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Abstract

A random vector X with given univariate marginals can be obtained by first applying the normal

distribution function to each coordinate of a vector Z of correlated standard normals to produce

a vector U of correlated uniforms over (0, 1) and then transforming each coordinate of U by the

relevant inverse marginal. One approach to fitting requires, separately for each pair of coordinates of

X, the rank correlation, r(ρ), or the product-moment correlation, rL(ρ), where ρ is the correlation of

the corresponding coordinates of Z, to equal some target r∗. We prove the existence and uniqueness

of a solution for any feasible target, without imposing restrictions on the marginals. For the case

where r(ρ) cannot be computed exactly due to an infinite discrete support, the relevant infinite

sums are approximated by truncation, and lower and upper bounds on the truncation errors are

developed. With a function r̃(ρ) defined by the truncated sums, a bound on the error r(ρ∗) − r∗

is given, where ρ∗ is a solution to r̃(ρ∗) = r∗. Based on this bound, an algorithm is proposed that

determines truncation points so that the solution has any specified accuracy. The new truncation

method has potential for significant work reduction relative to truncating heuristically, largely

because as required accuracy decreases, so does the number of terms in the truncated sums. This

is quantified with examples. The gain appears to increase with the heaviness of tails.
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1 Introduction

A multivariate distribution may be specified via marginal univariate distributions and with de-

pendence between marginals induced via a Gaussian (normal) copula. This is also known as the

NORmal To Anything (NORTA) approach (Cario and Nelson, 1996, 1997). More precisely, let

Fk, k = 1, . . . , d be univariate (cumulative) distribution functions, write NR for the multivariate

normal distribution with mean the zero vector and d× d correlation matrix R, and construct X as

Z = (Z1, . . . Zd) ∼ NR

X = (X1, . . . ,Xd) =
(

F−1
1 [Φ(Z1)], . . . , F

−1
d ([Φ(Zd)])

)

,
(1)

where Φ is the standard normal distribution function (with mean 0 and variance 1) and F−1
k (u) =

inf{x : Fk(x) ≥ u} for 0 < u < 1 is the inverse of Fk. By construction, the k-th marginal of X

is Fk. Relative to other multivariate approaches, this model may be appealing by its separating

the marginals from the dependence, which is contained in R. The choice of Gaussian copula, while

restrictive, facilitates fitting the model and sampling from it.

Consider the case d = 2. The construction reduces to selecting the scalar correlation ρ =

Corr(Z1, Z2). One approach to specifying ρ is to require that the rank correlation between X1 and

X2, r(ρ) = r(ρ;F1, F2) = Corr(F1(X1), F2(X2)), equals (matches) a target value r∗, which may

be the sample rank correlation computed from data (observations of X), or determined otherwise.

This leads to the rank-correlation matching problem of solving

r(ρ;F1, F2) = r∗. (2)

If F1 and F2 are both continuous (meaning absolutely continuous with respect to Lebesgue mea-

sure), then the rank-correlation matching problem is resolved by inversion of the formula r(ρ) =

Corr(Φ(Z1),Φ(Z2)) = (6/π) arcsin(ρ/2) (Kruskal, 1958). An alternative approach seeks ρ so that

the product-moment correlation matches a target. Avramidis et al. (2009) have studied the discrete

problem, where each marginal is discrete. Channouf and L’Ecuyer (2009) have studied the mixed

problem, where one marginal is discrete and the other one is continuous. Correlation-matching

is only one possible route to specifying a model with given marginals. Joe (2005) describes an

alternative where marginals and the dependence parameter (of a general copula, not necessarily

normal) are estimated in two separate phases, based on maximum-likelihood ideas.

The problem in dimension d = 2 is central to Gaussian-copula-based constructions of random

vectors in dimension d > 2 and the VARTA class of stationary multivariate time series (Biller and

Nelson, 2003). In these constructions, a correlation-matching problem is solved for certain pairs

of coordinates. In the random-vector construction, a positive semi-definite matrix R is computed

from the solutions of all coordinate pairs (Ghosh and Henderson, 2003). Channouf and L’Ecuyer

(2012) use this methodology to model arrival counts in call centers over several periods of a day

and find it most effective in fitting the full set of correlations.
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Our first contribution is a proof of existence and uniqueness of a solution for any feasible target,

without imposing restrictions on the marginals. Intermediate results we obtain are expressions for

the derivatives of the mean products E[X1X2] and E[F1(X1)F2(X2)] with respect to ρ; and that

r(ρ) and rL(ρ) are differentiable and strictly increasing on (−1, 1).

Our second contribution is to approximate the function r(ρ), with bounds on error, when it

cannot be computed exactly due to an infinite (discrete) support, and to bound the error in induced

correlation when solutions are computed via the approximation. An X1 with infinite support gives

rise to infinite sums in E[F1(X1)], Var[F1(X1)], and E[F1(X1)F2(X2)]. In the mean product, a

doubly infinite sum arises if, additionally, X2 is infinite. Avramidis et al. (2009) and Channouf

and L’Ecuyer (2009) replace r(ρ) by a version in which the relevant infinite sums are truncated. A

simple heuristic is used there: truncate each infinite tail to the right at the quantile xp associated

to a tail probability p (quantile of order 1− p), resulting in x2
p terms in the mean product. In this

paper, the relevant infinite sums are approximated by truncation, and lower and upper bounds on

the truncation errors are developed. With a function r̃(ρ) defined by the truncated sums, a bound

on the error r(ρ∗)−r∗ is given, where ρ∗ is a solution to r̃(ρ∗) = r∗ (the solution here is assumed to

exist); such a problem can be (and is) solved as in Avramidis et al. (2009); Channouf and L’Ecuyer

(2009). A simple algorithm is proposed that determines truncation points so that the solution has

any required accuracy. Thus, we enable solving to desired accuracy, which is new.

Our focus on rank correlation is motivated by the fact that nonlinear dependence may be

“missed” by product-moment correlation: Embrechts et al. (2002, Example 5) present a sequence

of random vectors (X,Y ) that are comonotonic (or counter-monotonic), i.e., have a perfect positive

(negative) dependence, and such that the product-moment correlation tends to zero; rank corre-

lation, in contrast, captures the dependence. Separately, our bounding method does not apply to

product-moment correlation.

Our approach may require less work than the heuristic, especially as the relevant quantile(s)

become large. To quantify this point, consider the widely-used discrete Pareto family (Parulekar and

Makowski, 1997; Suárez-González et al., 2002; Axtell, 2001; Deuchert and Brody, 2007). Defined

for α > 1, and supported on the positive integers, the probability mass is f(k) = k−α/ζ(α), where

ζ(α) =
∑∞

k=1 k−α is Riemann’s zeta function. For X ∼ Pareto(α), a simple calculation gives

xp ∼
(

(α− 1)ζ(α)p
)1/(1−α)

as p→ 0 (ax ∼ bx means ax/bx → 1). For α = 2.1 (finite mean, infinite

variance) and p = 10−5, we have xp = 21488, and x2
p is large; in comparison, our method, with

error tolerance 10−3 on r∗, requires about 35 thousand terms.

