean x,
and variance [ p(1 - p)l/[nf*(x,)] provided that i,/n = p
sufficiently fast as n — . Formally this property is sum-
marized in the relation®®

"sz(xrf)[ Xy~ xP]
[p - p1'?

i—05

n
min Y.

(/3,'),';11 i=1

D

n—ox

N(0,1)

ifi,/n=p+o(n"'?). (2.8)

Using fol X;,] to approximate f(x,) for p = (i — 0.5)/n,
we obtain the weighted least-squares (WLS) estimation

problem
" i-05\1\?
min Z{X(i)—Fo‘l[q( )]}
(BY=1i=1
nfozl X(i)]
XT-057 i-05 (2.9)

=)

where again g(-) has the form (2.5) and is subject to (2.3). In
§2.2.2, we detail a specific implementation of the least-
squares estimation procedures prescribed by (2.7) and (2.9).

The degree r of the polynomial filter is determined by a
likelihood ratio test that has been adapted to constrained
nonlinear regression.”) For concreteness, we discuss this
test in the context of WLS estimation of the parameter
vector ( By, ..., B,_1); a parallel development applies in the
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case of OLS estimation. At the outset, we assume that (2.1)
and (2.5) hold for some value of r to be determined.
Starting with the degree r = 2 and computing the optimal
solution (B{",..., B{,) to (2.9) with the associated objec-
tive-function value Q”, we seek to test the null hypothesis
that

r—1

Y B=1 (2.10
j=1

(so that the degree of the polynomial filter is r — 1) versus
the alternative hypothesis that L7218, # 1 (so that the
degree of the filter is at least rs. When r =2, this is
equivalent to testing the null hypothesis 8, = 1 so that the
inverse of the reference c.d.f. coincides with the inverse of
the target c.d f. If (2.1), (2.5), and (2.10) hold and the sample
size n is large, then the analysis of Gallant’”! provides a
partial basis for the approximation

(r=1 F_(GQn-r+1)
S AN ML) Hp
Qu n—r+1

where 2 € (0, 1) and F,_,(1, n — r + 1) denotes the quan-
tile of order 1 — 4 for the F-distribution with 1 degree of
freedom in the numerator and n — r + 1 degrees of free-
dom in the denominator. Given a significance level a for
the likelihood ratio test procedure, we determine the de-
gree of the polynomial filter according to

(t-1)
r=min{t=2,3,...:Q—QW
F_Qn-t+1)
<1+ P -1; (2.12)

and we deliver the corresponding vector of least-squares
parameter estimates ( B{",..., ).

2.2 An Implementation of Procedure IDPF Using Johnson's Trans-
lation System

2.2.1. System of Reference Distributions. In this study we
focused primarily on the Johnson translation system of
distributions!'*! as a source for the reference fits. We say
that Fy(*) belongs to the Johnson translation system if

=4

where ®(*) is the standard normal c.d.f, y and § are shape
parameters (8 > 0), £ is a location parameter, A is a scale
parameter (A > 0), and ¢(-) is one of the following func-
tions:

Fo(x) = rb[y + S'g( (2.13)

log(y), for the S; (lognormal) family,
(v) = logly + Yy*+ 11, for the S;; (unbounded) family,
&y logl y/(1 - y)], for the Sy (bounded) family,
Y, for the Sy (normal) family.

(2.14)

The corresponding density function is
8 X §) 1 5
A AT 4 tog (

( -
Wam 8
where H is the (closed) support of the distribution

2
fol) = ) }
forall x € H, (2.15)

[£€,+) for the S, (lognormal) family,

(=, +2) for the S;; (unbounded) family,
- [¢, &+ 1] for the S, (bounded) family,

(e, +2) for the Sy (normal) family,

(2.16)

and g'(") is the derivative of the function g(-) in (2.14) so
that

1/y, for the S, (lognormal) family,
g(y) = 1/yy*+1,  forthe S, (unbounded) family,
Y 1/[y(1 ~ )], for the Sy (bounded) family,
1, for the Sy (normal) family.

