
Staffing multi-skill call centers via search methods

and a performance approximation

Athanassios N. Avramidis, Wyean Chan, and Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle

Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, CANADA

Abstract. We address a multi-skill staffing problem in a call center where the agent skill sets

are exogenous and the call routing policy has well-specified features of overflow between different

agent types. Constraints are imposed on the service level for each call class, defined here as the

steady-state fraction of calls served within a given time threshold, where calls that abandon after

having waited for service less than the threshold are excluded. We develop an approximation of

these service levels, allowing an arbitrary overflow mechanism and allowing customer abandonment.

We then develop a two-stage heuristic that finds good solutions to mathematical programs with

such constraints. The first stage uses search methods supported by the approximation. Because

service-level approximation errors may be substantial, we adjust the solution in a second stage

in which performance is estimated by simulation. We solve realistic problems of varying size and

routing policy. Our approach is shown to be competitive with (and often better than) previously

available methods.

[Supplementary materials are available for this article. Go to the publisher’s online edition of IIE

Transactions for the following free supplemental resource: Online Appendix.]

1 Introduction

Call centers usually handle several types of calls distinguished, for example, by the desired language

of communication or the level of skill necessary for delivering technical support. It is usually not

possible or cost-effective to train every agent to be able to handle every call class. Thus, frequently,

one encounters a multi-skill call center, with various call classes and also various agent types,

usually defined according to their skill set, i.e., the subset of call classes they can handle. Skill-based

routing (SBR), or simply routing, refers to the rules that control the call-to-agent and agent-to-call

1

assignments. Most modern call centers perform skill-based routing (Koole and Mandelbaum, 2002).

Call center managers routinely impose constraints on the center’s performance. A commonly

encountered performance measure is the service level (SL), usually defined as the long-term fraction

of calls whose waiting time is no larger than a given constant. Call center planners face the problems

of determining appropriate staffing levels and agent work schedules. In a staffing problem, the day

is divided into periods and one simply decides the number of agents of each type for each period. In

a scheduling problem, a set of admissible work schedules is first specified, and the decision variables

are the number of agents of each skill type in each work schedule. This determines the staffing

indirectly, while making sure that it corresponds to a feasible set of work schedules.

Insights on the coordination of skill set design, staffing, and routing decisions for multi-skill

centers are offered by Wallace and Whitt (2005). First, endowing agents with two skills and

employing a routing that balances agents’ priorities over different call classes, they obtain service

levels that are essentially as good as for a system where all agents have all skills. That is, if

such a routing policy is practical, then training agents to have more than two skills adds little to

performance. Second, assuming control over agent skill sets, staffing counts, and routing, they meet

nearly exactly (i.e., do not exceed) target service levels set for each call class.

We consider a single-period staffing problem where the agent skill sets and routing rules are

given. The routing policies we consider are of the (static) overflow routing family: Each call class

has an ordered list of agent types that can handle it; upon arrival, a call of that class is assigned

to the first agent type in this list that has an available agent, or else is placed in queue (one queue

per call class). Likewise, each agent type has an ordered list of call classes (queues) from which to

pick up calls when it becomes available. The problem is to minimize staffing costs subject to a set

of constraints on service levels (globally and per call class), assuming the center is in steady-state.

This problem was proposed to us by Bell Canada, a Canadian company whose call centers serving

Quebec and Ontario employ nearly 13,000 agents in total. The service level constraints are quite

important to them because governmental regulations impose huge fines to the company when some

of these constraints are not met on average over the month. The static routing rules may be seen

as restrictive, but they were also a request from the company; they wanted to have a tool telling

2

them what happens when they optimize under such constraints, with fixed routings and skill sets.

In general, lower costs can obviously be achieved by relaxing the routing rules and optimizing the

skill sets, so we do not necessarily recommend fixing these in practice. On the other hand, it is not

always possible to have agents with any (arbitrary) combination of skills. Single-period staffing

appears as a subproblem in several scheduling algorithms (Gans et al., 2003; Bhulai et al., 2008).

After formulating this problem as an integer program with linear objective function and non-

linear constraints, Cez̧ik and L’Ecuyer (2008) developed and studied a general-purpose solution

approach, based on ideas adapted from Atlason et al. (2004). They use integer programming with

cutting planes; the cuts are obtained by estimating subgradients of the service-level constraints with

respect to the decision variables (the number of agents of each type) via simulation. This method

can handle arbitrarily complex call-center operating conditions (e.g., call-routing policy, nonsta-

tionarity, etc.). On the other hand, subgradient estimation by simulation is very time-consuming.

Accepting noisier estimates obtained from shorter simulations can save time, but is more likely to

return highly suboptimal or infeasible solutions (Cez̧ik and L’Ecuyer, 2008).

Our approach aims to be a quicker alternative by exploiting approximations of the service level.

However, in the multi-skill setting, good approximations are not generally available. If we assume

that the call center is a loss system, i.e., there are no waiting queues and all calls that cannot be

served immediately are lost, then there are many approximations of the loss (or blocking) probability

per call class. Koole and Talim (2000) assume overflow routing and develop an approximation via

decomposition into subsystems whose state space is smaller and which are easier to analyze. Koole

et al. (2003) allow queueing and approximate the delay probability (i.e., that delay is positive),

based on this loss approximation and the relation between the loss probability in the Erlang B

system and the delay probability of the Erlang C system. This relation involves the staffing, so

their formula applies globally, but not per class. Better estimates of loss probabilities can be

obtained via two-moment approximations of the overflow process (the equivalent random method,

or Hayward’s approximation) (Cooper, 1981; Wolff, 1989; Chevalier et al., 2003, 2004); and the

method of Franx et al. (2006). These better methods restrict the overflow pattern (it cannot be

cyclical, as defined in Section 3.1). One could choose to approximate the (class-specific) service

3

level in a real system (i.e., with queueing) by the approximated loss probability in a relevant loss

model. This would make sense in a system where most calls do not wait. However, this approach

is unnatural for most modern call centers, which normally operate so that the fraction of calls that

experience a positive delay in queue is considerable (Gans et al., 2003).

Our first contribution is an approximation of the service level per class in a multi-skill center

with a special type of overflow routing. This loss-delay (LD) approximation exploits ideas from

Koole and Talim (2000) and goes beyond a loss system by incorporating queueing. Essentially, it

assumes that whenever a call is delayed, it waits in a queue for the last agent type (skill set) in its

list. The approximation has accuracy that varies across problems; despite this, we show that it is

useful as a support tool in a staffing-cost minimization algorithm. We do this via examples where

the routing policy has the overflow element but does not satisfy the latter assumption (waiting at

the last agent type). The routing policy was specified by our industrial partner.

Our second contribution is a heuristic approach to the staffing problem. Key components are

appropriate initialization and neighborhood search methods supported by the LD approximation

in deciding neighbor feasibility and in selecting to which feasible neighbor to move. The first stage

of the search terminates with a solution that is locally optimal (relative to a certain neighborhood)

after a finite amount of work. The second stage uses local-search procedures supported by estimates

of service levels that are more accurate than the LD approximation and are obtained by simulation.

These procedures adjust the solution for feasibility or further cost reduction, evaluating only few

additional solutions. We solve realistic problems of varying size and find that our approach often

yields better solutions than that of Cez̧ik and L’Ecuyer (2008) when the computing budget is

limited. Although none of the two methods always dominates the other, the new heuristic is

definitely a useful addition to the toolbox for this class of problems.

We mention other related work. Harrison and Zeevi (2005) and Bassamboo et al. (2006) consider

a call center with a doubly stochastic time-varying arrival processes in an asymptotic regime and find

a staffing and routing policy that asymptotically minimizes the cost of staffing and abandonment.

It is unclear how their fluid approximation could provide good estimates of the service levels (to

solve our problem). Wallace and Whitt (2005) assume no constraints on the skill sets, except that

4

each agent has exactly two skills. They optimize both the staffing and the skill sets, simultaneously.

They allow a different (and more flexible) routing rule than ours and assume that all agent types

cost the same. For staffing under a single service-level constraint, Pot et al. (2008) have a heuristic

that uses a line search to optimize the Lagrange multiplier for the constraint. It is unclear how this

can be generalized to an efficient algorithm when there are multiple constraints.

The remainder is organized as follows. In Section 2 we formulate mathematical programs of

multi-skill staffing and scheduling and review related literature. Section 3.1 defines overflow routing

and a related policy. Sections 3.2 to 3.4 develop the LD approximation. Section 4 describes our

approach to the staffing problem and Section 5 details the solution of several problem instances.