For the discrete problem, the truncation algorithm can be summarized as follows. The total

error bound is the sum of a rightward error bound, which only depends on rightward truncation

point(s), and a leftward error bound (that depends on leftward and rightward truncation points).

We determine truncation points so that the total error bound is small enough as follows. First, we
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iteratively increase candidate rightward truncation points, increasing one of them by one at each

iteration, until the rightward error bound is small enough. Then, we decrease candidate leftward

truncation points, in similar fashion, until the leftward error bound is small enough. In the mixed

problem, the algorithm is similar.

Although there is no simple way to specify equivalent tolerances between the heuristic and

our approach, we nevertheless report numerical comparisons to help assess the potential for higher

efficiency (work reduction). Comparing the heuristic with p = 10−6 to our method with toler-

ance 10−3 for Poisson, negative binomial, and Pareto marginals, we observe a consistent efficiency

improvement, and far more pronounced with the Pareto heavier tails.

The remainder is organized as follows. Section 2 develops the existence and uniqueness results.

The discrete problem is studied in Section 3; preliminary results have appeared in Avramidis (2009).

The algorithm for determining truncation points is detailed in Section 3.5. The mixed problem is

studied in Section 4. Numerical results appear in Section 5.

2 General Marginals

We assume throughout the paper that the marginals are non-degenerate. The rank correlation

between X1 and X2 as in (1) is

r(ρ) = Corr(F1(X1), F2(X2)) =
g(ρ) − µ1µ2

σ1σ2
, (3)

where µk = E[Fk(Xk)]; σ2
k = Var[Fk(Xk)]; and

g(ρ) = E[F1(X1)F2(X2)] =

∫ 1

0

∫ 1

0
P(h1(Z1) > x, h2(Z2) > y)dxdy (4)

where hk = Fk ◦ F−1
k ◦ Φ (the composite function). The last equality is based on the fact that for

any random variables X and Y ,

E[XY ] =

∫ ∞

−∞

∫ ∞

−∞
P(X > x, Y > y)dxdy, (5)

provided the expectation is finite (e.g. Lehmann, 1966, Lemma 2).

We now represent g and its derivative with respect to ρ as integrals involving the bivariate

normal density. We need a (generalized) inverse of the functions hk. To this end, let F be a

(cumulative) distribution function (c.d.f. in short), let DF be the set of discontinuity points of F ,

and put G(F ) = ∪x∈DF
(F (x−), F (x)); this is the set of u for which there exists no v such that

F (v) = u, due to discontinuity of F . The inverse of F is F−1(u) = inf{x : F (x) ≥ u}. We now

define the inverse of F ◦ F−1 as

(F ◦ F−1)−1(u) =

{

F (F−1(u)−) u ∈ G(F )
v otherwise

(6)
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for u ∈ (0, 1), where F (F−1(u)−) is the left limit of F at F−1(u). A special case of (6) that we need

later has a discrete F with cumulative probabilities 0 = f0 < f1 < . . .; then (F ◦ F−1)−1(u) = fi−1

whenever u ∈ (fi−1, fi]. Now define h−1
k = Φ−1 ◦ (Fk ◦ F−1

k )−1, where Φ−1 is the inverse of Φ. For

any F , one may verify that

F ◦ F−1(v) > u⇐⇒ v > (F ◦ F−1)−1(u) (7)

and thus (4) gives

g(ρ) =

∫ 1

0

∫ 1

0
P(Z1 > h−1

1 (x), Z2 > h−1
2 (y))dxdy =

∫ 1

0

∫ 1

0
Φ̄ρ(h

−1
1 (x), h−1

2 (y))dxdy, (8)

where Φ̄ρ(x, y) =
∫ ∞
x

∫ ∞
y φρ(z,w)dzdw, where φρ(x, y) is the density at (x, y) of the bivariate

standard normal distribution with correlation ρ. Certain invariance properties of rank correlation

can now be seen. First, if Fk is continuous, then h−1
k () = Φ−1(), and then (8) shows that the

dependence on Fk disappears. In particular, for F1 discrete and F2 continuous, r(ρ;F1, F2) is a

function of ρ and F1 only. Second, the locations of any discontinuity points do not matter (to

g and r)—only the values attained by the c.d.f. do. This property is inherited from the inverse

(F ◦ F−1)−1 defined above. Differentiation of (8) gives

d

dρ
g(ρ) =

∫ 1

0

∫ 1

0

d

dρ
Φ̄ρ(h

−1
1 (x), h−1

2 (y))dxdy =

∫ 1

0

∫ 1

0
φρ(h

−1
1 (x), h−1

2 (y))dxdy, ρ ∈ (−1, 1).

(9)

The derivative can pass inside the integral by an argument as in the proof of Theorem 9.42 in

Rudin (1976) on noting that φρ(h
−1
1 (x), h−1

2 (y)) has a bounded gradient with respect to (ρ, x, y)

almost everywhere on (−1, 1) × R
2. We then use that (d/dρ)Φ̄ρ(x, y) = φρ(x, y) (e.g. Avramidis

et al., 2009, eq. (13)).

An analogous development for the product-moment correlation follows: rL(ρ) = Corr(X1,X2) =

(gL(ρ)− E[X1]E[X2])/
√

Var(X1)Var(X2), where, using (5),

gL(ρ) = E[X1X2] =

∫ ∞

−∞

∫ ∞

−∞
P(F−1

1 (Φ(Z1)) > x,F−1
2 (Φ(Z2)) > y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
P(Z1 > Φ−1(F1(x)), Z2 > Φ−1(F2(y)))dxdy

=

∫ ∞

−∞

∫ ∞

−∞
Φ̄ρ(Φ

−1(F1(x)),Φ−1(F2(y)))dxdy. (10)

We used above the equivalence F−1(u) > x ⇐⇒ u > F (x), valid for any c.d.f. F and u ∈ (0, 1)

(Asmussen and Glynn, 2007, Proposition 2.2(a), page 38). Differentiation of (10) gives

d

dρ
gL(ρ) =

∫ ∞

−∞

∫ ∞

−∞

d

dρ
Φ̄ρ((Φ

−1(F1(x)),Φ−1(F2(y))dxdy

=

∫ ∞

−∞

∫ ∞

−∞
φρ(Φ

−1(F1(x)),Φ−1(F2(y)))dxdy, ρ ∈ (−1, 1). (11)
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The derivative can pass inside the integral because φρ(Φ
−1(F1(x)),Φ−1(F2(y))) has a bounded

gradient with respect to (ρ, x, y) almost everywhere on (−1, 1) × R
2. Thus:

Proposition 1 Let F1 and F2 be c.d.f.’s of non-degenerate distributions. Put Xk = F−1
k (Φ(Zk))

for k = 1, 2, where (Z1, Z2) is bivariate normal with standard-normal marginals and correlation ρ.

