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Motivated by a Bell Canada call center operating in blend mode, we consider a system with
two types of traffic and two types of agents. Outbound calls are served only by blend agents,
whereas inbound calls can be served by either inbound-only or blend agents. Inbound callers
may balk or abandon. There are several performance measures of interest, including the rate
of outbound calls and the proportion of inbound calls waiting more than some fixed number
of seconds. We present a collection of continuous-time Markov chain (CTMC) models which
capture many real-world characteristics while maintaining parsimony that results in fast
computation. We discuss and explore the tradeoffs between model fidelity and efficacy and
compare our different CTMC models with a realistic simulation model of a Bell Canada call
center, used as a benchmark.

1. Introduction

Telephone call centers are an important part of customer service of many organizations.

Managing their operations more efficiently attracts much interest as exemplified by a growing

body of academic work in various disciplines (see Gans et al. 2003 and Mandelbaum 2003

for extensive overviews). From the operational perspective, most call centers face common

challenges such as uncertainties in call arrivals and service times while having to respect

certain quality-of-service constraints.

In this paper, we consider a telephone call center with two types of traffic, inbound and

outbound, and two types of agents, inbound-only and blend. Inbound calls arrive randomly,

according to some stochastic process. When traffic is too high, new inbound calls must wait
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in a queue. For inbound traffic, we consider abandonment, i.e., some customers may not

stay in the queue once learning that they are put on hold, or they may leave after spending

some time waiting in the queue. When the inbound traffic is low and some blend agents

are idle, an automatic dialer composes multiple outbound calls in parallel (trying to reach

potential customers, e.g., for marketing or direct sales), in order to increase the productivity

of the center. Mismatches occur when more customers are reached by outbound calls than

the number of idle agents. The outbound calls are served only by blend agents, whereas

inbound calls can be served by either type.

Managers are interested in performance measures such as agent utilization, abandonment

rate, rate of outbound calls, rate of mismatches, fraction of calls waiting more than τ sec-

onds for some constant τ , etc., in the long run. They often want to determine a minimal

staffing (the number of agents of each kind in the center as a function of time) under certain

(stochastic) constraints on the quality of service and the volume of outbound calls com-

pleted. Ultimately, they also need to find a daily or weekly schedule for a certain number

of individual agents. This imposes additional constraints which imply that not all staffings

can be realized exactly. For example, each agent must work a minimum number of hours

during the day, these hours must be contiguous with a lunch break near the middle, etc.

Minimal-cost scheduling is generally more difficult than minimal-cost staffing. Both can be

formulated as stochastic integer-programming problems after an appropriate model of the

system is defined.

Realistic models of call centers are generally so complex that they can only be handled

via stochastic simulation. Typically, the inbound calls do not arrive according to a sta-

tionary Poisson process, the call durations are not exponential random variables and their

distribution may depend on the time of the day, the number of agents of each type in the

center varies from day to day and within each day, and so on. However, running simulation

models to determine the staffing and/or the agent schedules in a call center is sometimes

too slow. Simplified models that can be solved more quickly, either by analytic formulas

or numerically, can be more convenient and appropriate when a fast response is needed.

These models must rely on several unrealistic assumptions, so the answers they provide are

only rough-cut approximations. But these approximations are often much more useful than

precise answers that come too late. For this reason and because of their simplicity, such

approximations are widely used in the case of inbound-only call centers (e.g., the Erlang-C

formula and the “square root” rule).

A call center can be naturally viewed as a queueing system. With drastic simplifications,

one may obtain queueing formulas for the performance measures of interest (see Koole and

Mandelbaum 2002 for a recent overview of queueing models in call center applications). The

so-called Erlang-C formula and its variations have traditionally been used to model call

centers with inbound traffic only. In that context, the center is modelled as an M/M/n
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queue, with Poisson arrivals, exponential service times (time spent by a customer with an

agent), identical servers (agents), and no customer abandoning the queue or receiving a

busy signal. The M/M/n model is appealing because the number of calls in the system as a

function of time is then a continuous-time Markov chain (CTMC) whose steady-state (long-

run) probabilities are easily determined. From this probability distribution, the long-run

performance measures of interest can be conveniently computed.