(2.17)

These four families of the Johnson system can fit any
distribution to its first four moments, and in practice the
Johnson system has been used successfully in a broad
range of disciplines.”®! Moreover, a multivariate extension
of the Johnson system is relatively straightforward.!">) These
two properties motivated the use of the Johnson system in
our implementation of procedure IDPF.

In the initial phase of procedure IDPF, we compute a
specific reference distribution in the Johnson system using
a noninteractive version of the software package FITTR1%¢!
developed by Venkatraman and Wilson®”! Although
FITTR1 incorporates a variety of methods for fitting John-
son distributions to sample data, throughout this paper all
reference distributions are obtained by the method of mo-
ment matching—that is, the reference distribution is cho-
sen to yield the same first four moments as the given
sample data set. Moment matching is a popular method for
fitting Johnson distributions to sample data;'? however,
this technique can yield infeasible parameter estimates such
that some of the sample observations lie outside the sup-
port of the fitted distribution. FITTR1 incorporates a modi-
fied version of the moment-matching algorithm of Hill, Hill
and Holder? to avoid such infeasibility in the reference
distribution.

2.2.2. Numerical Methods Implemented in Procedure
IDPF. Given the reference distribution obtained from the
initial phase of IDPF and a candidate value for the degree r
of the polynomial filter (2.5), we must estimate the parame-
ters of the filter by invoking appropriate numerical meth-
ods to perform the minimization indicated in (2.7) or (2.9)
subject to (2.3). The feasible region is a complicated subset
of (r — 1)-dimensional Euclidean space which cannot be
described conveniently in geometric or analytic terms; con-
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ently we must also invoke appropriate numerical
methods to check the feasibility of each trial solution
(B",....B (1)), These considerations motivated the use of
a search technique for finding the minimum of (2.7) or (2.9),
where each infeasible point is assigned a large penalty to
force the search away from the infeasible region. .

To check the feasibility of a trial solution ( 8{", ..., B"))
for the minimization problem (2.7) or (2.9), we observe that
the condition (2.3) is equivalent to

sequ

r—1

1- ¥ f?}"]w"l >0

j=1

r—1
7= i
j=1

forall p € (0,1). (2.18)

since (1) > g(0), the derivative ¢'(-) must be positive in
some nonempty subinterval of (0, 1). Thus (2.18) is satisfied
if and only if the following equation in the variable p

[1_

has no roots in (0, 1). To verify this condition, we applied
Miiller’s method for finding the roots of a polynomial as
implemented by Conte and de Boor] If a root of (2.19) is
found in the unit interval, then the corresponding trial
solution (B{",..., B{) is infeasible for the minimization
problem (2.7) or (2.9); and in this case a large positive value
is assigned to the objective function.

The minimization of (2.7) or (2.9) is performed using the
Nelder-Mead simplex search procedure as implemented by
Olsson and Nelson.'”) The objective function is evaluated
at the vertices of a simplex representing alternative solu-
tions to the minimization problem, and the search moves in
a direction of declining objective-function values through a
sequence of reflections, expansions, and contractions of the
simplex until either (a) the simplex is sufficiently small so
that the trial solutions represented by the simplex vertices
are sufficiently close together in value, or (b) the differ-
ences between the objective-function values at the simplex
vertices are sufficiently small. The search procedure has
been used successfully in a wide variety of applications.l'®!