In Section 6 we compare to alternative approaches, including adapting the method of Wallace and

Whitt (2005) and replacing our approximation by that of Koole and Talim (2000). Additional

details of our approach are contained in the Online Appendix; this includes detailed algorithms

and an assessment of sensitivity to algorithm parameters.

2 Formulation of staffing and scheduling problems

The sets of call classes and agent types areN = {1, . . . , n} andM = {1, . . . ,m}, respectively. There

are b time periods and s types of shifts; a shift is defined by specifying the time periods in which the

agent is available to handle calls. The cost vector is c = (c1,1, . . . , c1,s, . . . , cm,1, . . . , cm,s)T, where

ci,q is the cost of an agent of type i having shift q, and “T” denotes vector transposition. Write

zi,q for the number of agents of type i having shift q and set z = (z1,1, . . . , z1,s, . . . , zm,1, . . . , zm,s)T.

Write xi,p for the number of agents of type i that are available to handle calls in period p. Then the

staffing vector x = (x1,1, . . . , x1,b, . . . , xm,1, . . . , xm,b)T satisfies x = Az where A is a block-diagonal

matrix with m identical blocks Ã, where the element (p, q) of Ã is 1 if shift q covers period p, and

0 otherwise. Our definition of the service level (SL) of call class j during period p is

gj,p(x) =
E[# of type-j call arrivals in p that are served and wait at most τ]

E[# of type-j call arrivals in p, except those that wait less than τ and abandon]
(1)

where “abandon” implies the call joined the queue—it was not lost immediately upon arrival; and

τ is a constant called the acceptable waiting time (AWT). In Online Appendix A.1, we consider an

5

alternative SL definition in which calls that are delayed by less than τ and abandon are not excluded;

and we provide formulas for its approximation. In our examples, the two measures of service level

differed by at most 2% in moderate-abandonment cases and negligibly in low-abandonment cases.

Given acceptable waiting times τp, τj , and τ , aggregate SLs are defined analogously and denoted

gp(x), gj(x) and g(x) for period p, call class j, and overall, respectively.

A formulation of the scheduling problem is

min cTz =
∑m

i=1

∑s
q=1 ci,qzi,q

subject to Az = x,
gj,p(x) ≥ lj,p for all j, p,
gp(x) ≥ lp for all p,
gj(x) ≥ lj for all j,
g(x) ≥ l,
z ≥ 0, and integer.

(P1)

where lj,p, lp, lj and l are given constants. The staffing problem is a relaxation of the scheduling

problem where we assume that any staffing x is admissible. In a single-period staffing problem, we

have b = 1, c = (c1, . . . , cm)T, where ci is the cost of an agent of type i, and x = (x1, . . . , xm)T,

where xi is the number of agents of type i. The optimization problem then reduces to:

min cTx =
∑m

i=1 cixi

subject to gj(x) ≥ lj for all j,
g(x) ≥ l,
x ≥ 0, and integer.

(P2)

In the presence of abandonments, the SL functions g• are typically S-shaped in each coordinate, i.e.,

convex increasing below a certain threshold, and concave increasing above the threshold (Henderson

and Mason, 1998; Cez̧ik and L’Ecuyer, 2008). Adapting the method of Atlason et al. (2004), Cez̧ik

and L’Ecuyer (2008) approximate optimal solutions of (P2) by (exact or approximate) solutions to

some analog of (P2), called the sample problem, defined by replacing each g• by a noisy estimate that

is computed by simulation and is called the sample service level function. Their algorithm involves

6

iterative solution of integer programs and addition of cuts (linear inequalities), each one being

derived from an estimate of a subgradient of some g•, where the subgradient estimate is computed

via finite differences of the corresponding sample service level. The approach is heuristic: the cuts

sometimes eliminate subsets of the feasible set that include the optimal solution, because of the

noise in the estimates and also because these subgradient estimates would not necessarily be true

subgradients even if the simulation-estimation error were to vanish. Cez̧ik and L’Ecuyer (2008)

suggest practical heuristics around this and other problems.

This paper address the solution of (P2) only. Solving (P2) is a possible first step in solving

(P1). This is the approach taken in Pot et al. (2008).

3 Performance approximation under overflow routing

In this section we develop the loss-delay approximation of the service levels. We analyze an overflow-

type policy in which whenever a call is delayed, it waits in a queue served only by the last agent

type on the list. Under this policy, the approximation arises naturally. We do not claim that this

policy is efficient or that it is found in practice. We emphasize that the models we optimize do not

need to have the wait-at-the-last-agent-type feature.

3.1 Overflow routing and approximation overview

We refer to station i as the ensemble of type-i agents. Agents within a station are indistinguishable.

For each call class j we have a list (an ordered set) of stations. Overflow routing means that upon

arrival, a class-j call is assigned to the first station in the list that has an available agent or else

is placed in queue. Whenever the assigned station is not the first one on the list, we say that an

overflow has occurred from station ranking l−1 on the list to station ranking l on the list, for each

relevant l. The overflow-or-wait-at-last-station policy specifies additionally that each delayed call

is served only at the last station in its list.

As background for computational issues in Section 3.4, we characterize the routing by a directed

flow graph. The flow graph has a vertex for each station. All possible overflows from one station to

another are represented by directed arcs. A routing is called crossed whenever the flow graph has

7

a directed cycle. Such a situation might arise as follows. Call class 1 has high revenue-generation

potential; call class 2 has a service nature and low revenue-generation potential. Type-A agents

are stronger in selling services, and type-B agents are stronger in servicing. A goal of maximizing

the flow of class-1 calls to type-A agents would motivate the list {A,B} for class 1 and the reverse

list for class 2. Thus, the flow graph has a directed cycle between vertices A and B.

Here is an outline of the approximation. For each station i, the set of call classes that can be

served there is partitioned into two sets: Li contains classes that can overflow into another station;

and Di contains classes for which no overflow is possible (i.e., i is the last station on the call’s list).

Whenever both these sets are non-empty, i is a loss-delay station. Otherwise, i is a loss station when

all classes can overflow and a delay station when no class can overflow. Our basic building block

is the analysis of a loss-delay station. The sets Li and Di define respective arrival streams; when

no server is available, calls in the first stream can overflow, but the ones in the second must queue

for service in this station. We approximate these streams as independent Poisson processes and

analyze the station as a one-dimensional birth and death process. This is detailed in Sections 3.2

and 3.3, where we allow and exclude customer abandonment, respectively. We obtain two related

approximations: LDA (abandonment) and LDN (no abandonment). The absence of abandonment

makes the second one less realistic but considerably faster to compute.

3.2 Analysis of a loss-delay station with abandonment

The station has s servers and a queue with capacity c. Calls of types delay and loss arrive according

to independent Poisson processes with rates λD and λL, respectively. Service times of delay and

loss calls are i.i.d. exponential random variables with mean 1/µD and 1/µL, respectively, and

independent of everything else. Server preemptions are not allowed. Loss calls that cannot be

immediately served upon arrival are lost. Delay calls abandon as soon as their time in queue

equals their patience time. Patience times are i.i.d exponential random variables with mean 1/η,

independent of everything else. Delay calls that find c calls in queue upon arrival are lost.

Consider first the case µL = µD = µ. Let X(t) denote the number of calls in the station at

time t; this is the sum of loss calls in service and delay calls in the system, i.e., either in service

8

or in queue. The process X = {X(t) : t ≥ 0} is a birth and death process with finite state space,

{0, 1, 2, . . . , s+ c}; the birth rates λk and death rates µk are:

λk =
{
λD + λL, k = 0, 1, . . . , s− 1
λD, k = s, s+ 1, . . . , s+ c− 1

µk =
{
kµ, k = 1, 2, .., s
sµ+ (k − s)η, k = s+ 1, s+ 2 . . . , s+ c.

The stationary probabilities, πk = limt→∞ Pr{X(t) = k}, are πk(µ) = π0
∏k

i=1(λi−1/µi), k =

1, 2, . . . , s+ c, where π0(µ) =
(
1 +

∑s+c
k=1

∏k
i=1 λi−1/µi

)−1
(Ross, 1983, p. 154).

Our approximation for the general case (µL 6= µD) is based on an “effective” service rate found

by equating the input average service time to the output average service time determined by the

mix of service completions of the two types. To this end, note that delay-call service completions

occur at the rate λ̃D(µ) = λD[1 − πs+c(µ)] − η
∑c−1

k=1 kπs+k(µ), by counting arrivals minus losses

due to a full queue, minus losses via abandonment, and using PASTA (Poisson Arrivals See Time

Averages) (Wolff, 1989). Thus, the effective service rate µ∗ must be a root of the function

h1(µ) =
w1(µ)
µD

+
1− w1(µ)

µL
− 1
µ
, (2)

where w1(µ) = λ̃D(µ)/[λ̃D(µ)+λL(1−BA(µ))] is the stationary fraction of service completions that

are of delay type and BA(µ) =
∑s+c

k=s πk(µ) is the blocking probability. The existence of a root and

a simple algorithmic solution follow from:

Proposition 1 The function h1 has at least one root in J = [min(µL, µD),max(µL, µD)].