The function g(ρ) in (4) has derivative (9), and the function gL(ρ) in (10) has derivative (11).

The differentiability of the function g implies its continuity, and the same properties hold for

function r. Moreover, continuity at the endpoints, −1 and 1, follows by Cario and Nelson (1996,

Theorem 2). Then, the Intermediate Value Theorem implies that for any r∗ ∈ [r(−1), r(1)], the

equation r(ρ) = r∗ has a solution. Likewise, the differentiability of gL on (−1, 1) implies that for

any δ > 0, gL and rL are continuous on [−1 + δ, 1 − δ] (continuity at −1 and 1 may require extra

conditions), proving the solution’s existence for r∗ ∈ [rL(−1+ δ), rL(1− δ)]. Moreover, the solution

in each case is unique, as each of r and rL is strictly increasing in ρ (the integrand in each of (9)

and (11) is positive on a set of positive Lebesgue measure and non-negative everywhere). Thus,

the existence and uniqueness results in Cario and Nelson (1996, Theorem 1) and Avramidis et al.

(2009) extend, without any restrictions on the marginals:

Corollary 1 The functions g and gL are differentiable and strictly increasing everywhere. For

any r∗ ∈ [r(−1), r(1)], the equation r(ρ) = r∗ has a unique solution. For any δ > 0 and for

r∗ ∈ [rL(−1 + δ), rL(1− δ)], the equation rL(ρ) = r∗ has a unique solution.

3 The Discrete Problem

3.1 Preliminaries

The discrete rank-correlation-matching problem refers to solving r(ρ) = r∗ where the marginals F1

and F2 are both discrete. For simplicity, we assume the marginals have an infinite tail to the right

only. We enumerate the support points after putting them in increasing order as {0, 1, 2, . . .}. For

the k-th marginal, pk,i denotes the probability mass at i; we put fk,i =
∑i

j=0 pk,j and fk,−1 = 0.

As stated following (6), (Fk ◦ F−1
k )−1(v) = fk,i−1 for all v ∈ (fk,i−1, fk,i]. Then (8) gives

g(ρ) =

∞
∑

i=0

p1,i

∞
∑

j=0

p2,jΦ̄ρ(z1,i−1, z2,j−1), (12)

where zk,i = Φ−1(fk,i) and zk,−1 = −∞. This is equation (10) of Avramidis et al. (2009), seen here

to be a special case of (8).

3.2 Approximation of the Mean and the Variance

The task is to approximate the means and variances in (3). To lighten notation, we work with a

single marginal and later apply the forthcoming results to each marginal. Denote pi the probability
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mass at i and fi =
∑i

j=0 pj the cumulative probability at i. We will approximate the mean

µ= E[F (X)] =
∑∞

i=0 fipi and the variance σ2 =
∑∞

i=0 f2
i pi − µ2. Note that µ < 1 and σ2 > 0, by

non-degeneracy. The approximation is via the corresponding exact moments of the finite-support

random variable, Xn, obtained by shifting to the point n + 1 the probability mass of all the points

to its right, so that the resulting mass at n + 1 is the tail probability tn = 1− fn =
∑

i>n pi. With

Fn denoting the c.d.f. of Xn, the approximate mean is

µ̃n = E[Fn(Xn)] =
n

∑

i=0

fipi + 1− fn

and the approximate variance is

σ̃2
n = Var[Fn(Xn)] = µ̃(2)

n − µ̃2
n, (13)

where µ̃
(2)
n = E[F 2

n(Xn)] =
∑n

i=0 f2
i pi + 1− fn.

We now derive sequences that bound µ and σ2 from below and above and that converge to

these targets in each case. We define x+ = max(x, 0).

Lemma 1 (i) (Sequences bounding µ below and above and converging to it.) Define µ
n

= (µ̃n−
tntn+1)

+. We have

µ
n
≤ µ ≤ µ̃n for all n, (14)

and µ̃n ↓ µ and µ
n
→ µ as n→∞.

(ii) (Sequences bounding σ2 below and above and converging to it.) Define

σ2
n = σ̃2

n − 2(1 − µ
n
)tntn+1 and σ̄2

n =

{

σ̃2
n − ln n < n∗

σ̃2
n n ≥ n∗

where ln = (1 + fn − µ̃n−1 − µ̃n)tntn+1 and n∗ = min{n : 1 + fn − µ̃n−1 − µ̃n > 0} <∞. We

have

σ2
n ≤ σ2 ≤ σ̄2

n for all n, (15)

and {σ̃2
n}∞n=n∗ ↓ σ2 and σ2

n → σ2 as n→∞.

Proof. Part (i). Write

µ̃i−1 − µ̃i =
∑

k≤i−1

fkpk + 1− fi−1 −
∑

k≤i

fkpk − (1− fi) = pi(1− fi) > 0 (16)

and µ̃n − µ =
∑

i>n(µ̃i−1 − µ̃i), by the nonnegativity of the summands. Thus

0 < µ̃n − µ =
∑

i>n

(µ̃i−1 − µ̃i) =
∑

i>n

pi(1− fi) ≤ (1− fn+1)(1 − fn) = tn+1tn. (17)

The assertion lim µ
n

= µ follows from limn→∞ tntn+1 = 0.
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Part (ii). We have

σ̃2
i−1 − σ̃2

i = µ̃
(2)
i−1 − µ̃

(2)
i − (µ̃2

i−1 − µ̃2
i )

=
∑

k≤i−1

f2
kpk + 1− fi−1 −

∑

k≤i

f2
kpk − (1− fi)− (µ̃i−1 − µ̃i)(µ̃i−1 + µ̃i)

= pi(1− f2
i )− pi(1− fi)(µ̃i−1 + µ̃i)

= pi(1− fi)(1 + fi − µ̃i−1 − µ̃i) (18)

by using (16) in the third step. The above is nonnegative for all i large enough, so

σ̃2
n − σ2 =

∑

i>n

(σ̃2
i−1 − σ̃2

i ). (19)

We claim that

2(1−µ
n
)tntn+1 ≥

∑

i>n

pi(1−fi)(1+fi−µ̃i−1−µ̃i) ≥
{

(1 + fn − µ̃n−1 − µ̃n)tntn+1, n < n∗

0, n ≥ n∗ (20)

and observe that the quantity in the middle is σ̃2
n − σ2; then a simple rearrangement will prove

(15). It remains to prove (20). Note that the sequence {1 + fi − µ̃i−1 − µ̃i}∞i=1 is monotonically

increasing to 2(1 − µ) (since {fi}∞i=0 ↑ 1 and {µ̃i}∞i=0 ↓ µ), so

2(1−µ)
∑

i>n

pi(1−fi) ≥
∑

i>n

(1+fi− µ̃i−1− µ̃i)pi(1−fi) ≥ (1+fn− µ̃n−1− µ̃n)
∑

i>n

pi(1−fi). (21)

In the above, we may substitute looser bounds, as follows. The upper bound (left side) is positive,

so we may substitute for
∑

i>n pi(1− fi) and 1−µ the respective upper bounds tntn+1 and 1−µ
n
.