In the computer implementation of the likelihood ratio
test procedure (2.12) to determine the degree of the polyno-
mial filter, we used the significance level a = 0.2. Because
of the generally good quality of the reference fits provided
by the initial phase of IDPF, we imposed the upper bound
r < 6 on the degree of the fitted filter (2.5). To execute this
version of procedure IDPF on a computer, we developed a
portable FORTRAN 77 program which is in the public
domain and is available from the authors upon request.

r—1

M B;”]rp’-l =0 (2.19)

j=1

r—-1

it
LByt +
j=1

2.2.3. Variate-Generation Scheme. To generate variates
from the inverse c.d.f. F~1(-) fitted to a data set {X,, ..., X,}
by procedure IDPF, we use the following scheme. The
reference distribution (2.13) is defined by the quantities
¥,8,€, and A and the function g(-) computed in the initial
phase of IDPF as described in §2.2.1. The polynomial filter
(2.5) is defined by the quantities r and (B{",..., B
computed in the final phase of IDPF as described in §2.2.2.

To generate a sample X from the fitted distribution, we
perform the following steps:

1. Generate a random number U from the uniform distri-
bution on (0, 1).
2. Evaluate the fitted polynomial filter at U

r—=1 r—1
qU) = ¥ Ul + [1 - YAV (u. (220
j=1 j=1
3. Deliver the sample value
A o~ '[q(D)] - :
X=£E+ /\-g‘l{——q-g—-——z}, (2.21)
where
e%, for the S; (lognormal) family,
4(2) = 3(e*—e7%), for the S;; (unbounded) family,
1/(1 +e7%), forthe Sz (bounded) family,
z, for the S, (normal) family.

(2.22)

To implement (2.21) in step 3 above, we recommend
using an approximation to the inverse standard normal
distribution function ®~'(:) given in Equation 26.2.23, p.
933 of [1].

This variate-generation scheme is not difficult to imple-
ment; and although the setup time to compute all of the
parameters can be large in comparison to some conven-
tional distribution-fitting schemes, we believe that the main
applications of IDPF are in the following situations where
increased setup time is not the user’s main concern: (a)
Conventional schemes yield unacceptable fits to the sample
data set, and there is a strong motivation to obtain an
improved fit regardless of the increased setup time. (b} The
relevant data sets to be used are so large and so numerous
that sampling from the empirical inverse c.d.f. is cumber-
some. We have applied procedure IDPF to large-scale sim-
ulation experiments involving numerous data sets with
sample sizes exceeding 500; and in all of these situations,
the variate-generation scheme (2.20)-(2.22) proved to be
much more convenient to use than sampling schemes such
as REMPIRD! that are based on some variant of the empiri-
cal inverse c.d.f. Moreover, in our experience, the increased
computational cost of the variate-generation scheme
(2.20)-(2.22) (versus REMPIR or sampling schemes based
on the unadorned empirical inverse c.d.f) is usually negli-
gible compared to the computational cost of the overall
simulation experiment. Substantial evidence supporting this
observation is given in a recent study by Klein and Baris(*®!
of the computation times required to generate Johnson Sg
variates by inversion (that is, by the scheme (2.20)-(2.22)
for the Sy family with r = 1) in the context of large-scale
health-care simulation experiments. The following example
provides some indication of the advantages of procedure
IDPF in large-scale simulation input modeling.
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3. An Application of Procedure IDPF

To illustrate the input-modeling problems that procedure
IDPF has been designed to solve, we discuss a simulation
application that arose in entomology. Researchers collected
a random sample of n = 467 times for a certain species of
Costa Rican wasps to complete the water-collecting cycle in
the process of constructing a nest. This sample was called
the “LWF” data set. As depicted by the dashed curve in
Figure 7, the reference distribution (selected from the John-
son system by matching moments in the initial phase of
IDPF) was taken to be an S, distribution with estimated
parameters ¥ = 5.840, 5 = 1.426, A = 1615., and £ = 10.99.
For this reference fit, the Kolmogorov-Smirnov goodness-
of-fit statistic has the value 0.2058 and the Mann-Wald
chi-squared goodness-of-fit statistic with 13 degrees of free-
dom has the value 140.7.