The M/M/n model has been modified to accommodate features such as abandonment,

blocking, time non-stationarity, and outbound traffic. We first describe some earlier work in

this area before explaining our enhancements.

Brandt and Brandt (1999a) allow customer abandonment via the concept of an impa-

tient customer who has a generally-distributed maximal patience time beyond which he

abandons the queue. In addition, arrival and service rates may be dependent on the number

of customers in the system. Brandt and Brandt (1999b) also model a secondary queue (e.g.,

call-back service queue) of lower priority than the inbound traffic queue. Brown et al. (2005)

fit the M/M/n model that is augmented with the exponential patience time (a.k.a. “Erlang-

A” with A for abandonment) to actual call center data. They find that the Erlang-A model

provides a useful approximation to performance measures such as the average waiting time

and the fraction of customers experiencing positive waiting times.

The aim of this paper is to develop practical CTMC models for call centers operating

in blend mode, i.e., outbound calls are initiated when the inbound traffic is low. Operating

in blend mode is appealing because it improves agent productivity. For this reason, it has

become popular in modern call centers, but it also increases the complexity of the system.

No single model can be the most appropriate solution for all situations, because certain

simplifying assumptions are reasonable in some cases and totally unrealistic in other cases.

For example, in the model, we may have to distinguish the inbound and outbound calls being

served if their service time distributions differ significantly, and not if they are similar. For

this reason, it is appropriate to define a collection of models, as we do in this paper. The

simplest model could be the right tool for one call center while a more detailed model might

be needed for another center.

We propose five CTMC models with varying degree of complexity. In the simplest model,

M1, all agents are identical blend agents, and the inbound and outbound service times are

i.i.d. exponential (therefore, from the agents’ point of view, inbound and outbound calls

are indistinguishable). Outbound calls are made only one at a time, so mismatches never

occur. Model M2 differs from M1 only in that M2 allows parallel outbound call dialing, which

sometimes causes mismatches. In Model M3, inbound and outbound calls are differentiated,

and inbound-only and blend agents are distinguished.

Being the richest model, M3 is also the most costly to compute; therefore, we provide two

special cases of M3 that are less demanding in computation. In M4, the expected inbound
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service time is equal to that of the outbound service time, and inbound and blend agents are

differentiated. Complementary to M4 is M5, where every agent is blend, but the expected

inbound service time is allowed to be different from the expected outbound service time.

All five models are time-stationary; however, we explain how to extend them to more

realistic non-stationary and doubly stochastic arrival processes, and how to use M1, M2

and M4 as approximations when the inbound and outbound service times have different

means. All these models being CTMCs, all interarrival times, service times, patience times,

etc., are exponential. Non-exponential times could be considered in principle via phase-type

distributions, but this would enlarge the state space and make the models much slower to

solve.

In our models, the dialer automatically determines when to make outbound calls and

how many, as a function of the current state of the system, using a threshold-type policy:

the number of outbound calls to attempt is a non-decreasing function of the number of idle

blend agents. This is motivated by the results of Bhulai and Koole (2003). Essentially under

the assumptions of the M/M/n model with outbound calls in the background, and if the

objective is to maximize the rate of outbound calls subject to a steady-state mean delay

constraint for inbound calls, these authors showed that a threshold-type policy for initiating

outbound calls is optimal when the inbound and outbound calls have the same expected

service times, and is close to optimal otherwise.