The lower bound (right side) is negative (positive) when n < n∗ (n ≥ n∗) respectively; in the

negative case, we may substitute for
∑

i>n pi(1− fi) the upper bound tntn+1; in the positive case,

we may substitute zero. These substitutions give (20), and this completes the proof of (15). The

assertion {σ̃2
n}∞n=n∗ ↓ σ2 holds on noting that the sequence {1 + fi− µ̃i−1− µ̃i}∞i=0 is monotonically

increasing and its n∗-th term is positive, so each summand in (19) is positive for n ≥ n∗. The

assertion lim σ2
n = σ2 follows from limn→∞ tntn+1 = 0.

Results (14) and (15) hold at any n, so truncation of a finite support (a special case of an

infinite one) is also covered. In view of lim σ2
n = σ2 > 0, we may define for n large enough the real

number σn =
√

σ2
n.

3.3 Approximation of the Mean Product

For a vector n = (l1, r1, l2, r2), define the approximation gn(ρ) of g(ρ) as the right side of (12)

truncated so the range of i is restricted to l1 ≤ i ≤ r1 and the range of j is restricted to l2 ≤ j ≤ r2.
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Lemma 2 We have

0 ≤ g(ρ) − gn(ρ) ≤
2

∑

k=1

(fk,lk−1 + t2k,rk
) for all ρ. (22)

Proof. By the non-negativity of each summand in (12), we have, for any ρ,

0 ≤ g(ρ) − gn(ρ) ≤
∑

i<l1

p1,i

∞
∑

j=0

p2,jΦ̄ρ(z1,i−1, z2,j−1) +
∑

i>r1

p1,i

∞
∑

j=0

p2,jΦ̄ρ(z1,i−1, z2,j−1)

+
∑

j<l2

p2,j

∞
∑

i=0

p1,iΦ̄ρ(z1,i−1, z2,j−1) +
∑

j>r2

p2,j

∞
∑

i=0

p1,iΦ̄ρ(z1,i−1, z2,j−1).(23)

Since Φ̄ρ(x, y) is non-decreasing in ρ, we have

Φ̄ρ(x, y) ≤ Φ̄1(x, y) = Φ̄(max(x, y)) = min(Φ̄(x), Φ̄(y)) for all ρ, (24)

where Φ̄ = 1 − Φ is the standard univariate normal complementary c.d.f.. Using this, an upper

bound for the first of the four terms on the right in (23) is

∑

i<l1

p1,iΦ̄(z1,i−1)

∞
∑

j=0

p2,j =
∑

i<l1

p1,it1,i−1 ≤
∑

i<l1

p1,i = f1,l1−1 (25)

upon noting that Φ̄(z1,i−1) = t1,i−1 and
∑∞

j=0 p2,j = 1; and an upper bound for the second term on

the right of (23) is

∑

i>r1

p1,iΦ̄(z1,i−1)
∞

∑

j=0

p2,j =
∑

i>r1

p1,it1,i−1 ≤ t1,r1
t1,r1+1. (26)

The bounds (25) and (26) and their analogs for the third and fourth term in (23) give (22).

3.4 Approximation of the Rank Correlation

For k ∈ {1, 2}, and for the purpose of approximating µk and σk, we truncate marginal k to

the right of rk, as described in Section 3.2. We will approximate the function r(ρ) as r̃n(ρ) =

(gn(ρ)− µ̃1,r1
µ̃2,r2

)/(σ̃1,r1
σ̃2,r2

), where n = (l1, r1, l2, r2) gives the truncation of the sum about gn,

as in Section 3.3, and the sums µk and σk are truncated to the right only. Left-truncation of these

sums would complicate the error analysis while having little impact on computing cost.

Observe that r̃n is a continuous strictly increasing function on [−1, 1], and thus has an inverse;

that is, for r∗ ∈ [r̃n(−1), r̃n(1)], there exists a unique ρ such that r̃n(ρ) = r∗, which we denote

r̃−1
n (r∗). This follows immediately from Corollary 1 by observing that gn is the g in (12) corre-

sponding to the finite support that results when for each k ∈ {1, 2} we shift to the point rk the

probability mass of the points to its right and we shift to the point lk the probability mass of the

points to its left. Our main result is as follows.

9



Proposition 2 Let ρ∗ = r̃−1
n (r∗), where r∗ ∈ [r̃n(−1), r̃n(1)]. Provided that σ2

1 and σ2
2 are positive,

we have

ζn ≤ r(ρ∗)− r∗ ≤ ηn + θn for all n, (27)

where

ζn =







r∗
(

σ̃1,r1
σ̃2,r2

σ̄1,r1
σ̄2,r2

− 1
)

, r∗ > 0

r∗
(

σ̃1,r1
σ̃2,r2

σ
1,r1

σ
2,r2

− 1
)

, r∗ < 0,
, ηn =

f1,l1−1 + f2,l2−1

σ1,r1
σ2,r2

,

and

θn =











t2
1,r1

+t2
2,r2

+µ̃1,r1
µ̃2,r2

−µ
1,r1

µ
2,r2

σ
1,r1

σ
2,r2

+ r∗
(

σ̃1,r1
σ̃2,r2

σ
1,r1

σ
2,r2

− 1
)

, r∗ > 0

t2
1,r1

+t2
2,r2

+µ̃1,r1
µ̃2,r2

−µ
1,r1

µ
2,r2

σ
1,r1

σ
2,r2

+ r∗
(

σ̃1,r1
σ̃2,r2

σ̄1,r1
σ̄2,r2

− 1
)

, r∗ < 0.

Proof. Putting h̃n(ρ) = gn(ρ)− µ̃1,r1
µ̃2,r2

− r∗σ̃1,r1
σ̃2,r2

, we have h̃n(ρ∗) = 0 and

r(ρ∗)− r∗ =
g(ρ∗)− gn(ρ∗) + h̃n(ρ∗) + µ̃1,r1

µ̃2,r2
− µ1µ2 + r∗(σ̃1,r1

σ̃2,r2
− σ1σ2)

σ1σ2
. (28)

Now (27) follows from the bounds on g(ρ) − gn(ρ) in (22); the bounds on µk as in (14); and the

bounds on σ2
k as in (15).