Proof. It is easy to check that the function h1 is continuous with h1(min(µL, µD)) < 0 and

h1(max(µL, µD)) > 0. �

We use a result on the virtual waiting time, defined as the waiting time in queue that would be

spent by an infinitely patient customer. Write W for the stationary virtual waiting time.

Lemma 1 (Riordan, 1962, p. 110-111) Given that the system state upon arrival is X, we have

pk(µ, τ) = Pr {W > τ |X = s+ k} = ξφ
k∑

j=0

(φ)j(1− ξ)j

j!
, τ > 0, k ≥ 0, (3)

where φ = sµ/η, (φ)0 = 1, (φ)j = (φ)(φ+ 1) · · · (φ+ j − 1) for j ≥ 1, and ξ = e−ητ .

9

The probability that a delay call is lost upon arrival or its virtual waiting time exceeds τ is

DA(τ) = πs+c(µ∗) +
c−1∑
k=0

πs+k(µ∗)pk(µ∗, τ). (4)

Later, we combine this measure of service (at the last station) with the probability of overflow

to this station (when applicable). This measure is not entirely consistent with the SL in (1). In

Online Appendix A.1 we provide an approximation that is conceptually consistent with (1). In

our examples, the difference between the two approximation values was small and did not appear

to affect any of our conclusions. We prefer the one presented here because it is much faster to

compute. The long-run fraction of delay calls that abandon is 1 − λ̃D(µ∗)/λD. Pure-loss and

pure-delay stations are the special cases λD = 0 and λL = 0, respectively.

3.3 Analysis of a loss-delay station without abandonment

We modify the setup of section 3.2, now specifying no abandonment and an infinite queue capacity.

The analysis is similar, so we only state the main formulas. If µL = µD = µ and λD < sµ, then X is

a birth and death process with infinite state space, {0,1, 2, ...}. Here, the work needed to compute

the stationary distribution is O(s) because the stationary probabilities of states above s decay

geometrically. This contrasts with the model with abandonment, where there is no geometric

structure, the same task takes O(s + c) work, and a finite queue capacity is a necessity. The

blocking probability is B(µ) = πssµ/(sµ − λD), where πs = π0ρ
s/s! with ρ = (λL + λD)/µ and

π0 =
{∑s−1

k=0 ρ
k/k! + (ρs/s!)sµ/(sµ− λD)

}−1
.

For the general case µD 6= µL, we again find an effective service rate. If λD ≥ sµD, then X

is not positive recurrent and the station is unstable. In the remainder, assume λD < sµD. Define

h(µ) = w(µ)/µD + (1−w(µ))/µL − 1/µ for µ > λD/s, where w(µ) = λD/[λD + λL(1−B(µ))], and

define I = (µ1, µ2], with µ1 = max (λD/s,min(µL, µD)) and µ2 = max(µL, µD). We have:

Proposition 2 Assume λD < sµD. For any µ in I, the process X is positive recurrent. The

function h has at least one root in I. If µD > µL, then the root is unique.

The proof of Proposition 2 is in Online Appendix A.4. The counterparts of functions BA and DA

(of Section 3.2) are B(µ∗) and D(τ ; s, λL, λD, µL, µD) =B(µ∗)e−τ(sµ∗−λD), respectively, where µ∗ is

10

a root of h. The function D above shows all the inputs and is referred to in Online Appendix A.1.

3.4 The loss-delay approximation

For each call class j, we have arrival rate λj , abandonment rate ηj , and the routing list (ordered

set) Rj . The service rate of type j at station i is µi,j . We also have a staffing x = (xi)m
i=1. The

term arrival to a station encompasses both exogenous arrivals and overflows. We approximate: the

process of type-j arrivals to station i as being Poisson with rate γi,j ; and the blocking probability,

Bi, whenever i is a pure-loss or loss-delay station. Write p(i, j) for the station immediately preceding

i in the list of call class j. The LDA approximation requires:

γi,j =
{
λj , whenever i is first in Rj

γp(i,j),jBp(i,j), whenever p(i, j) exists
(5)

γi,L =
∑
j∈Li

γi,j ,
1
µi,L

=
∑
j∈Li

γi,j

γi,L

1
µi,j

whenever Li is non-empty, (6)

γi,D =
∑
j∈Di

γi,j ,
1
µi,D

=
∑
j∈Di

γi,j

γi,D

1
µi,j

, η̃i =
∑
j∈Di

γi,j

γi,D
ηj whenever Di is non-empty (7)

Bi = BA (xi, γi,L, γi,D, µi,L, µi,D, η̃i, ci) whenever Li is non-empty, (8)

where: BA is the blocking probability from Section 3.2 (the notation here shows all the function

inputs); and ci = max(dψ√xie, 10), where ψ is a queue-size control parameter (this formula is

motivated later). The overflow equations in (5) state that the class-j overflow rate to station

i equals the class-j arrival rate to the station immediately preceding i in the routing times the

blocking probability at that station. In (7), parameters γi,D, µi,D, and η̃i of the aggregate delay

stream are based on the analogous parameters of the constituent call classes; and similarly in (6)

for the loss stream. The LDA approximation of class-j SL, with AWT τj , is

ĝj(x, τj) = 1−
γ`(j),j

λj
D`(j)(τj), τj > 0, (9)

where `(j) is the last station in Rj and D`(j)(·) is the function (4) applied to this station. The

global service level approximation is ĝ(x, τ) =
∑

j∈N λj ĝj(x; τ)/(
∑

j∈N λj). LDA approximations

of other common performance measures are given in Online Appendix A.0. The approximated

arrival (overflow) rate of each call type to its last station parallels that of Koole and Talim (2000)

11

(KT); the overflow equations (5) are the same, except that the blocking probabilities differ in

upstream stations having a delay stream.

The LDN approximation makes obvious modifications: we replace the functions BA and DA by

their counterparts B and D in Section 3.3, respectively.

Several steps are heuristic. The two aggregate arrival streams at each station are treated as

being Poisson and independent, which typically fails to hold when overflows are involved. Taking

weighted averages of service-time means and patience-time rates in (6) and (7) is a heuristic (to

keep the birth and death state space one-dimensional). To motivate our choice to average means

in one case and rates in the other case, suppose first that we have two classes with abandonment

rates ηj , j = 1, 2 and weight 1/2 each, where η1 = 1. Let ε be a number small compared to

1, and consider first the case η2 = ε. The average patience is (1/ε + 1)/2 ≈ 1/(2ε), implying

the small rate 2ε, whereas the average rate is (ε + 1)/2 ≈ 1/2; as ε → 0, averaging rates seems

preferable. The situation is reversed if η2 = 1/ε (i.e., large compared to 1): the average patience,

(ε + 1)/2 ≈ 1/2, implies the rate 2, whereas the average rate, (1/ε + 1)/2 ≈ 1/(2ε), is large; here,

as ε→ 0, averaging means seems preferable. However, this second situation is expected to be less

common in call centers, since the fraction of calls who abandon is usually very small. Also note

that (
∑

iwiµ
−1
i)−1 <

∑
iwiµi whenever 0 < wi < ∞, 0 < µi < ∞, and the µi’s are not all equal

(by Jensen’s inequality). Thus, averaging service-time means is conservative relative to averaging

rates. The formula ci = max(ψ
√
xi, 10) following (8) aims for economy of computation relative to

setting a large ci for all stations. A rough justification is that the stationary number of customers

in an infinite-server Markovian queue is Poisson-distributed (so the standard deviation equals the

square root of the mean) and the anticipation that in solutions of interest, each xi is of the order

of this mean. The idea, then, is that we hope to make ci a state of small probability for each i

whenever xi is moderately large (say, 25 or more) by appropriate selection of ψ (in our examples,

we set ψ = 2). For the xi that fail this rough criterion, the infinite-server argument is less reliable,

so we imposed the lower bound 10 at the outset.

Figure 1 specifies an iterative algorithm that converges, under certain conditions, to a solution

to (5)–(8). In summary, the algorithm initializes the overflow rates to zero and computes iteratively

12

(5)–(8) until the change in the blocking probabilities is deemed small enough. Koole and Talim

(2000) employ a similar technique in a two-station loss system. In the LDN approximation, if for

some k and i we have γ(k)
i,D ≥ xiµ

(k)
i,D, then station i and the system are declared indeterminate;

if the flow graph is acyclic, this means that station i is unstable in the model of Section 3.3.