In the case where service times (call durations) have a small coefficient of variation, one

could think of using the elapsed times of calls to form predictors of their residual times and

define a predictive dialing policy based on that information. Such a policy would initiate

dialing whenever the estimated residual time of an on-going call becomes small enough

(e.g., near the average time for reaching a customer). This type of strategy is discussed

by Samuelson (1999). In CTMC models, however, service times are always assumed to be

exponential, which means that the elapsed time gives no information on the residual service

time, because of the memoryless property of the exponential distribution. We have also

observed that in real-life call centers, the service times actually have more variability than

for the exponential distribution and an increasing hazard rate function. In that case, a longer

elapsed time means a longer expected residual time.

Our contributions are: First, we define and study CTMC models simple enough to allow

fast computation of their steady-state probabilities, especially for M1, M2, and M4, while

capturing many real-world characteristics (e.g., to our knowledge, mismatched and failed

outbound calls have not been incorporated in CTMC models of call centers before). We also

develop methods to compute various call center performance measures with these models.

The models can provide an approximation of the number of agents needed to satisfy the

waiting time requirement. Second, we provide further approximation techniques to han-

dle non-stationary and doubly stochastic arrival processes. Third, we explore the tradeoff
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between model fidelity and efficacy through an empirical study where we use a realistic

simulation model of a Bell Canada call center as a benchmark.

The remainder of the paper is organized as follows: In the next section, we specify

the CTMC models. We use the steady-state probabilities for each model to obtain call

center performance measures, as discussed in Section 3. In Section 4, we develop a heuristic

approach for relaxing the assumption of equal average service times of M1, M2, and M4, and

we address the non-stationarity of actual call centers and a doubly stochastic version of the

Poisson arrival process. In Section 5, we compare the performance of the CTMC models and

their agreement with the simulation results for an example of a realistic call center. We also

explore the sensitivity of our results to selected assumptions. Based on these comparisons,

we provide suggestions on when each model is appropriate. Section 6 briefly outlines how the

CTMC models might be used for optimal staffing and scheduling. We conclude in Section 7

with a summary and future research directions.

2. CTMC models

We present the CTMC models and explain how to compute their steady-state probabilities

in Sections 2.1–2.3. Then we use the steady-state probabilities to compute performance

measures that are relevant to call center applications in Section 3.

2.1 Model M1: all blend agents and no mismatches

First, we describe modelling assumptions underlying M1: Our call center consists of n iden-

tical blend agents with a single FIFO waiting queue of finite capacity c. Inbound calls arrive

according to a Poisson process with rate λ. Service times for inbound and outbound calls

are i.i.d. exponentially distributed with rate µ. Customers that are not served immediately

hang up with probability 1 − γ; otherwise, they join the queue from which they will aban-

don if their waiting time is greater than a maximal patience time. The patience times are

exponentially distributed with mean 1/η and are independent for different customers.

The automatic dialer of M1 uses a threshold-type policy to schedule outbound calls: The

dialer attempts to make an outbound call if there are ṅ or fewer busy agents, where the

pre-determined threshold ṅ satisfies 1 ≤ ṅ ≤ n. The time from when the dialer dispatches

a call until it registers a successful or failed attempt is exponentially distributed with mean

1/ν. Each outbound call is answered by a customer with probability κ. All of this is modeled

via the state transition rates of the CTMC. As a consequence, if an arrival occurs while the

dialer waits for a customer to answer, and if the number of busy agents then exceeds ṅ, then

the dialing in progress is simply stopped (this is implicit in the definition of λk below).

The state variable X1(t) is the total number of calls—inbound and outbound—in the

system at time t. Under M1 assumptions, {X1(t); t ≥ 0} is a CTMC with state space
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S1 = {0, 1, 2, ..., n+ c}. Because X1(t) = k can change only to k ± 1, it is a birth-and-death

process, where the birth rates λk and death rates µk are state-dependent as follows:

λk =



λ+ κν, k = 0, 1, . . . , ṅ

λ, k = ṅ+ 1, . . . , n− 1

γλ, k = n, . . . , n+ c− 1

0, otherwise

µk =


kµ, k = 1, 2, .., n− 1

nµ+ (k − n)η, k = n, . . . , n+ c

0, otherwise.