We observe, even though we never use, that the set {ρ : sign(ρ) 6= sign(r̃n(ρ))} is the interval

between zero and r̃−1
n (0), and that this interval can be made arbitrarily small: for l1 = l2 = 0, we

can show that limr1,r2→∞ r̃−1
n (0) = 0.

Note that ζn ≤ 0 and ηn, θn ≥ 0. We now derive asymptotic relations about the error bounds

under the assumption l1 = l2 = 0 and r1, r2 → ∞. To lighten the notation here, put µ̃k =

µ̃k,rk
, µ

k
= µ

k,rk
, σ̃k = σ̃k,rk

, σk = σk,rk
, σ̄k = σ̄k,rk

. Now observe: (a) for all rk large enough,

we have µ
k

= µ̃k − tk,rk
tk,rk+1, so µ̃1µ̃2 − µ

1
µ

2
= µ2t

2
1,r1

+ µ1t
2
2,r2

+ o(t21,r1
+ t22,r2

), where o(·)
has the usual meaning; (b) from σk = σ̃k

√

1− 2(1 − µ
k
)tk,rk

tk,rk+1/σ̃
2
k and the Taylor expansion

√
1− x = 1− x/2 + o(x) as x ↓ 0, we obtain σk = σ̃k[1− (1− µk)t

2
k,rk

/σ2
k] + o(t2k,rk

); then a simple

calculation gives σ̃1σ̃2/σ1σ2 − 1 = a1t
2
1,r1

+ a2t
2
2,r2

+ o(t21,r1
+ t22,r2

), where ak = (1 − µk)/σ
2
k; and

(c) σ̃1σ̃2/(σ̄1σ̄2) = 1, provided rk ≥ n∗
k, the n∗

k being as in Lemma 1. From these observations,

we obtain: (i) when r∗ < 0, we have ζn = r∗(a1t
2
1,r1

+ a2t
2
2,r2

) + o(t21,r1
+ t22,r2

); when r∗ > 0, we

have ζn = 0, provided rk ≥ n∗
k; and (ii) θn = b1t

2
1,r1

+ b2t
2
2,r2

+ o(t21,r1
+ t22,r2

), where we define

bk = (1 + µ3−k)/(σ1σ2) + r∗ak for r∗ > 0 and bk = (1 + µ3−k)/(σ1σ2) for r∗ < 0.

Remark 1 Write c for the right side of (22). It is not difficult to see that

gn(ρ)− µ̃1,r1
µ̃2,r2

σ̄1,r1
σ̄2,r2

≤ g(ρ)− µ1µ2

σ1σ2
≤

gn(ρ) + c− µ
1,r1

µ
2,r2

σ1,r1
σ2,r2

, ρ > 0

gn(ρ)− µ̃1,r1
µ̃2,r2

σ1,r1
σ2,r2

≤ g(ρ)− µ1µ2

σ1σ2
≤

gn(ρ) + c− µ
1,r1

µ
2,r2

σ̄1,r1
σ̄2,r2

, ρ < 0























(29)
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The distance between the lower and upper bounds above converges to zero when l1 = l2 = 0 and

r1, r2 →∞ (by results (a) to (c) after Proposition 2). Thus, (29) may be used to compute r(ρ) for

any ρ, including the extreme correlations r(−1) and r(1), to any desired accuracy.

3.5 Truncation Algorithm

The work to compute the root of r̃n(ρ) = r∗ can be expected to be roughly linear in w = (r1− l1 +

1)(r2− l2 +1). This is because w bivariate normal integrals are involved in evaluating gn(ρ) at any

candidate; if derivatives are to be used (Avramidis et al., 2009), then w derivatives, one for each

term of (12), are involved at any candidate; and empirical results in Avramidis et al. (2009) are

consistent with our claim. Then, accuracy and efficiency considerations suggest that n be chosen

to minimize w subject to the error bounds in (27) being within given limits.

Rather than solving such a minimization problem exactly, we propose Algorithm 1 below.

This is an approximate algorithm, and it is designed for simplicity and not efficiency because the

ensuing root-finding work is far more demanding, as numerical results will show. First we reduce

the quantity max(−ζn, θn) —called the rightward error bound, as it only depends on the rk—as

follows: we initialize r1 and r2 as the smallest support point, 0 and iteratively increase r1 or r2

by one, choosing for simplicity the one that corresponds to the larger tail probability to the right,

tk,rk
, until both lower bounds on variance (σ2

k,rk
) are positive and the rightward error bound is no

larger than δr, where δr > 0 is a specified tolerance. Having determined r1 and r2, we then reduce

the quantity ηn —called the leftward error bound because the rk have been fixed—as follows: we

initialize lk as the rk (k = 1, 2) determined in phase one, and iteratively decrease l1 or l2 by one,

choosing the one that corresponds to the larger probability to the left, fk,lk−1, until the leftward

error bound is no larger than δl, where δl ≥ 0 is a specified tolerance. The output is a truncation

n = (l1, r1, l2, r2) and the numbers ζn, ηn, and θn. For any δr > 0 and δl > 0, there exist finite rk

as required; then σ1,r1
σ2,r2

> 0, and there exist finite lk as required. The solution to rn(ρ) = r∗

(to be computed elsewhere) satisfies (27) and in particular −δr ≤ r(ρ)− r∗ ≤ δr + δl. By δl = 0 we

will mean no leftward truncation, i.e., l1 = l2 = 0.

To see where Algorithm 1 truncates, consider the case l1 = l2 = 0 and some δr > 0. Suppose

r∗ > 0. In the limit as δr → 0, the only requirement is θn ≤ δr, and we have seen that θn ∼
b1t

2
1,r1

+ b2t
2
2,r2

. with bk defined in point (ii) following Proposition 2. It is easy to see that t1,r1
∼

t2,r2
∼

√

δr/(b1 + b2), so rk is simply the quantile of Fk corresponding to this tail probability. The

case r∗ < 0 gives similar behavior.