Since the reference fit showed substantial departures
from the lower tail of the empirical c.d.f. where we would
expect smaller values of both the target density f() and the
reference density fy(-), we chose to apply the OLS version
of procedure IDPF to compensate for the obvious inade-
quacies of the reference fit. (Recall that the OLS and WLS
versions of IDPF refer to the method for estimating the
parameters of the filter (2.5) in the final phase of procedure
IDPF.) Starting from the value Q@M = 23.44 for the OLS
objective function (2.7) based on the reference distribution
without a filter, procedure IDPF fitted a polynomial filter
of degree 7 = 4 with the objective-function value Q) = 4.95
and the associated coefficient estimates §3, = 3.223, §, =
—7.988, and B, = 9.292. The solid curve in Figure 7 depicts
the resulting c.d.f. F(). The inverse c.d.f’s F;1(-), F; ("),
and F~'(-) can be seen by rotating Figure 7 counterclock-
wise by 90°. Figure 8 displays the related probability den-
sity functions (p.d.f.’s) fy(-) and f(-) as well as a histogram
based on the sample data set. Visual inspection of Figures 7
and 8 clearly reveals the superiority of the IDPF-based fit to

1.00
0.80

0.60
Pr{X <z}

(or p)
0.40

0.20

0.00 4rrfrrmr T SSRARERSA
0.00 50.00 100.00

......

15('){00‘
Cutoff Value z (or F~1(p))

.....

'250.00

Figwe 7. C.d.f’s for the “"LWF” data set—empirical c.d.f.
(step function), reference fit (dashed curve), and OLS fit
(solid curve).

0.06

P.df. Estixpate 0.03
fo(z)or f(z)

200.00  250.00

Cutoff Value z

Figurs 8. P.d.f.’s for the “LWF" data set—histogram (step
function), reference fit (dashed curve), and OLS fit (solid
curve).

the empirical distribution of the “LWF” data set compared
to the reference fit.

We have observed that whereas the WLS version of IDPF
is generally more effective in adjusting the central portion
of the reference fit, the OLS version of IDPF is usually more
effective in compensating for discrepancies in the tails of
the reference fit. Although not depicted here, the WLS fit to
the “LWF” data set was barely distinguishable from the
OLS fit. It is also interesting to note that the OLS method
yielded an estimated density f(-) with a substantially larger
ordinate at the mode and a markedly different shape than
the reference density f,(-). We believe procedure IDPF
provides an open-ended mechanism for extending the basic
types of distributional shapes that are achievable with a
given family of reference distributions. See [2] and [3] for
other applications of procedure IDPF.

4, Monte Carlo Evaluation of Procedure IDPF
4.1, Layout of the Monts Carlo Experiments

The two basic goals of the Monte Carlo analysis were:

1. To evaluate procedure IDPF as a data-reduction device
—that is, as a means of obtaining a simplified analytic
representation of a specific set of data. This can be done
by measuring how well the fitted inverse c.d.f. approxi-
mates the empirical inverse c.d.f.

2. To evaluate procedure IDPF as a means for estimating
the inverse of the underlying c.d.f. from which the sam-
ple data set has been taken. This involves measuring
how well the fitted inverse c.d.f. approximates the un-
derlying theoretical inverse c.d.f.

Although these goals coincide asymptotically as the sample
size n — o, the extent to which they agree in small samples
is not clear. This consideration motivated the formulation
of the separate goals 1 and 2.

In designing the Monte Carlo experiments to evaluate
procedure IDPF, we selected all of the target distributions
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from the generalized lambda family of distributions.2!- 22
This selection was based on the flexibility of the general-
ized lambda family and on the simplicity of its inverse

cd.f:

E-ip)=A+[ph -1~ p)1/A, forall p € (0,1),
(4.1)

where A, is a location parameter, A, is a scale parameter,
and A; and A, are shape parameters. For further discussion
of this family, see Ramberg et al.?’!