The stationary probabilities {π0, π1, . . . , πn+c} can be determined recursively from the birth

and death rates (for example, see Ross 1983 or Taylor and Karlin 1998). They are given in

Appendix A.1.

2.2 Model M2: all blend agents with parallel dialing and mis-
matches

One of the limitations of M1 is that mismatched calls are neglected. In practice, call center

managers regard mismatches as highly undesirable, and they control mismatches (on an

operational basis) by manipulating the dialer policy, which dictates the number of parallel

outbound calls to attempt, given the state of the system. In this section, we modify the

dialer of M1 to allow for the possibility of mismatches.

At each end-of-service epoch, the dialer of M2 attempts to make multiple outbound calls

in parallel. The dialer composes outbound calls only when there are ṅ or fewer busy agents.

The number of outbound calls dialed is v(I) ≥ 0, where v(I) is a pre-determined function

of the number of idle agents I. We assume that the dialer recognizes whether a call is

answered instantaneously as soon as a call is dispatched. This simplifying assumption is to

keep the state space unidimensional. Because multiple outbound calls are made in parallel,

mismatched calls can occur under M2. Specifically, when there are k calls in the system, and

z outbound calls are answered, then max(0, k+z−n) of the outbound calls are mismatched,

and lost. Because each call is answered with probability κ, the number of answered outbound

calls Z is a binomial random variable, with probability mass function:

φI(z) =

(
v(I)

z

)
κz(1 − κ)v(I)−z for 0 ≤ z ≤ v(I). (1)

Another possibility would be to assume the following. In states for which there are no

more than ṅ busy agents and where v(I) > 0, a dialer-reaching-customers event occurs at
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some constant rate r. When such an event occurs, Z outbound calls are answered where

Z is a binomial random variable with mass function φI(z) defined in (1). In other words,

the dialer-reaching-customers events would occur according to a stationary Poisson process

with rate r, and the number of customers reached at such an event would be a binomial

with parameter v(I) that depend on the current state at the time of that event. In some

states v(I) would be zero. It would not be difficult to modify the transition probabilities

and construct the infinitesimal generator for this variant of our model.

On the other hand, modeling nonzero dial resolution delays that are independent across

customers would require an extra state variable (the number of pending dials). This would

make the CTMC model more complicated and more costly to solve.

Aside from the outbound calling process, the other assumptions of Model M1 still hold

under M2. Model M2 involves the following transition types:

1. Inbound arrival: State changes from k to k + 1, for k < n + c, at rate λ for k < n

and at rate λγ for n ≤ k < n+ c.

2. Abandonment: State changes from k to k − 1, for k > n, at rate (k − n)+η.

3. Service completion without subsequent outbound dialing: If the current state

is k, then the number of busy servers immediately after the service completion will be

min(k, n)− 1. If min(k, n)− 1 > ṅ, then no outbound dialing will occur and the state

will change to k − 1, at rate min(k, n)µ.

4. Service completion followed by z outbound calls that are answered: This

transition is possible when the current state k satisfies k−1 ≤ ṅ, resulting in v(n−k+1)

dialed outbound calls. Note that m = min(z, n − k + 1) of the z answered calls will

begin service and z−m answered calls will result in mismatches. This transition occurs

at the rate kµφn−k+1(z). Here, we have a family of transitions types that correspond

to all z such that 0 ≤ z ≤ v(n− k + 1).

The state variable for M2 is X2(t), the total number of calls in the system at time t. The

process {X2(t), t ≥ 0} is a CTMC whose inifinitesimal generator Q2 can be constructed from

the transition types listed above. The state space S2 for M2 is the same as for M1. The

steady state probability vector π can then be found by solving πQ2 = 0 and
∑

k∈S2
πk = 1.