4 The Mixed Problem

The mixed correlation-matching problem refers to solving r(ρ) = r∗ where F1 is discrete and F2 is

continuous. This indexing involves no loss of generality. The discrete support points are 0, 1, 2, . . .;

11



Algorithm 1: Truncate

Input: Probability masses {pk,i}∞i=0 for k = 1, 2; target r∗; tolerances δl ≥ 0 and δr > 0
. Output: Vector n = (l1, r1, l2, r2); error-bound components ζn, ηn, and θn.1

r1 ← 0; r2 ← 0; θn ←∞; ζn ← −∞ /* Phase 1, rightward truncation */2

while max(−ζn, θn) > δr do3

if t1,r1
> t2,r2

then4

r1 ← r1 + 15

Update f1,r1
, t1,r1

, µ̃1,r1
, µ

1,r1

, σ̃2
1,r1

, σ2
1,r1

and σ̄2
1,r16

if σ2
1,r1
≤ 0 then7

continue while8

end9

else10

r2 ← r2 + 111

Update f2,r2
, t2,r2

, µ̃2,r2
, µ

2,r2

, σ̃2
2,r2

, σ2
2,r2

and σ̄2
2,r212

if σ2
2,r2
≤ 0 then13

continue while14

end15

end16

Update ζn and θn17

end18

l1 ← r1; l2 ← r2; ǫ← f1,l1 − p1,l1; ǫ′ ← f2,l2 − p2,l2 /* Phase 2, leftward truncation */19

while ǫ + ǫ′ > σ1,r1
σ2,r2

δl do20

if ǫ > ǫ′ then21

l1 ← l1 − 1; ǫ← ǫ− p1,l122

else23

l2 ← l2 − 1; ǫ′ ← ǫ′ − p2,l224

end25

end26

ηn ← (ǫ + ǫ′)/(σ1,r1
σ2,r2

)27
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pi is the probability mass at i; and fi =
∑i

j=0 pj. The continuity of F2 means that F2(X2) is

uniformly distributed on (0,1), so its mean is µ2 = 1/2 and its variance is σ2
2 = 1/12.

The general expression (8) of g would lead to bivariate normal integrals. A more convenient

expression is

g(ρ) =
∞
∑

i=0

fi

∫ 1

0
u[Φ(i, u)− Φ(i− 1, u)]du, (30)

where Φ(i, u) = Φ(i, u, ρ) = Φ
(

(zi − ρΦ−1(u))/
√

1− ρ2
)

, with zi = Φ−1(fi) and z−1 = −∞. This

is not difficult to see, and agrees with equation (9) in Channouf and L’Ecuyer (2009), except that

the support there is unbounded in both directions.

We will develop an approximation of (30) and associated error bounds. We will then develop an

approximation of r(ρ) and error bounds in analogy to the discrete problem. Put Φ̄(i, u) = 1−Φ(i, u)

and f−1 = 0. Rewrite (30) as g(ρ) =
∫ 1
0 I(u, ρ)du, where

I(u, ρ) = u
∞
∑

i=0

fi[Φ(i, u) −Φ(i− 1, u)] = u
∞
∑

i=0

fi[Φ̄(i− 1, u)− Φ̄(i, u)]

= u
∞
∑

i=0

Φ̄(i− 1, u)(fi − fi−1) = u
∞
∑

i=0

Φ̄(i− 1, u)pi. (31)

For an integer n, we truncate the sum expression of the integrand I to obtain

In(u, ρ) = u

n
∑

i=0

Φ̄(i− 1, u, ρ)pi, (32)

and we approximate g(ρ) by

g̃n(ρ) =

∫ 1

0
In(u, ρ)du. (33)

We do not consider truncation to the left for simplicity and because our numerical evidence suggests

that the mixed problem is less demanding computationally than the discrete one. To bound the

error, observe that

I(u, ρ)− In(u, ρ) = u
∑

i>n

Φ̄(i− 1, u, ρ)pi ≥ 0.

Integrating this over u, we obtain lower and upper bounds on the error:

0 ≤ g(ρ)− g̃n(ρ) =

∫ 1

0
u

∑

i>n

Φ̄(i− 1, u, ρ)pidu ≤ tn

∫ 1

0
uΦ̄(n, u, ρ)du ≤ tn

2
. (34)

Computing the integral upper bound above (second from the right) would require numerical inte-

gration. For simplicity, we will forego this and use instead the looser upper bound on the right.

Let t1,n, µ̃1,n, µ
1,n

, σ̃1,n, σ1,n, and σ̄1,n be as in Section 3.2 with truncation point n, and

referring to the discrete marginal. Put r̃n(ρ) = (g̃n(ρ) − µ̃1,n/2)/(σ̃1,n/
√

12) as an approximation

of r(ρ). Since g̃n is the g in (30) that results when we shift to the point n the probability mass
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of the points to its right, it follows immediately from Corollary 1 that r̃n is a continuous strictly

increasing function on [−1, 1], and thus has an inverse; that is, for r∗ ∈ [r̃n(−1), r̃n(1)], there exists

a unique ρ such that r̃n(ρ) = r∗, which we denote r̃−1
n (r∗). Our main result is as follows.

Proposition 3 Let ρ∗ = r̃−1
n (r∗), where r∗ ∈ [r̃n(−1), r̃n(1)]. Provided that σ2

1,n is positive, we

have

ζn ≤ r(ρ∗)− r∗ ≤ θn for all n, (35)

where

ζn =







r∗
(

σ̃1,n

σ̄1,n
− 1

)

, r∗ > 0

r∗
(

σ̃1,n

σ
1,n
− 1

)

, r∗ < 0

and

θn =











√
12(t1,n+µ̃1,n−µ

1,n
)

2σ
1,n

+ r∗
(

σ̃1,n

σ
1,n
− 1

)

, r∗ > 0
√

12(t1,n+µ̃1,n−µ
1,n

)

2σ
1,n

+ r∗
(

σ̃1,n

σ̄1,n
− 1

)

, r∗ < 0.

Proof. Putting h̃n(y) = g̃n(y) − µ̃1,n/2 − r∗σ̃1,n/
√

12, we have h̃n(ρ∗) = 0. Equation (28) holds,

where µ̃2,· = µ2 = 1/2 and σ̃2,· = σ2 = 1/
√

12 refer to the continuous marginal. The result now

follows from (34), (14), and (15).

Note that ζn ≤ 0 and θn > 0. We can see the asymptotics of the error bounds in (35) as n→∞,

which will show that the error converges to zero. The quantity ζn behaves according to point (i)

following Proposition 2, modified to eliminate the tail corresponding to the continuous marginal,

so ζn = O(t21,n). A simple calculation gives θn = [
√

12/(2σ2)]t1,n + o(t1,n). The asymptotic differs

from that in the discrete case because the bounding method here is different.

Remark 2 The bounds in (34), (14), and (15) imply lower and upper bounds on r(ρ) analogous

to (29). The distance between these bounds converges to zero as n → ∞. This enables the

computation of r(ρ), for any ρ ∈ [−1, 1], to any desired accuracy.

The work to solve r̃n(ρ) = r∗ tends to be roughly linear in n as a consequence of the work

to compute In(u, ρ) being (roughly) linear. Our approach parallels that for the discrete problem:

initialize n as the smallest support point and iteratively increase it by one until max(−ζn, θn) is at

most a specified tolerance δ; for any δ > 0, clearly there exists a finite n satisfying this.