We performed six basic experiments, each with a differ-
ent target distribution from the generalized lambda family.
The goal here was to test procedure IDPF for a diversity of
underlying distributional shapes and to identify the factors
that significantly affect the performance of the procedure.
All six target distributions used in our study had mean
zero, variance one, skewness a5, and kurtosis a4 as shown
in Table I. We designed a complete factorial-type experi-
ment with low, medium, and high values for the factor o,
and with low and high values for the factor a,. The values
of the parameters A, A, A3, and A, corresponding to each
of the six experiments were obtained from tables given in
[23] and are also displayed in Table L

Within each of the six basic experiments, we performed
two subexperiments using the sample size 7 as an addi-
tional factor. The levels n = 20 and n = 100 were used.
Each of the twelve resulting subexperiments consisted of
the following steps:

1. Generate a sample of the selected size n from the target

inverse c.d.f. of the form (4.1).

Select a reference c.d.f. Fo(*) from the Johnson system by

the method of moment matching in the initial phase of

IDPF.

. Compute the estimated inverse c.d.f. F~'(-) by the speci-
fied filter-estimation method (OLS or WLS) in the final
phase of procedure IDPF.

. Compute the relevant performance measures that gauge
the difference in quality between the reference inverse
cdf. Fy'(-) and the IDPE-fitted inverse c.d.f. E71() as
estimates of the empirical inverse c.d.f. £, () and the
theoretical inverse c.d.f. F7!(-).

. Generate 400 independent replications of the protocol
defined by steps 1-4 and compute appropriate summary
statistics.

2.

4.2 Formulation of the Performance Measures

To accommodate both of the stated goals of the Monte
Carlo analysis, we found it necessary to formulate separate
performance measures for each goal. The most natural
performance measure for the first goal seems to be the final
computed value of the objective function that procedure
IDPF was designed to minimize. To compare performance
across different sample sizes, we chose to standardize the
objective function through division by the sample size n.
Thus for OLS estimation, the appropriate performance mea-

sure is
2
[ e

where F~!(-) denotes either the reference inverse c.d.f.
Fy'() or the IDPF-fitted inverse c.d.f. F~'(-). For WLS
estimation, the relevant figure of merit is

fol X))

e e

n
(4.3)
We emphasize that (4.2) and (4.3) depend only on F, '(-),
Fy'(), and F~'(-); neither Q) nor Q,(") depends on
knowledge of the true underlying inverse c.d.f. Other stan-
dard goodness-of-fit statistics might also be appropriate
here—for example, the Kolmogorov-Smirnov statistic or
the chi-squared statistic could be used. However, aside
from the fact that these statistics have been developed to
test goodness-of-fit for the c.d.f. rather than for the inverse
c.d.f., we think that the performance of IDPF should be
measured by the same quantity that the procedure was
designed to minimize.

To gauge the success of procedure IDPF in satisfying the
second distribution-fitting goal discussed in §4.1, we intro-
duce the following quantity analogous to (4.2) and (4.3):

i-05 i-

S R

Notice that in (4.4), F~'(") represents the relevant inverse
c.d.f. of the form (4.1); and F~!(-) denotes either the refer-
ence inverse c.d.f. Fy'(-) or the IDPF-fitted inverse c.d.f.

F7'0).

i—05

.1 .
Q(F)=— Z Xy~ F—l(
ni=

i-05
n

Qx(F)=Y Xy~ [5'1(
i=1

n

Table I. Layout of the Monte Carlo Experiments
RVRY
Skewness  Kurtosis Parameters of F7'(:) in (4.1)
Experiment as oy A Ay A Ay
1 0.2 3.0 -0.237 0.1983 0.1065 0.1672
2 0.2 9.0 -0.03¢ -03168 —0.1306 —0.1387
3 0.8 3.0 -1.225 0.1996 0.0068 0.3356
4 0.8 10.0 -0.141 -03033 -0.1129 —0.1454
5 2.0 9.0 -0993 -00011 -0.0407 -0.0011
6 20 15.0 -0428 -—0.2380 -—0.0592 -—0.1415
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Since procedure IDPF is based on a reference distribu-
tion, its performance should be measured by the improve-
ment in the quality of the fit that IDPF yields relative to the
reference fit. We therefore define the differences

AQ;=Q;(Fy) — Q(F) for j = 1,2,3.