2.3 Model M3: two types of agents

Model M3 keeps the dialer of M2, but it distinguishes between inbound and outbound agents,

and the service times of inbound and outbound calls may have different means. There are

n1 inbound-only agents who serve only inbound calls and n2 blend agents who can process

both inbound and outbound calls. The total number of agents is thus n = n1 + n2. Service
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times for inbound and outbound calls are i.i.d. exponentially distributed with mean 1/µ1

and 1/µ2, respectively. The outbound calling process of M3 is almost identical to that of

M2 except that the parallel outbound calls are initiated only when there are at most ṅ busy

agents (of any type), and at least one blend agent is idle. Given that these conditions are

satisfied, the number of attempted outbound calls is v(I2), a pre-specified function of the

number of idle blend agents I2. Note that this function can be zero for small values of I2,

thus implementing a threshold on the number of idle blend agents. If an incoming call arrives

when both inbound agents and blend agents are available, it is serviced by an inbound agent.

The following processes describe various aspects of model M3:

B1(t) = number of busy inbound agents

I1(t) = n1 −B1(t) = number of idle inbound agents

Q(t) = number of waiting inbound calls

B21(t) = number of blend agents serving inbound calls

B22(t) = number of blend agents serving outbound calls

B2(t) = number busy blend agents

I2(t) = n2 −B2(t) = number of idle blend agents

B(t) = B1(t) +B2(t) = total number of busy agents

We will view X3(t) = (B1(t), B21(t), B22(t), Q(t)) as the state variable for M3. The “sup-

plementary variables” I1(t), B2(t), I2(t), and B(t) are uniquely determined by the value

of the state variable. Using lowercase letters to denote the values of processes at a point

s = (b1, b21, b22, q) in the sample space, we can express the state space as

S3 = {s : b1, b21, b22 ≥ 0, b1 ≤ n1, b21 + b22 ≤ n2, q = 0}
∪{s : b1 = n1, b21 + b22 = n2, 0 < q ≤ c},

with cardinality (n1 + 1)(n2 + 2)(n2 + 1)/2 + (n2 + 1)c. As the expression for the state

space shows, S3 is three-dimensional, although we use four state variables, for notational

convenience. The state variables B1(t) and Q(t) could be replaced by their sum, but this

would complicate some of the expressions later in this subsection.

We define the process in terms of the following eight transition types, defined by the

destination state from a generic origin state s, the conditions that the origin state must

satisfy, and the transition rate. This information suffices to construct the infinitesimal

generator matrix Q3 and to calculate stationary probabilities. We use the supplementary

variables i1, b2, i2, and b to simplify some of the expressions, and we use I to denote the

indicator function.

1. Inbound arrival:
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• Destination state: (b1 + I{b1 < n1}, b21 + I{b1 = n1, b2 < n2}, b22, q + I{b = n}).

• Condition: q < c.

• Rate: λ(1 − (1 − γ)I{b = n}).

2. Abandonment:

• Destination state: (b1, b21, b22, q − 1).

• Condition: q > 0.

• Rate: qη.

3. Inbound agent completes inbound call, no outbound dialing:

• Destination state: (b1 − I{q = 0}, b21, b22, q − I{q > 0}).

• Condition: b1 > 0 and (b− 1 > ṅ or i2 = 0).

• Rate: b1µ1.

4. Blend agent completes inbound call, no outbound dialing:

• Destination state: (b1, b21 − I{q = 0}, b22, q − I{q > 0}).

• Condition: b21 > 0, b− 1 > ṅ.

• Rate: b21µ1.

5. Blend agent completes outbound call, no outbound dialing:

• Destination state: (b1, b21 + I{q > 0}, b22 − 1, q − I{q > 0}).

• Condition: b22 > 0, b− 1 > ṅ.

• Rate: b22µ2.

6. Inbound agent completes inbound call, followed by z outbound calls that

are answered: Note that some of the z answered calls may result in mismatches.

Specifically, m = min(z, i2) of the outbound calls will be connected to blend agents.

This transition type represents a family of transitions, for all z such that 0 ≤ z ≤ v(i2).