5 Numerical Results

We solved test problems with marginals in one of three families: discrete Pareto, Poisson, and

negative binomial. For these problems, solutions to equations r̃n(ρ) = r∗ associated to two different

truncations, that is, different n, are computed, as detailed later. The root may be computed via

standard derivative-free methods (we use MATLAB’s fzero) or via derivative-based ones as in
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Avramidis et al. (2009). On average, the derivative-based methods were slightly faster. For the

mixed problem, we report on the derivative-free method, simply to avoid having to give (integral)

expressions for the derivatives. Computations were done in MATLAB, and CPU times measured

via tic/toc commands. We do not claim these times are competitive; for example, in solving a few

problems from Avramidis et al. (2009) with identical truncation and root-finder, our CPU times

are larger by a factor of about one thousand. The large timing gap seems to be primarily due to the

computer language (these authors use Java). We compute Φ̄ρ(x, y), the standard bivariate-normal

c.d.f. at (−x,−y), via MATLAB’s function mvncdf to tolerance 10−9; this method cites Drezner

and Wesolowsky (1989), so we think it is reasonably efficient.

Discrete and mixed problems appear in Sections 5.1 and 5.2, respectively.

5.1 Discrete Problems

For the Pareto and Poisson families, four values r∗ are chosen between 0.999r̃n0
(−0.9999) and

0.999r̃n0
(0.9999), that is, close to the minimal and maximal rank correlation, respectively, inclu-

sively of these and in equal distance. The benchmark uses the truncation vector n0 = (l1,0, r1,0, l2,0, r2,0),

where lk,0 is the leftmost support point and rk,0 is the quantile of order 1 − p, where p = 10−6.

This p value is also the choice of Avramidis et al. (2009) and Channouf and L’Ecuyer (2009). We

compare this against truncation via Algorithm 1 with tolerances specified shortly. The root-finding

problem is solved by a hybrid of the Newton-Raphson method and bisection, identical to Press

et al. (1992, routine rtsafe, pp. 366–367) and to method NI3 in Avramidis et al. (2009, Section

3.1.4), to which we refer for analytical derivatives of gn.

A user of Algorithm 1 with (absolute error) tolerance δ will choose a number 0 < β ≤ 1

and set δr = δβ and δl = δ(1 − β). We considered β ∈ {1/10, 1/2, 1} to assess potential

sensitivity. In the Pareto case, with δ = 10−3, β = 1 was optimum (minimized both number of

terms and CPU time). This case is shown in Table 1 in detail, but efficiency (the ratio of the

benchmark’s CPU time to our CPU time) is high for all β (the average efficiency of the best β to

the worst one is roughly 3). Each of the six panels in Table 1 specifies a pair of marginals and the

benchmark number w0 = (r1,0 − l1,0 + 1)(r2,0 − l2,0 + 1). Each row within a panel corresponds to

the problem instance with target r∗; we report the (approximate) solution ρ; our method’s number

w = (r1 − l1 + 1)(r2 − l2 + 1); our CPU time; the error estimate r̃n0
(ρ)− r∗ (where “3e-04” means

3×10−4); and the efficiency. Heavier tails (smaller α) are associated with more work for our method

(larger w and CPU) and larger efficiency. Efficiency is also reflected well by the ratio w0/w. The

work reduction is a result of adhering to the accuracy requirement via the bounds, together with

the accuracy being modest. With increased accuracy, we can expect work to increase; for example,

for δr = 10−6 and δl = 0, average efficiency in the six panels drops to 1.9, 2.8, 5.2, 4.3, 9.4, and 23.5,

respectively. Incidentally, in the first row of each panel, the target is r∗ = 0.999rn0
(−0.9999) and
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the (approximate) solution ρ is far from −0.9999; this happens because the function rn0
increases

very slowly between −0.9999 and that ρ. We also solved the same problems with a second root

finder, MATLAB’s fzero; efficiencies were (again) roughly linear in w0/w.

Table 1: Discrete problem with Pareto(α1) and Pareto(α2) marginals. δr = 10−3, δl = 0.

r∗ ρ w CPU (sec) r̃n0
(ρ)− r∗ efficiency

α1 = 5, α2 = 5 -0.0368 -0.5160 49 0.20 3e-04 16.5
w0 = 484 0.3044 0.6541 49 0.19 3e-04 10.9

0.6455 0.9157 49 0.32 3e-04 11.2
0.9867 0.9999 49 0.56 3e-04 11.2

α1 = 5, α2 = 4 -0.0547 -0.5677 72 0.33 4e-04 29.9
w0 = 1496 0.2001 0.4849 72 0.24 4e-04 23.4

0.4550 0.7892 72 0.32 5e-04 24.8
0.7099 0.9923 72 0.51 5e-04 22.1

α1 = 5, α2 = 3 -0.0846 -0.6420 190 0.95 5e-04 112.6
w0 = 14190 0.1311 0.3341 190 0.74 5e-04 85.5

0.3468 0.6875 190 0.74 5e-04 85.7
0.5625 0.9999 190 1.18 6e-04 80.7

α1 = 4, α2 = 4 -0.0815 -0.6277 100 0.53 5e-04 65.4
w0 = 4624 0.2752 0.5436 100 0.39 5e-04 53.6

0.6319 0.8777 100 0.60 5e-04 52.8
0.9887 0.9999 100 1.18 5e-04 53.5

α1 = 4, α2 = 3 -0.1259 -0.7134 261 1.63 4e-04 205.1
w0 = 43860 0.1659 0.3426 261 1.11 4e-04 183.5

0.4576 0.7269 261 1.10 5e-04 183.7
0.7494 0.9987 261 1.97 5e-04 170.6

α1 = 3, α2 = 3 -0.1945 -0.7882 529 3.36 5e-04 952.8
w0 = 416025 0.2008 0.3475 529 2.35 5e-04 828.7

0.5960 0.7933 552 2.82 5e-04 803.8
0.9913 0.9999 552 7.15 5e-04 809.8

The second set of examples has Poisson marginals. We keep δ = 10−3, and show in Table 2 the

(preferred) case β = 1/2. For β = 1/10, efficiency is between 1.9 and 5.1, and averages 4.9 in the

last panel. For β = 1, efficiency is between 1.4 and 6.5, except for the last row, where it is 0.83

despite the fact that w < w0.

For the negative-binomial marginals and targets in Avramidis et al. (2009), performance is

comparable to the Poisson case. In the largest problems (largest means), w0 is about 190 thousand,

w is 28, 27, and 57 thousand for β = 1/10, 1/2, and 1, respectively, and efficiency is about w0/w.