For any statistic AQ; in the tables to follow, we let KQ_]
denote the grand mean of the AQj-values across all 400
replications of the relevant Monte Carlo experiment; and
we let SE(AAQ) denote the standard error of AQ,. Finally,

j
we define the standardized statistics

4.5)

" S(50)
Under the respective hypotheses that the differences AQ,,
AQ,, or AQ; have expected values equal to zero, we see
that Z;, Z,, and Z, respectively have asymptotic standard
normal distributions. Thus the Z-values in (4.6) can be used
to test the corresponding hypotheses at any desired level of
significance.

As an additional means of measuring the ability of
procedure IDPF to yield an improved estimate of the theo-
retical inverse c.d.f. F7'(-), we collected some limited
statistics on the probability distribution of the performance
measure A(Q;. On each replication of procedure IDPF within
a given subexperiment, we let B (respectively, W) denote
the event that the IDPF-based fit is better (respectively,
worse) than the reference fit with respect to criterion (4.4):

B={AQ; > 0} and W ={AQ, < 0}.

In the tables that follow, P(B) and B(W) respectively
denote the estimated probability of occurrence for the
events B and W based on 400 independent replications of
procedure IDPF within each subexperiment.

forj=1,2,3. 4.6)

4.3. Discussion of the Experimental Results
Tables II-V contain the results of our Monte Carlo study.
The subexperiments have been renumbered {1a, 1b,

2a,...,6b}, with the suffix “a” denoting the sample sjze
n = 20 and the suffix “b" denoting the sample size n = 1y,
We start by discussing the results for the ordinary leagt.
squares (OLS) version of procedure IDPF. Table II displays
the values of the statistics Q,(F,), AQ,, SE(AQ)), and z,
for each subexperiment. The values of the statistic 7
indicate that the average differences A_Q1 are Statistically
significant at the 0.05 level for all subexperiments, with the
exception of subexperiment 1b. In addition, a comparison
of each mean difference AQ, with the corresponding base-
line value Q,(F,) indicates that the OLS version of proce-
dure IDPF yields practically significant improvements in fit
as well as statistically significant improvements. The rela.
tive reduction in the value of Q; is in the range 0-72% for
the twelve subexperiments.

Table II displays the values of the statistics Q,(F,),
AQ;, SE(AQ,), Z,, B(B), and (W) for the OLS version of
procedure IDPF. The values of the statistic Z, indicate that
all of the average differences AQ, are statistically signifi-
cant at the 0.05 level, with the exception of subexperiment
1b. However, the relative reduction in the grand average Q,
is somewhat smaller than the corresponding reduction in
the grand average Q, for each subexperiment; in particular,
this reduction is in the range 0-70% for the twelve subex-
periments. Moreover, the values of P(B) and P(W) show
that most of the time IDPF yields an approximation to the
theoretical inverse c.d.f. that is at least as accurate as the
inverse reference c.d.f. Finally, we observe that the benefit
from the use of IDPF is much larger (in terms of the
relative reductions AQ,/ Q,(F,) and the probabilities P(B)
of obtaining an improved fit) at the high levels for the
factors a3, a4, and n. )

Tables IV and V are the counterparts of Tables II and III
for the weighted least-squares (WLS) version of procedure
IDPF. The remarks about Tables II and III apply to Tables
IV and V respectively, with the following exceptions: (a) In
subexperiment 1b, the average difference AQ; has a statisti-
cally significant negative value whereas the average dif-
ference AQ, has a statistically significant positive value;

Table II.  Goodness-of-Fit Statistics Q,(F,), AQ,, SE(AQ,) and Z, for the OLS
Version of Procedure IDPF Using a Johnson Reference Distribution