• Destination state: (b1 − 1, b21, b22 +m, 0).

• Condition: b1 > 0, b− 1 ≤ ṅ and i2 ≥ 1.

• Rate: b1µ1φi2(z).

7. Blend agent completes inbound call, followed by z outbound calls that are

answered: Now, m = min(z, i2 +1) of the z outbound calls will be connected to blend

agents and z can range from 0 to v(i2 + 1).
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• Destination state: (b1, b21 − 1, b22 +m, 0).

• Condition: b21 > 0, b− 1 ≤ ṅ.

• Rate: b21µ1φi2+1(z).

8. Blend agent completes outbound call, followed by z outbound calls that are

answered: As with the previous transition type, m = min(z, i2 +1) of the z outbound

calls will be connected to blend agents and z can range from 0 to v(i2 + 1).

• Destination state: (b1, b21, b22 − 1 +m, 0).

• Condition: b22 > 0, b− 1 ≤ ṅ.

• Rate: b22µ2φi2+1(z).

The last two models, M4 and M5, are simplifications of M3 that have fewer states and

thus require less computational time than M3.

2.4 Model M4: two types of agents and µ1 = µ2

When the mean service times of inbound and outbound calls are the same (µ1 = µ2 = µ),

we can model the system with a simplified state space compared to M3: we do not need to

distinguish between inbound and outbound calls processed by a blend agent. Maintaining

the definitions of B1(t), B2(t), and Q(t) from M3, the state variable for the system is X4(t) =

(B1(t), B2(t), Q(t)). Denoting a point in the state space by s = (b1, b2, q), the state space

becomes

S4 = {s : b1, b2,≥ 0, b1 ≤ n1, b2 ≤ n2, q = 0}
∪{s : b1 = n1, b2 = n2, 0 < q ≤ c}

with cardinality (n1 + 1)(n2 + 1) + c. It is important that as the number of agents increases,

the state space of M4 becomes considerably smaller than that of M3. For example, with

n1 = n2 = c = 20, M3 has 5,271 states while M4 has 461 states. As n1 and n2 grow larger,

the M4 “savings” compared to M3 is roughly a factor of n2/2. The transition types for M4

are similar to the ones for M3 and they are given in detail in Appendix A.2.

2.5 Model M5: all blend agents and µ1 6= µ2

In M5, we assume all agents are blend, so there is no need for distinction between agent

types. The mean service times are allowed to differ between inbound and outbound calls.

The state variable is X5(t) = (B1(t), B2(t), Q(t)), with B1(t) being the number of agents

busy with inbound calls and B2(t) being the number of agents busy with outbound calls.

The cardinality of the state space S5 is (n+ 2)(n+ 1)/2 + (n+ 1)c. Appendix A.3 lists the

transition types for M5.
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3. Performance measures

In this section, we show how to use the steady-state probabilities to determine the waiting

time distribution and other performance measures of call centers. In order to unify the

calculation of various measures across our five models, individual components of the vector

state variable in a generic state s are denoted (when convenient) by the lowercase symbol

associated to the model’s state variable. Thus b(s) denotes the number of busy agents in

state s for any model, i2(s) denotes the number of idle blend agents in state s for models 3

and 4, etc.

3.1 Waiting time distribution

Let Wq(`) denote the waiting time in the queue experienced by the `th call that enters the

system. The end of waiting time is triggered by either service completion or abandonment.

We will compute the limiting distribution

F̄ (τ) = lim
`→∞

Pr{Wq(`) > τ}.