When running this algorithm, we may have to settle for an approximate solution by relaxing the

convergence criterion. We do this as follows: if (10) fails at k = kU, then we double kU and reiterate

(go to step 2); if (10) fails again at the doubled kU, then we reiterate for at most 10 iterations,

doubling ε in each iteration. In our experiments, this happened only on rare occasions.

In Proposition 3, we prove that the algorithm of Figure 1 converges to a solution of (5)–(8),

under certain conditions on the service rates and abandonment rates. These conditions imply that

the rates γ(k)
i,j and the blocking probability B(k)

i are monotone increasing in k, and the convergence

proof then follows by exploiting this monotonicity in an induction argument. Without these con-

ditions (and the monotonicity), a convergence proof appears more complicated, but we think that

convergence to a solution should occur in most practical cases (where there are abandonments).

Proposition 3 Suppose that for each station, the classes in the loss and delay streams have com-

mon service rates.

1. (LDA approximation.) Suppose that for each station, the classes in the delay stream have

common abandonment rate. Then there exist limits γi,j = limk→∞ γ
(k)
i,j , and likewise for all

other quantities with superscripts in Figure 1. The limits satisfy (5)–(8).

2. (LDN approximation.) Replace the function BA in Figure 1 by its counterpart B. Unless the

system is declared indeterminate, the analogous limits exist and solve the analogous equations.

Proof. For part 2, we assume the system is not declared indeterminate (otherwise, there is

nothing to prove). Define ∆γ(k)
i,j = γ

(k)
i,j − γ

(k−1)
i,j and ∆B(k)

` = B
(k)
` −B(k−1)

` .

First, we prove by induction on k that

∆γ(k)
i,j ≥ 0 and ∆B(k)

` ≥ 0 for all i, j, ` and for all k ≥ 1. (11)

13

Algorithm LD:

Restriction: µj > 0 and ηj > 0 for all j.
Select: ε (convergence tolerance), kU (number of iterations), ψ (controls queue size).

1. γ(0)
i,j = 0 whenever p(i, j) exists

γ
(k)
i,j = λj for all k, whenever i is first in Rj

B
(0)
i = 0 for all i

k = 1.

2. Compute iterated overflows:

γ
(k)
i,j = γ

(k−1)
p(i,j),jB

(k−1)
p(i,j) whenever p(i, j) exists.

3. Aggregate parameters by station and stream type (loss or delay):

γ
(k)
i,L =

∑
j∈Li

γ
(k)
i,j ,

1

µ
(k)
i,L

=
∑
j∈Li

γ
(k)
i,j

γ
(k)
i,L

1
µi,j

whenever Li is non-empty.

γ
(k)
i,D =

∑
j∈Di

γ
(k)
i,j ,

1

µ
(k)
i,D

=
∑
j∈Di

γ
(k)
i,j

γ
(k)
i,D

1
µi,j

, η̃
(k)
i =

∑
j∈Di

γ
(k)
i,j

γ
(k)
i,D

ηj whenever Di is non-empty.

4. Compute blocking probabilities:

B
(k)
i = BA

(
xi, γ

(k)
i,L , γ

(k)
i,D, µ

(k)
i,L , µ

(k)
i,D, η̃

(k)
i , ci

)
whenever Li is non-empty.

where ci = max(dψ√xie, 10).

5. Convergence criterion:
max
i:Li 6=∅

∣∣∣B(k)
i −B(k−1)

i

∣∣∣ < ε. (10)

If (10) holds, then return the current rates γ(k)
i,j as an approximate solution;

else, if k < kU, then k ← k + 1 and go to 2;
else, k ← k + 1, increase kU and/or increase ε and go to 2.

Figure 1: Algorithm to compute an exact or approximate solution for staffing (xi)m
i=1.

14

This is obviously true for k = 1. Assume that (11) holds for a given k. Observe that whenever i is

first in Rj , we have ∆γ(k)
i,j = 0 for all k. Otherwise (i.e., if p(i, j) exists), for all k ≥ 1, we have

∆γ(k+1)
i,j = γ

(k)
p(i,j),jB

(k)
p(i,j) − γ

(k−1)
p(i,j),jB

(k−1)
p(i,j) = γ

(k)
p(i,j),j∆B

(k)
p(i,j) +B

(k−1)
p(i,j) ∆γ(k)

p(i,j),j ≥ 0.

The non-negativity of ∆γ(k+1)
i,j implies γ(k+1)

i,L − γ(k)
i,L ≥ 0 and γ(k+1)

i,D − γ(k)
i,D ≥ 0 for all i. Combining

this with our assumptions on common service rates and common abandonment rates, and the fact

that the functions BA and B are increasing in λL and λD when all other arguments are fixed, we

obtain that ∆B(k+1)
i ≥ 0 for all i, in LDA and LDN. This completes the induction.

Since the sequence {γ(k)
i,j }∞k=1 is obviously upper-bounded by λj (easily seen by induction on

k), limk→∞ γ
(k)
i,j must exist for each i and j, in LDA and LDN. Moreover, since each B

(k)
i is a

continuous function of γ(k)
i,L , γ(k)

i,D, µ(k)
i,L , µ(k)

i,D, and η̃
(k)
i , and since these are continuous functions of

certain γ(k)
i,j , all these sequences have limits that together satisfy (5)–(8). �

Algorithm LD can generally be made more efficient. In the special case of an acyclic flow graph,

it can even be streamlined to give the exact solution in a single iteration. This is only summarized

here; see Chan (2006) for a complete treatment. In the general case, one can first partition the

flow graph into its strongly connected components, via standard algorithms (Aho et al., 1974, p.

189-195). Second, one finds a permutation Π of the components such that all overflows occur

along increasing Π value. If the flow graph is acyclic (each component is one of the stations),

then the solution is unique and can be computed by executing (5)–(8) in the order i = Π(1),

Π(2), . . . , i = Π(m). Otherwise, it suffices to apply a restricted version of Algorithm LD to each

of the components, ordered along increasing Π value. The assumptions of Proposition 3 can be

weakened: to ensure convergence to a solution, it suffices to have common parameters in each

station within a component, but not necessarily across components.

4 Multi-skill staffing by search methods

Our method is supported by an evaluator of service levels. An incumbent, i.e., current solution, is

maintained throughout. A solution is called E-(in)feasible and SIM-(in)feasible depending on its

(in)feasibility for (P2), as deemed by the evaluator and simulation, respectively; in general, these

15

Algorithm Staff:

Stage 0. (Initialization) Construct a solution that is E-feasible.

Stage 1. (Neighborhood search). Until a termination condition is true, do:

1a. Select a positive integer move size q.
1b. Consider removing q agents of the same type, for each possible type; if at least one of

these solutions is E-feasible, then select a new incumbent among them and repeat the
Until statement.

1c. Consider removing q agents of some type and adding q agents of a less expensive type;
if at least one of these solutions is E-feasible, then select a new incumbent among them.

Stage 2a. If necessary, adjust the incumbent toward SIM-feasibility.

Stage 2b. Attempt to reduce the cost of the SIM-feasible incumbent.

Figure 2: Outline of the staffing algorithm

do not coincide with exact (in)feasibility. An outline of the staffing algorithm appears in Figure 2.

We now discuss the algorithm components, leaving out details to pseudocodes in Online Ap-

pendix A.1. Solution vectors are denoted x, where xi is the i-th component; ej is the j-th unit

m-vector.

Stage 0: Initialization. Our method is as follows: (1) For each call class, allocate the arrival rate

to the feasible stations: send a fraction β (0 ≤ β ≤ 1) to the cheapest one and split the remaining

fraction evenly among the others; (2) Compute parameters of the aggregate arrival stream in each

station, based on step 1; (3) Viewing each station as Markovian (M/M/s/M) and independent of

all others, set the staffing to the minimal one that achieves an SL of at least ξ; and (4) If necessary,

iteratively increase this solution to obtain an E-feasible one. The rationale is to roughly control

the total number of agents via ξ and the fraction of low-cost agents via β. In all our experiments,

setting ξ = l (the global SL target) yielded an E-feasible solution after step 3, so step 4 was

unnecessary. The details, including two alternatives for step 4, are in Procedure Init in Online

Appendix A.1. Online Appendix A.2 contains experimental results for this and other initialization

methods, concluding that there is occasional sensitivity to the initial solution and that the proposed

method is effective.

16

Stage 1: Neighborhood Search.