Experiment Q.(Fy) AQ, SE(AQ,) zZ,
la 0.031202 0.004442 0.002226 1.995336
1b 0.007787 0.000001 0.000001 1.000000
2a 0.118910 0.061598 0.013712 4.492316
2b 0.076258 0.036061 0.016075 2.243273
3a 0.023577 0.004089 0.001077 3.796257
3b 0.007868 0.001993 0.000553 3.604807
4a 0.107228 0.049504 0.011215 4.414129
4b 0.186513 0.110178 2037865 2.909756
5a 0.038363 0.009516 0.001530 6.217970
5b 0.035363 0.021986 0.002905 7.568177
6a 0.106231 0.049056 0.008228 5.962364
6b 0.373475 0.293896 0.028027 10.486024
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Table IIl. Goodness-of-Fit Statistics Q,(F,), AQ,, SEQQ,), Z,, P(B), and

P(W) for the OLS Version of Procedure IDPF Using a
Johnson Reference Distribution

Experiment  Q,(Fy) AQ, SE(AQ,) Zs B(B) PW)
la 0104595  0.004753  0.002604  1.824922  0.02 0.0025
1b 0019628  0.000006  0.000006  1.000000 0.0025 0.0
2a 0223423  0.053360 0014508  3.677963 0095  0.0275
2b 0093924 0034289 0.015462 2217625 0.015 0.0
3a 0106236  0.007226  0.002186 3306053 0.0575  0.005
3b 0022207  0.002798  0.000903  3.099211  0.06 0.005
4a 0211356  0.047679 0012719 3748666 0.105  0.015
4b 0205547  0.100708  0.035111  2.868305 00525 0.0
5a 0.165995  0.008929  0.001941  4.600364 0.1375 0.035
5b 0.058574  0.021198 0002519  8.414308 03325 0.0375
6a 0233651 0.045928  0.008443 5439571 0.1575  0.0125
6b 0394187  0.282496  0.027338 10333402  0.37 0.01

Table IV. Goodness-of-Fit Statistics Q,(F,), AQ,, SE(AQ,) and Z, for the WLS
Version of Procedure IDPF Using a Johnson Reference Distribution

Experiment Q,(Ey) AQ, SE(AQ,) Z,
1a 0.265553 0.031452 0.012199 2.578146
1b 0.283225 0.007773 0.002066 3.762244
2a 0.552648 0.177689 0.029733 5.976159
2b 1.104506 0.450259 0.087352 5.154536
3a 0.294844 0.057471 0.011905 4.827642
3b 0.562669 0.213551 0.047910 4.457309
4a 0.537475 0.181215 0.027265 6.646435
4b 1.616831 0.767682 0.150712 5.093719
5a 0.492144 0.187897 0.018389 10.218063
5b 2.118439 1532813 0.132652 11.555175
6a 0.668121 0.254093 0.030946 8.210784
6b 8.358417 4.963116 0.349668 14.193811

Table V. Goodness-of-Fit Statistics Q,(F,), AQ;, SEQAQ;), Z;, P(W), and

P(B) for the WLS Version of Procedure IDPF Using a
Johnson Reference Distribution

Experiment  Q,(F;) AQ, SE(AQ,) Z, P(B) PW)
la 0.104595 0.004848  0.002822 1.717952 0.0225 0.01
1b 0.019628  —0.000201 0.000072  —2.783028 0.02 0.04
2a 0.223423 0.035767  0.008837 4.047259  0.105 0.0325
2b 0.093924 0.044423  0.015792 2.813056  0.31 0.16
3a 0.106236 0.006405  0.001979 3.236514 0.07 0.0175
3b 0.022207 0.002714  0.000856 3.170968 0.1225 0.0525
4a 0.211356 0.051581  0.012376 4167773 0.1125 0.025
4b 0.205547 0.101777  0.034189 2976870  0.26 0.145
5a 0.165995 0.016111  0.003681 4376300 0.2475 0.0975
5b 0.058574 0.021557  0.002484 8.677993 047 0.1225
6a 0.233651 0.046802  0.010557 4433092 0.18 0.02
6b 0.394187 0.276697  0.026654 10.381077  0.52 0.195
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however, the practical significance of these quantities is
questionable. (b) The quantities P(B) and P(W) are larger
than the corresponding quantities for OLS estimation, and
the ratios P(B)/P(W) are smaller than the corresponding
ratios for OLS estimation. Item (b) implies that compared to
the OLS version of IDPF, the WLS version is more likely to
yield a nontrivial filter; and the resulting estimate F~1(-) of
the underlying inverse c.d.f. F~!(-) is also more likely to be
worse than the reference inverse c.d.f. F;(-).