The work of Algorithm 1 was not significant as a fraction of the overall work. In Table 1, this

fraction averaged 0.7%, and the maximum was 4.5%; in Table 2, the respective figures were 1.3%

and 9.6%. The larger fractions occurred consistently in the problems requiring less work.
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Table 2: Discrete problem with Poisson(λ1) and Poisson(λ2) marginals. δr = δl = 0.5 × 10−3.
r∗ ρ w CPU (sec) r̃n0

(ρ)− r∗ efficiency

λ1 = 1 -0.8501 -0.9898 30 0.18 9e-05 3.8
λ2 = 1 -0.2359 -0.2922 30 0.11 1e-04 3.5
w0 = 100 0.3783 0.4635 30 0.09 2e-04 3.5

0.9925 0.9999 30 0.39 3e-04 3.0

λ1 = 1 -0.9248 -0.9963 100 0.69 7e-05 3.2
λ2 = 10 -0.3075 -0.3505 100 0.32 1e-04 3.1
w0 = 290 0.3099 0.3539 100 0.32 3e-04 3.1

0.9272 0.9981 100 0.63 4e-04 3.3

λ1 = 1 -0.9352 -0.9987 330 2.07 3e-04 5.6
λ2 = 100 -0.3116 -0.3532 330 1.08 4e-04 5.2
w0 = 1520 0.3121 0.3550 330 1.05 6e-04 5.0

0.9358 0.9997 330 2.69 6e-04 4.3

λ1 = 10 -0.9818 -0.9985 400 2.85 1e-05 2.1
λ2 = 10 -0.3222 -0.3394 400 1.44 9e-05 2.2
w0 = 841 0.3374 0.3549 400 1.42 2e-04 2.1

0.9970 0.9998 400 4.71 3e-04 2.2

λ1 = 10 -0.9906 -0.9987 1300 9.65 2e-04 3.3
λ2 = 100 -0.3294 -0.3450 1300 4.93 3e-04 3.4
w0 = 4408 0.3317 0.3478 1300 4.89 5e-04 3.4

0.9928 0.9993 1320 10.82 5e-04 3.0

λ1 = 100 -0.9972 -0.9988 4422 34.70 2e-04 5.1
λ2 = 100 -0.3320 -0.3460 4422 17.47 3e-04 5.1
w0 = 23104 0.3332 0.3479 4422 17.23 4e-04 5.1

0.9984 0.9996 4489 41.71 4e-04 5.1

5.2 Mixed Problems

We compare two alternative truncation points: (i) a benchmark n0, set as the quantile of order

1−10−6; and (ii) the smallest n such that the error bound max(−ζn, θn) is no larger than δ = 10−3.

The values r∗ are chosen via near-extremes 0.999r̃n0
(±0.9999), as before. The respective equations,

r̃n0
(ρ) = r∗ and rn(ρ) = r∗, are solved with MATLAB’s fzero, described as “a combination of

bisection, secant, and inverse quadratic interpolation methods”. The integral in (33) is evaluated

via MATLAB’s quadgk function, described as “adaptive quadrature based on a Gauss-Kronrod

pair (15th- and 7th-order formulas)”, with error tolerance 10−12.

Mixed problems whose discrete marginal is Pareto are seen in Table 3. Heavier tails are as-

sociated with more work for our method (larger n and CPU), and larger efficiency, which is also

reflected well by n0/n. The mixed problem is less demanding than the discrete one with same

marginals, in agreement with Channouf and L’Ecuyer (2009).
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Table 3: Mixed problem with a Pareto(α) discrete marginal. δ = 10−3.
r∗ ρ n CPU (sec) r̃n0

(ρ)− r∗ efficiency

α = 5 -0.3204 -0.9970 16 0.02 -4e-10 1.3
n0 = 22 -0.1068 -0.2606 16 0.02 -3e-10 1.2

0.1068 0.2606 16 0.03 6e-09 1.1
0.3205 0.9971 16 0.03 -1e-08 1.2

α = 4 -0.4580 -0.9981 32 0.03 -1e-09 1.5
n0 = 68 -0.1527 -0.2884 32 0.03 -3e-07 1.6

0.1527 0.2884 32 0.04 3e-07 1.6
0.4580 0.9981 32 0.05 3e-08 1.6

α = 3 -0.6465 -0.9987 126 0.11 -3e-08 4.5
n0 = 645 -0.2155 -0.3194 126 0.11 2e-08 4.8

0.2155 0.3194 126 0.18 3e-08 5.1
0.6465 0.9987 126 0.18 -1e-07 5.0

α = 2.2 -0.8254 -0.9990 2055 2.34 1e-07 32.7
n0 = 61597 -0.2751 -0.3416 2055 2.39 3e-08 32.7

0.2751 0.3416 2055 4.76 9e-08 33.2
0.8254 0.9990 2055 4.70 1e-07 33.9

6 Conclusion

We contributed to the mathematics of constructing a random vector X of the form (1) by controlling,

separately for each pair of coordinates of X, the rank correlations or product-moment correlations.

For arbitrary univariate distribution functions F1 and F2, we gave expressions for E[F1(X1)F2(X2)]

and E[X1X2] and their derivatives with respect to ρ and showed that both the rank correlation r(ρ)

and the product-moment correlation are differentiable strictly increasing functions on (−1, 1), thus

proving existence and uniqueness of the solution for any feasible target. For the case where r(ρ)

cannot be computed exactly due to an infinite discrete support, we showed how to construct an

approximation r̃ of r such that equations of form r(ρ) = r∗ can be solved to any desired accuracy.

In addition to ensuring accuracy, our method may require less work than truncating at quantiles

xp associated to a small tail probability p, because the work decreases as the (absolute error)

tolerance increases. With the tolerance fixed, higher efficiency seems to result by setting β (Section

5.1) depending on the probability mass functions (p.m.f.’s): if both p.m.f.’s are nonincreasing in the

direction of the infinite right tail (example: Pareto), truncate only the tail: β = 1; if both p.m.f.’s

are (approximately) symmetric, for example normal-like, due to a central-limit effect (examples:

large-mean Poisson; negative binomial with large “number of failures” parameter), set β = 1/2. In

other cases, β = 1/2 seems reasonable, though not necessarily most efficient. Heavier tails, that is,

higher sensitivity of xp to p, seem to translate to higher potential for work reduction.

Some ideas for future inquiry are now proposed. Marginals with large mean(s) tend to result
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in large w and according work, even with our approach. More efficient solution of such problems is

an open research problem. Another line of inquiry could be to see if our approach can be extended

to the product-moment correlation for general discrete and unbounded marginals. A difficulty in

this program is that the summands in the corresponding infinite sums do not seem to permit the

convenient bound “1” that we used for the cumulative probabilities.
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