Step 1b: Consider agent removal. We are given the incumbent x and a move size q. Consider

the set of solutions obtained by removing q agents of a single type; denote it X1(x, q) = {y : y =

x − qei, xi ≥ q} and call it a remove neighborhood. These solutions are evaluated; if at least one

is E-feasible, then the new incumbent is the one minimizing the ratio of global-SL decrease to cost

decrease, where the global-SL decrease is estimated by the evaluator; otherwise, we have determined

that X1(x, q) contains no E-feasible solutions. Step 1b is implemented as function Remove in Online

Appendix A.1.

Step 1c: Consider agent switching. We are given the incumbent x and a move size q. We select an

agent type i to be reduced, called pivot, via a rule specified below. Consider the set of solutions

obtained by decreasing xi by q and increasing the number of agents of a less-expensive type by q;

denote it X2(x, q, i) = {y : y = x − qei + qej , xi ≥ q, cj < ci} and call it a cost-reducing switch

neighborhood. These solutions are evaluated; if at least one is E-feasible, then the new incumbent

is set by the same minimization criterion as during agent removal; otherwise, we have determined

that all elements of X2(x, q, i) are E-infeasible. To explain the pivot selection rule, suppose we were

to consider all possible pivots; then in the worst case we would have to evaluate O(m2) neighbors

for the typical incumbent, which may be prohibitive. (This calculation assumes that for the typical

incumbent, there are O(m) possible pivots and for each of these pivots there are O(m) candidates

to increment.) Indeed, considering all pivots led to unacceptably large work in our Example 2, in

Section 5.2, where m = 89. The set of candidate pivots is P = {i : xi ≥ q, q∗i > q}, where q∗i is the

smallest q such that all elements of X2(x, q, i) are known (from previous steps) to be E-infeasible;

this is justified in Proposition 4 below. The pivot is selected randomly, uniformly over P. Step 1c

is implemented as function Switch in Online Appendix A.1.

Stage 1 termination and move size selection. We define normal termination (of stage 1) to mean

that the incumbent x is locally optimal in the sense that X1(x, 1) and ∪i:xi≥1X2(x, 1, i) contain no

E-feasible solutions. In words, every possible removal of one agent and every possible cost-reducing

switch between two agents is deemed infeasible. Otherwise, we have early termination; this happens

17

when a work (CPU time) limit is reached before normal termination occurs. The move size q in step

1a is a positive integer that is no larger than maxi xi and is equal to 1 with positive probability.

Online Appendix A.3 provides an experimental assessment of different move-size selection rules

(both deterministic and random) and finds little sensitivity.

Stage 2: Simulation-based adjustment. The solution after Stage 1 may be infeasible or

suboptimal as a consequence of evaluator error. Thus, we turn to simulation as the evaluator and

use local search to correct infeasibility and/or further reduce the cost, as explained below. By

design, only few solutions are examined. Below, ĝj is the estimated class-j service level and f̂i,j is

the estimated rate of type-j service completions at station i.

Stage 2a. The first thing we do is to simulate the incumbent of Stage 1. If the incumbent has

class-specific constraint violations, then these are first addressed. The main steps are: find the

class j∗ with maximum violation; find the agent type i∗ whose fraction of busy time spent serving

class j∗ is maximum, i.e., i∗ = arg maxi:xi>0(f̂i,j∗/µi,j∗)/
∑

j∈Si
(f̂i,j/µi,j); and add one agent of this

type. This is continued until the constraints for all classes are satisfied. If the resulting incumbent

violates the global constraint, then we iteratively add one agent of the type that maximizes the

occupancy-to-cost ratio, until this constraint is satisfied. This yields a SIM-feasible solution. This

is implemented as Procedure SIMAdd in Online Appendix A.1.

Stage 2b. We seek to reduce cost subject to maintaining SIM-feasibility, considering only single-

agent removals. We maintain a list of agent types that are candidates for removal. While the

list is non-empty, we: (1) calculate a measure of “excess capacity” for each agent type in the list:

χi =
∑

j∈Si
wi,j(ĝj − lj), where wi,j is the estimated fraction of type-i agents’ busy time that is

spent serving type-j calls; (2) sort the list by decreasing value of χici; (3) simulate the solution

obtained by removing one agent of the type at the top of the list; if it is SIM-feasible, then set

it as the new incumbent and reconsider the entire list (i.e., continue the While statement above);

otherwise, remove this type from the list and repeat step 3 above. This is implemented as Procedure

SIMRemove in Online Appendix A.1.

The algorithm description is complete. We now establish results on the search and discuss

18

algorithm enhancements.

Properties of neighborhood search. Write g̃• for the evaluator’s estimates of the service-level

functions g•. For any given solution x, we consider the condition

[g̃j(x− q1ei + q1ek) < g̃j(x)] ⇒ [g̃j(x− q2ei + q2ek) ≤ g̃j(x− q1ei + q1ek) for all q2 > q1] (12)

for all j and for all i and k with ci > ck. In words, this says that if some approximate service level

g̃j decreases after a switch of size q1, then it decreases by at least as much for all larger switch sizes.

Condition (12) does not always hold in general for arbitrary solutions. For instance, it is possible

to construct examples where g̃j(x− qei + qek) is U-shaped as a function of q for some j, in which

case the condition fails. However, these examples are not typical of a well-behaved call center.

Proposition 4 1. Normal termination of stage 1 occurs after a finite number of evaluations.

2. Suppose that (12) holds for the incumbent solution x after normal termination. Then ∪q≥1∪i:xi≥q

X2(x, q, i) contains no E-feasible solutions.

Proof. Write x(1)
i for the i-th component of the initial solution. Since only cost-reducing moves are

accepted, the possible incumbents are contained inK = {x : x integer-valued m-vector,
∑m

i=1 cixi <

c(1)}, where c(1) =
∑m

i=1 c1x
(1)
i ; and an element of K can become incumbent at most once. Thus,

the number of incumbents is at most |K|. For each incumbent, there are at most
∑m

i=1 x
(1)
i = q̃

possible move sizes; and for each incumbent and move size, there are at most m possible removals

and at most m2 possible switches. Thus, stage 1 requires at most |K|q̃(m + m2) evaluations. In

the special case where q = 1, this bound improves to |K|(m +m2). To prove part 2, observe that

normal termination implies that q∗i = 1 for all i with xi ≥ 1. In view of (12), condition q∗i ≤ q

implies that X2(x, q, i) contains no E-feasible solutions for each i, and the result follows. �

Multistart. We run (start) the algorithm several times, each with different initial solution, and

retain the cost-minimal solution. Because of simulation noise, each run yields a solution that has

small positive probability of being infeasible (despite being SIM-feasible). As the number of runs

increases, the retained solution is more likely to be infeasible (because of selection bias). This

suggests avoiding an excessively large number of runs.

19

Work allocation to stages and runs. We control stage-1 work via a CPU time limit. Stage 2

work is well modeled as κ2T (NA +NR), where T is the number of simulated hours per solution; NA

and NR are the number of solutions simulated in stage 2a and 2b, respectively; and κ2 is the work

per simulation of 1 hour of operation. We found empirically conservative estimates E[NA] ≤ 3
√
ρ

and E[NR] ≤ 3
√
ρ + m, where the aggregate load is ρ =

∑
j∈N ρj and ρj = λj/µj is the class-j

load, where µj is a station-independent class-j service rate (the formula would need adjustment

otherwise). These estimates and knowledge of κ2 allow roughly controlling stage-2 work via T .

In multistart, an even-split rule is simple and reasonable: split the remaining work budget evenly

across starts and across stages, i.e., for each run i = 1, 2, . . . , k, allocate to stage 1 the fraction

1/[2(k − i+ 1)] of the budget, then allocate to stage 2 the fraction 1/[2(k − i) + 1] of the budget.

The approach generalizes easily to formulations with constraints on performance measures other

than service level, as long as the evaluator provides reasonable estimates. See Online Appendix A.0

for the LD approximation of abandonment fractions and mean waiting times for each call class.

5 Numerical comparison to the cutting-plane-and-simulation ap-
proach

To solve (P2) in its generality, i.e., with multiple constraints, the only method we know is that of

Cez̧ik and L’Ecuyer (2008) (CP). We therefore compare our approach (RS) to CP. We discuss

in detail two examples that arose in collaboration with Bell Canada. We also experimented with

other examples, but the ones we discuss summarize adequately our findings.