Our tentative conclusion is that the OLS version of
procedure IDPF is more stable than the WLS version, at
least when the method of moment matching is used in the
initial phase of IDPF. A definitive comparison of these two
versions will require a more extensive Monte Carlo study.

4.4. Experimental Results for Triangular Reference Distributions
To illustrate the performance of procedure IDPF with other
families of reference distributions, we carried out a second
set of Monte Carlo experiments using a triangular reference
distribution estimated by the method of moments. This
approach to obtaining an initial input model is often used
by simulation practitioners.?”) We tabulate the complete
results for this second set of experiments in [4]; here we
merely summarize our overall findings. Our main conclu-
sion is that IDPF is generally able to achieve greater im-
provements in the quality of the fit when starting from a
reference distribution in the triangular family rather than
the Johnson translation system. This is reasonable, since the
triangular distribution family has three parameters while
most distributions in the Johnson system have four param-
eters; thus virtually any method for selecting a reference
distribution should yield a better initial fit using a Johnson
distribution rather than a triangular distribution. All of the
other observations of §4.3 for the case of Johnson reference
distributions selected by matching moments remained the
same when a triangular reference distribution was used
instead. Thus we conclude that the potential benefits of
using procedure IDPF are not dependent on using a John-
son reference distribution; IDPF can be used effectively
with many types of reference distributions selected by a
broad diversity of estimation methods.

5. Summary and Conclusions
We believe that procedure IDPF can be a useful tool for
input modeling in simulation experiments. Our Monte Carlo
performance evaluation provides evidence that procedure
IDPF can yield improvements over the reference fit with
respect to each of the following input-modeling objectives:
(a) approximating the empirical inverse c.d.f., and (b) ap-
proximating the theoretical inverse c.d.f. The appealing
feature of IDPF is that it can be superimposed on any
distribution-fitting scheme and thus yield further improve-
ment on the original fit. This is achieved at the expense of
an increase in setup time due to the estimation of the filter
as well as an increase in variate-generation time due to the
evaluation of the filter. We believe that there are situations
where the improvement in the fit is worth such a price.
The other main advantage of procedure IDPF is that the
estimated inverse c.d.f. F~'(:) preserves all the smoothness

properties of the reference inverse c.d.f. F5 () as a conge.
quence of the infinite differentiability of the filter q(). In
instances where the underlying c.d.f. is known to be smooth,
we believe that procedure IDPF can give the user greater
insight into the fundamental shape of the target distriby-
tion than procedures based on the empirical inverse cdf,
which is a step function. In addition, IDPF is designed to
avoid the reliability problems that have been observed with
other methods for estimating inverse c.d.f’s in simulation
experiments.

Future research on procedure IDPF should focus on the
method (2.12) for determining the degree r of the polyno-
mial filter (2.5). In particular, we have not developed a
complete justification for the key asymptotic property (2.11)
under appropriate regularity conditions on the underlying
c.d.f. F(-) and the reference c.d.f. Fy(-). Although our Monte
Carlo results provide some experimental evidence of the
approximate validity of (2.11) and although the theoretical
and experimental results of Gallant’! make (2.11) plausible,
a more complete analysis is required. We should also
examine alternative methods for determining the degree of
the polynomial filter based on the asymptotic properties of
nonlinear least-squares estimators.
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