Assessing solution feasibility and algorithm performance. We assess algorithm performance over

a wide range of algorithm work (CPU time). Work is controlled by the number of simulated hours

of operation T (beyond a warm-up period). We remarked that both approaches deliver infeasible

solutions with non-negligible frequency, even under a large work budget. To assess solution quality

in light of this, we do a number of independent runs with each approach, and check the final

solution’s feasibility by a simulation that is more accurate than during optimization (T = 12800

hours of operation in apparent steady-state). The empirical optimum is the lowest-cost solution

found, across runs and the two approaches, that passes this feasibility test. In some cases, we made

20

small manual corrections (adding one or two agents) to get feasibility for a nearly-feasible low-cost

solution. The true optimum is unknown. For each approach, we report: (a) the minimum and

median cost of the feasible solutions only; the number of runs for which the solution is: (b) feasible

and within 1% of the empirical optimum (P ∗1); (c) within 1% of this cost, regardless of feasibility

(P1); (d) feasible, regardless of cost (P ∗); and (e) the average maximum relative constraint violation

in percent, Ḡ, i.e., the average of 100max{[l−g(x∗)]/l, [lj∗−gj∗(x∗)]/lj∗} conditional on the solution

x∗ being infeasible, where j∗ = arg maxj∈N [lj−gj(x∗)] is the critical class. Infeasibility of delivered

solutions is reported in Atlason et al. (2008); Green et al. (2001); Cez̧ik and L’Ecuyer (2008); to

our knowledge, our study is the first to measure the frequency and size of the infeasibility.

We now summarize call center parameters, algorithm implementation, and general behavior

that apply to all examples.

Call center parameters. Customer patience is exponential. In the absense of reliable patience

estimates, we consider two highly different cases for the rate: η = 20 per hour (abandonment) and

η = 0.02 (very low abandonment). The cost of an agent with s+ 1 skills is 1 + 0.05s. We have a

global SL target l = 0.80 and acceptable waiting time τj = τ = 20 seconds.

CP implementation. We used parameter values suggested in Cez̧ik and L’Ecuyer (2008); see

Online Appendix A.5. Solution quality was sometimes sensitive to parameters and fine-tuning these

is beyond our scope. In our large problem, solving the integer program (IP) to optimality required

work that was often excessive. Thus, we consider two variants: (i) solve the IP exactly (CPIP);

and (ii) solve the linear programming (LP) relaxation and then round up each variable in the final

solution (CPLP). We did not use multistart with CP because the work per start is generally high.

One referee suggested a third possibility: (iii) solve the IP, but not all the way to optimality; stop

as soon as the relative duality gap goes below a given threshold, such as 1% or 0.5%, for example.

This approach could appear as a good competitor to (ii) when the budget is too small to apply (i),

because it is likely to provide a better solution to the IP problem than just rounding up the LP

solution. However, our experiments with it were somewhat disappointing, especially for small work

budgets. For (i) and (ii), the optimal cost increases monotonously with the iterations, as we add

new constraints. But for (iii) this is no longer true and (according to our empirical observations)

21

it tends to take significantly more iterations on average to converge to a feasible solution of the

sample problem. This number of iterations also tends to have larger variance. Moreover, solving

the IP in (iii) requires significantly more work than solving the LP unless we are ready to accept

a large duality gap. All of this means shorter simulation lengths at each iteration, i.e., a smaller

sample size for the sample problem, for a given total work budget. This in turns gives a more noisy

sample problem, whose constraints are likely to have more areas of non-concavity (increasing the

chances of bad cuts in the CP method), and whose optimal solution also tends to be farther from

the optimal solution of the exact problem. Approach (iii) performed more poorly than (ii) on our

large example; it tended to return solutions with large infeasibility gaps Ḡ on average. For this

reason, we do not report the detailed results with this method.

RS implementation. Labels CC1A and CC1L will refer to Example 1 with moderate and very

low abandonment, respectively, and use of the LDA and LDN approximation, respectively; and

likewise for Example 2. Our experience is that LDN dominated LDA in problems with very low

abandonment, in the sense that it led to better solutions for similar work or faster execution for

similar solution quality. The approximation accuracy is ε = 10−4 and kU = 400. In the LDA

variant, we set ψ = 2. Requiring higher accuracy or increasing the queue size in LDA (via ψ) did

not produce noticeable differences. Multistart was applied; the initial solution was constructed with

ξ = 0.8 (the global SL target) and a different β in each start; the number of starts was increased

ad-hoc with the work budget. The move size was max(1, round(X)), where X is an exponential

random variable with mean equal to the median of the incumbent’s elements. Work allocation to

starts and stages followed the even-split rule and was such that total work is comparable to CP.

Effect of early termination. In side experiments, early termination had a negative effect on final

cost. In CC2A, normal termination gave a median gap to empirical optimum of about 2.4%, while

limiting the stage-1 work to 10% of the average work to normal termination led to a gap of 5.3%.

A similar but weaker effect was present in CC2L. One remedy is to speed up the LD approximation

by requiring lower accuracy. This means that for a fixed amount of time allocated to Stage 1, more

solutions are examined and normal termination is more likely to occur. We did that for CC2A.

Computing platform and tools. All experiments were done on a 2.0GHz AMD Opteron processor

22

running Linux; we used SUN Java Development Toolkit, version 1.4.2. Linear and integer programs

were solved by CPLEX, version 9.0. Our call-center simulator is likely to be much faster than typical

(e.g., commercial) simulators (Buist and L’Ecuyer, 2005); thus, our comparison favors CP because

this approach is more simulation-intensive than ours.

5.1 Example 1: a medium-size center

The following example is based on discussions with our industrial partner. We use different minimal

service levels per call type for illustrative purposes. There are 7 call classes and 10 agent types,

each having 1 or 2 skills. Overflow routing is acyclic and the data are: R1 = {1},R2 = {1, 3},R3 =

{2, 4},R4 = {5, 4, 3, 6},R5 = {7, 6, 8, 9},R6 = {9} and R7 = {10, 8}. Agent type 1 prioritizes class

1 over 2. Agent type 3 prioritizes class 2 over 4. Except when priority applies, calls are served in the

order of their arrival (FIFO). We have target service levels (lj)7j=1 = (.80, .80, .80, .75, .60, .60, .60),

arrival rates (λj)7j=1 = (200, 133, 323, 760, 95, 10, 380), and service rates varying by call class only:

(µj)7j=1 = (7.7, 7.7, 7.5, 7.7, 15, 7.7, 15). The aggregate load is 218. The empirical optimal costs for

examples CC1L and CC1A are 241.30 and 222.65, respectively.

Stage 1 empirical data and algorithm parameters. Stage 1 work for a single start averaged a

few seconds. Early termination was unnecessary. At the end of Stage 1, the approximation usually

overestimated the SL. In the low-abandonment case (CC1L), this solution did not require much

adjustment and its cost usually differed by less than 2% from the final cost. In the other case

(CC1A), the stage-1 cost was about 10% lower than the final cost, and a much bigger adjustment

was necessary in stage 2. Multistart was applied with β ∈ {0.2, 0.5, 0.7, 0.9}.

Comparison to CP. Table 1 contains results for CC1A. We omit results for intermediate work

budgets because they tended to interpolate the presented ones and did not reveal additional infor-

mation. We see that infeasibility occurs with non-negligible frequency, and this persists up to our

largest work budget. However, the expected constraint violation conditional on infeasibility, Ḡ, is

small and decreases steadily with work. In view of this, we declare a solution (obtained in a single

run) as “good” if it is within 1% of the empirical optimum, regardless of feasibility. The main

result is: as the work budget becomes smaller, RS delivers a good solution more frequently than

23

Case Algo. T CPUavg Min. Med. P ∗1 P1 P ∗ Ḡ
cost cost

RS 25 55s 224.40 224.85 2 30 4 1.7
1 CPIP 25 2m15s 222.95 225.75 3 16 11 3.0

CPLP 25 30s 225.05 227.08 0 14 6 2.6
RS 640 17m10s 223.20 224.10 19 27 22 0.3

4 CPIP 640 15m29s 223.25 224.58 8 21 14 0.5
CPLP 1280 17m26s 223.05 224.70 14 22 23 0.6
RS 1920 54m02s 223.25 224.40 15 23 24 0.2

5 CPIP 2560 59m12s 223.00 224.05 22 31 23 0.2
CPLP 3840 57m30s 223.85 224.85 12 17 24 0.3

Table 1: Problem CC1A: Comparison of RS to CP based on 32 runs. CPUavg is the average CPU
time per run, in minutes (m) and seconds (s).

CP (higher P1 values seen in cases 1 and 4). Performance differences become smaller as the budget

increases (case 5). Staffing solutions occasionally differed substantially between the approaches.

In the low-abandonment problem CC1L, performance differences were smaller, but our approach

showed again an advantage under smaller budgets (detailed results omitted). In the empirical

optimum, the fraction of calls that abandon was about 5.5% in CC1A and 0.03% in CC1L.

5.2 Example 2: a large center

This example was provided by our industrial partner about three years ago. They gave us the call

types, the skill sets, and the routing rules. For each call class, they also provided the number of

calls that arrived and the aggregate call handling time over a short period of time. From this, we

estimated the (class-specific) mean service times; the arrival rates were then rescaled so that the

aggregate load is 500. Exactly the same example was used by Cez̧ik and L’Ecuyer (2008). Of all

problems we tried, this was the most difficult. The complete data for this example is available at

http://www.iro.umontreal.ca/~lecuyer/papers.html, next to the entry of this paper.

There are 65 call classes and 89 agent types. The arrival rates vary from 1.046 to 416.6. Except

for 9 classes whose aggregate load is below 3, the service rates are between 4.32 and 12.79. This is

a virtual call center with two distinct physical locations. Calls are distinguished by location and

needed skill, so for a given skill there are two call classes, one for each location. Frequently needed

skills are found at both locations. Location one has 22 call classes and 15 agent types; location

24

two location has 43 call classes and 74 agent types. The number of skills per agent ranges from

1 to 24. Upon call arrival, a call may be immediately assigned only to a local agent. If no local

agent is available, then the call is placed in a local queue; as soon as the call has spent 6 seconds

in queue, the ACD tries to assign it again, this time considering both local and remote agents, and

preferring local ones. In the routing list, local agents precede remote ones (this induces cycles in

the flow graph); within each location, lower number of agent skills comes first, and ties are broken

arbitrarily. Of all agents of the same type, the individual agent selected is the one with longest idle

time. Whenever an agent becomes free, she gives priority to the local queue. We set a service level

target of 50% per class to reflect that the company usually wants to rule out solutions in which

certain classes receive very poor service. In another experiment with a target of 80% per class, the

relative performance of the methods was roughly the same.

Stage 1 empirical data and algorithm parameters. Stage 1 work varied considerably and averaged

440 seconds for CC2L and 540 seconds for CC2A. Early termination was necessary on several runs

for CC2A. Multistart was applied with β ∈ {0.6, 0.8} except for the largest work budget, where

this set is {0.2, 0.5, 0.6, 0.7, 0.8, 0.9}. The cost gaps between the solutions after Stage 1 and Stage

2 are similar to those in Example 1.

Comparison to CP. Table 2 contains the main results. RS∗ denotes reduced LD accuracy

(ε = 10−3). The work budgets are larger than Example 1 because the output is noisier. A clear

pattern emerges: our approach yields lower-cost solutions than CP for all work budgets except

the largest one, where the two are comparable. In some cases, the cost margin is large. The

underperformance of CP is a consequence of simulation noise that is too large, in this example.

With CP, a very bad cut was occasionally seen: for CC2A with 27 minutes average work, one run

gave a cost of 975.05 while the 15 others ranged from 617.80 to 643.25 (across all runs, some of

which gave infeasible solutions).

Table 3 gives more information on the empirical optimum and typical solutions. In CC2L, the

CP solution has a large violation for one constraint. Our best solutions in CC2L have substantial

slack on the global SL constraint; the staffing is dictated by a constraint for a single class whose

load is usually low. In the empirical optimum, the fraction of calls that abandon was about 7.5%

25

Ab Case Algo. T CPUavg Min. Med. P ∗1 P1 P ∗ Ḡ
cost cost

1 RS 80 24m52s 660.55 663.60 3 10 6 13.6
CPLP 25 22m51s 668.75 668.75 0 4 1 20.0

L 2 RS 320 45m44s 657.95 663.00 2 13 3 5.7
CPLP 80 58m10s 677.20 677.20 0 6 1 15.7

3 RS 1280 435m31s 657.20 659.50 9 15 9 1.9
CPLP 960 567m52s 657.35 659.45 6 14 7 2.3
RS 25 52m01s 612.65 615.05 0 1 3 7.0

1 RS* 25 30m08s 608.80 613.32 0 0 6 7.4
CPLP 25 27m15s 631.10 634.65 0 0 3 8.6
RS 160 96m56s 608.85 611.35 0 0 7 1.5

A 3 RS* 160 46m12s 607.25 610.35 0 0 7 2.8
CPLP 80 60m21s 616.25 621.95 0 0 3 8.3
RS 640 804m25s 606.10 608.52 0 0 8 2.4

4 RS* 640 420m16s 605.65 607.68 1 4 8 1.1
CPLP 640 295m10s 605.20 613.25 1 5 5 2.0

Table 2: Example 2: Comparison of RS to CP based on 16 runs. ‘A’ and ‘L’ in column ‘Ab’ denote
the cases of moderate and very low abandonment, respectively.

in CC2A and 0.01% in CC2L.

Ab Case Algo. Cost SL SLj∗

* - 657.00 0.850± 0.001 0.501± 0.004
L 2 RS 661.80 0.867± 0.001 0.487± 0.006

CPLP 664.95 0.868± 0.002 0.36± 0.02
* - 600.00 0.812± 0.001 0.505± 0.003

RS 610.55 0.865± 0.001 0.516± 0.003
A 3 RS* 610.35 0.803± 0.001 0.500± 0.002

CPLP 617.70 0.842± 0.001 0.487± 0.002

Table 3: Example 2: Cost and service level of the empirical optimum (“*”) and typical solutions.
Service levels below the target are typed in bold.

6 Comparisons to existing and alternative approaches

6.1 The method of Wallace and Whitt (2005)

Modified Example 2 with skill-set constraints relaxed. We modify the example to fit the assumptions

of Wallace and Whitt (2005) (WW). Each agent has exactly two skills (call types) designated

primary and secondary, and each skill pair exists in each location. There are 4160 agent types,

defined by the ordered pair of the two skills and the agent’s physical location. The routing rule is

26

that of WW. The WW algorithm yielded solutions with 445 and 404 different agent types in CC2L

and CC2A, respectively; in both cases, the cost was about 13% below our empirical optimum.

This large cost reduction is easy to explain: some skill pairs whose load is relatively large do

not exist alone; they are “bundled” with other skills; so when this agent type is needed in the

skill-constrained problem, he/she is considerably costlier than in the relaxed problem.

Adapting the WW approach. All skill set constraints, cost structure, and routing are those of our

original examples. The square-root staffing formula of WW was applied for initialization, subject

to complying with existing skill sets: whenever they put a number of agents having a skill pair, we

put the same number of the cheapest of the existing agent types having this skill pair; if the pair

did not exist, then we put the cheapest agent type having the primary skill. Their algorithm was

adapted to account for unequal cost among agent types. This gave solutions of much higher cost

than ours in Example 2, and comparable in Example 1. In two runs of our algorithm with these

solutions as initial ones, we found much better solutions, but still not as good as found by our main

approach. Thus, we have no reason to believe that this adapted WW approach is competitive.

6.2 Alternative Stage 1 evaluator and alternative optimizer

Generalizing the proposed approach, one can combine some optimizer with some fast approximate

evaluator of service levels (Stage 1) and then apply, if necessary, a local adjustor supported by a more

accurate evaluator (Stage 2). We specify several possibilities and report algorithm performance for

selected examples. One evaluator we consider is the loss approximation of Koole and Talim (2000).

The main finding of this comparison, which we detail next, is that the final staffing appears to be

rather insensitive to the errors in the underlying service-level approximation.

The loss-approximation of Koole and Talim (2000) as evaluator. We replace the LD approxima-

tion by the KT loss approximation and call the resulting staffing algorithm RS/KT. Thus, during

Stage 1, we determine feasibility by comparing one minus the approximated loss rates to the cor-

responding target SL values. We compared RS/KT to our standard approach (RS/LD) in our four

problems. For problems CC2L and CC2A, the final costs were quite comparable. The biggest cost

differences occurred in CC1L: in 32 runs with parameters as in case 4, the minimum and median

27

RS/KT cost were 0.5 % and 0.9 % above the corresponding values of RS/LD, respectively. At the

end of Stage 1, the KT error is generally higher than the LD one, especially in the low-abandonment

case (note that Stage 1 of RS/KT behaves independently of the abandonment aspect of the call

center). In most of the 32 runs for CC1L, the global SL of the RS/KT incumbent at the end of

Stage 1 was under 10%, much lower than its typical counterpart with RS/LD. Not surprisingly, the

KT error is smaller in CC1A, where behavior is closer to a loss system. As a consequence of larger

SL error with KT, Stage-2 execution times were much higher.

The importance of having a somewhat good approximation is evidenced by additional exper-

iments in which we pretended having no approximation and ran Stage 2 only, starting with one

agent of each type. This worked well in Example 1; but in Example 2, the typical cost was about

10% above the empirical optimum. In summary, we find: a somewhat good approximation is es-

sential in finding good moves during Stage 1, and this is an essential part of our approach; smaller

approximation error is additionally helpful in reducing the Stage-2 execution time.

Simulation as evaluator. We replace the LD approximation by simulation and call the resulting

algorithm RS/SIM. Some experimentation was needed to find appropriate simulation lengths for

the Stage 1 evaluator, say T1, and for the adjustor, say T . In general, T1 must be small enough

so that enough solutions are examined; and T must be large enough to avoid large infeasibility in

the final solution. RS/SIM was ineffective in both variants of Example 2. In CC2A, with T1 = 25,

T = 160, and B = {0.6, 0.8}, the costs for 5 runs ranged in [627.95, 637.15] and work was about

15 hours. Our experiments suggest that this method is unlikely to be effective, except perhaps in

small dimensions, because of the large number of solutions that must be evaluated by simulation.

Alternative optimizer. Approach CP/LD combines the cutting-plane optimizer of Cez̧ik and

L’Ecuyer (2008), the LD evaluator, and the simulation-based adjustor. CP/LD may be interesting

when one is willing to accept some loss in solution quality in exchange for faster execution. In

problem CC2A, CP/LD reduced stage-1 work drastically relative to RS: the number of evaluations

was cut by a factor of 50, and execution time was cut by a factor of 10. However, the overall

speedup was limited because of the need for simulation-based adjustment.

28

7 Conclusion

We formulated the problem of staffing in a multi-skill call center as a mathematical program (P2)

with constraints on the service levels. We developed a solution approach using search methods that

are supported by the loss-delay approximation of class-specific service levels. The approximation is

most relevant when the routing policy belongs to the overflow-routing family. The search delivers

a staffing that is locally optimal with respect to the approximate service-level functions. This

solution is then adjusted for either feasibility or cost reduction via simple local search methods,

where simulation provides unbiased (noisy) estimates of service levels.

We compared our approach to the only practical alternative we know (Cez̧ik and L’Ecuyer,

2008). Comparison was via examples for which (partial) data were provided by our industrial

sponsor, including explicit constraints on skill sets and policies in the overflow-routing family. We

assumed Poisson arrivals and exponential service times and considered both substantial and low

(exponential) abandonment. We solved problems for a wide range of work budget. Our approach

usually delivered better solutions than the alternative, and this advantage increased as the work

budget decreased. It also appears that the advantage increases as problem dimension increases.

Crucial in our approach is a fast approximation that selects good moves among the many

possible choices; the approximation’s accuracy does not appear to be crucial. In our experiments,

the loss-delay approximation had a small advantage over the loss approximation of Koole and Talim

(2000): it gave noticeably better solutions in one example (with very high customer patience); and

it led to faster execution. We conclude that our search methods supported by the loss-delay, and

possibly by other approximations, can be a useful tool in multi-skill staffing.

Acknowledgments

This research has been supported by Grants OGP38816-05 and CRDPJ-320308 from NSERC-

Canada, a grant from Bell Canada via the Bell University Laboratories, and a Canada Research

Chair, to the third author. The second author benefited from a scholarship provided jointly by

NSERC and Bell Canada. The paper was written in part while the third author was at IRISA, in

29

Rennes, France.

References

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1974. The design and analysis of computer algorithms.

Reading, MA, USA: Addison-Wesley.

Atlason, J., M. A. Epelman, and S. G. Henderson. 2004. Call center staffing with simulation and

cutting plane methods. Annals of Operations Research 127:333–358.

Atlason, J., M. A. Epelman, and S. G. Henderson. 2008. Optimizing call center staffing using

simulation and analytic center cutting plane methods. Management Science 54 (2): 295–309.

Bassamboo, A., J. M. Harrison, and A. Zeevi. 2006. Design and control of a large call center:

Asymptotic analysis of an LP-based method. Operations Research 54 (3): 419–435.

Bhulai, S., G. Koole, and A. Pot. 2008. Simple methods for shift scheduling in multi-skill call

centers. Manufacturing and Service Operations Management 10:411–420.

Buist, E., and P. L’Ecuyer. 2005. A Java library for simulating contact centers. In Proceedings of

the 2005 Winter Simulation Conference, 556–565: IEEE Press.

Cez̧ik, M. T., and P. L’Ecuyer. 2008. Staffing multiskill call centers via linear programming and

simulation. Management Science 54 (2): 310–323.

Chan, W. 2006. Optimisation stochastique pour l’affectation du personnel polyvalent dans un

centre d’appels téléphoniques. Master’s thesis, Département d’Informatique et de Recherche

Opérationnelle, Université de Montréal, Canada.

Chevalier, P., R. A. Shumsky, and N. Tabordon. 2003. Overflow analysis and cross-trained servers.

International Journal of Production Economics 85:47–60.

Chevalier, P., R. A. Shumsky, and N. Tabordon. 2004. Routing and staffing in large call centers

with specialized and fully flexible servers. Technical report, Simon Graduate School of Business,

University of Rochester.

30

Cooper, R. B. 1981. Introduction to queueing theory . second ed. New York: North-Holland.

Franx, G. J., G. Koole, and A. Pot. 2006. Approximating multi-skill blocking systems by hyper-

exponential decomposition. Performance Evaluation 63:799–824.

Gans, N., G. Koole, and A. Mandelbaum. 2003. Telephone call centers: Tutorial, review, and

research prospects. Manufacturing and Service Operations Management 5:79–141.

Green, L. V., P. J. Kolesar, and J. Soares. 2001. Improving the SIPP approach for staffing service

systems that have cyclic demands. Operations Research 49 (4): 549–564.

Harrison, J. M., and A. Zeevi. 2005. A method for staffing large call centers based on stochastic

fluid models. Manufacturing and Service Operations Management 7 (1): 20–36.

Henderson, S., and A. Mason. 1998. Rostering by iterating integer programming and simulation.

In Proceedings of the 1998 Winter Simulation Conference, Volume 1, 677–683.

Koole, G., and A. Mandelbaum. 2002. Queueing models of call centers: An introduction. Annals

of Operations Research 113:41–59.

Koole, G., A. Pot, and J. Talim. 2003. Routing heuristics for multi-skill call centers. In Proceedings

of the 2003 Winter Simulation Conference, 1813–1816: IEEE Press.

Koole, G., and J. Talim. 2000. Exponential approximation of multi-skill call centers architecture.

In Proceedings of QNETs, 23/1–10.

Pot, A., S. Bhulai, and G. Koole. 2008. A simple staffing method for multi-skill call centers.

Manufacturing and Service Operations Management 10:421–428.

Riordan, J. 1962. Stochastic service systems. New York: John Wiley & Sons Inc. The SIAM series

in applied mathematics.

Ross, S. M. 1983. Stochastic processes. Wiley Series in Probability and Mathematical Statistics.

Wallace, R. B., and W. Whitt. 2005. A staffing algorithm for call centers with skill-based routing.

Manufacturing and Service Operations Management 7 (4): 276–294.

31

Wolff, R. W. 1989. Stochastic modeling and the theory of queues. New York: Prentice-Hall.

Author Biographies

Athanassios N. Avramidis is Lecturer in Operational Research in the School of Mathematics at

the University of Southampton, United Kingdom. This work was done while he was Researcher in

the Département d’ Informatique et de Recherche Opérationnelle at the Université de Montréal,

Canada. He has been on the faculty at Cornell University and a consultant with SABRE De-

cision Technologies. His main research interests are Monte Carlo and discrete-event stochas-

tic simulation, particularly efficiency improvement via variance reduction, and stochastic mod-

eling in industrial and service systems. His recent research articles are available on-line from

http://www.personal.soton.ac.uk/∼aa1w07.

Wyean Chan is a MSc Student in the Département d’Informatique et de Recherche Opération-

nelle, at the Université de Montréal, Canada. His main interests are object-oriented programming,

applied mathematics and optimization. He is currently working on the development of staffing

tools for call centers. His e-mail address is chanwyea@IRO.UMontreal.CA.

Pierre L’Ecuyer is Professor in the Département d’Informatique et de Recherche Opération-

nelle, at the Université de Montréal, Canada. He holds the Canada Research Chair in Stochastic

Simulation and Optimization. His main research interests are random number generation, quasi-

Monte Carlo methods, efficiency improvement via variance reduction, sensitivity analysis and opti-

mization of discrete-event stochastic systems, and stochastic simulation in general. He is currently

Associate/Area Editor for ACM Transactions on Modeling and Computer Simulation, ACM Trans-

actions on Mathematical Software, Statistical Computing, International Transactions in Operational

Research, The Open Applied Mathematics Journal, and Cryptography and Communications. He ob-

tained the E. W. R. Steacie fellowship in 1995-97, a Killam fellowship in 2001-03, and became an

INFORMS Fellow in 2006. His recent research articles are available on-line from his web page:

<http://www.iro.umontreal.ca/∼lecuyer>.

32