Let F̄a(τ) denote the limiting distribution F̄ (τ) for Model Ma, for a = 1, 2, . . . , 5. In each

case, this limiting distribution exists because the model is regenerative and aperiodic (since

it has a finite state space and there is always a nonzero probability of returning to the empty

state after a bounded number of steps). Conditioning on the system state X̃a(`) upon

arrival of the `th call, and using the PASTA property (see Wolff 1989), we get

F̄a(τ) = lim
`→∞

∑
s∈Sa

Pr
{
Wq(`) > τ

∣∣∣X̃a(`) = s
}

Pr{X̃a(`) = s}

=
∑
s∈Sa

Pr
{
Wq(`) > τ

∣∣∣X̃a(`) = s
}
πs. (2)

Note that the conditional probabilities in the expression above do not depend on ` because

the process X̃a(·) is Markovian and stationary. Accordingly, we simplify notation below by

dropping “`” with the understanding that conditioning is with respect to the stationary,

random system state.

If customers never abandon the queue (i.e., have infinite patience times), an incoming

customer must wait until all of the customers who are already in the system (if there are

any) finish. Thus, when the service times are i.i.d. exponential, the distribution of positive

waiting time, conditional on the customers who are already in the system, is simply gamma

(a.k.a. Erlang). In our case, we have abandonments: a customer leaves the queue once his

waiting time reaches his patience time. Assuming the patience times are i.i.d. exponential,

the following lemma provides the conditional probabilities needed in (2) for models M1, M2,

and M4. Here, B̃ denotes the stationary random number of busy servers and Q̃ denotes the
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stationary random number of waiting inbound calls (these are components of the stationary

system state X̃a). Notice that Equation (3) bears resemblance to the Erlang distribution.

Lemma 1 (Riordan 1962, pages 110-111) Suppose the maximal patience times are i.i.d.

exponential with mean 1/η. Under Model M1, M2, and M4, we have that for all all j ≥ 0,

f(τ ;µ)
def
= Pr

{
Wq > τ

∣∣∣B̃ = n, Q̃ = q
}

= e−ητ
ψ(ψ + 1) · · · (ψ + q)

q!

q∑
j=0

(−1)j
(
q

j

)
e−η(ψ+j)τ

ψ + j

= e−ητ(1+ψ)

q∑
j=0

(ψ)j(1 − e−ητ )j

j!
, (3)

where ψ = nµ/η, (ψ)0 = 1 and (ψ)j = (ψ)(ψ + 1) · · · (ψ + j − 1) for j ≥ 1.

We recommend using the last expression of (3) in computations because all terms in the

series have the same sign. This expression was developed for us by Richard Simard. With

the intermediate expression, given by Riordan (1962), cancellation errors between terms of

opposite sign can lead to totally wrong results. This expression, combined with the steady

state probabilities πs, allows us to calculate F̄a(τ) for models 1, 2, and 4, because in these

models, service times of inbound and outbound calls are i.i.d. An alternative definition of

QoS could use instead the virtual wait time Wq, defined as the stationary wait time for an

infinite-patience customer; to get the tail probability of this random variable, one simply

divides the right-hand side of (3) by e−ητ .

In models M3 and M5, the mean service times differ across inbound and outbound calls.

We do not have closed-form expressions for the conditional probabilities required in (2) for

these models. In principle, one could develop recursive formulas for these probabilities via

a methodology similar to that of Koole (2004), but the analysis is very messy and would

not lead (as far as we can see) to a simple closed-form formula. We consider two alternative

approaches; one approximate and one exact.

The approximation is based on the natural idea of exploiting the result (3) via a pooling

of the two different means for each state in question. More precisely, given s ∈ Sa, the

conditional probability in (2) is approximated by f(τ ;µa(s)) as in (3), where

µa(s) =


(

(b1(s)+b21(s))µ−1
1 +b22(s)µ−1

2

b(s)

)−1

, s ∈ Sa, a = 3(
b1(s)µ−1

1 +b2(s)µ−1
2

b(s)

)−1

, s ∈ Sa, a = 5
(4)

is the state-dependent pooled mean service time of inbound and outbound calls. A different

approximation approach would be to pool the mean service times right from the start and

use model M2 or M4 (see Section 4.1). The difference is that here (for M5 and M3), we do
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not pool the means in the CTMC model itself but pool them separately for each state. This

should lead to a better approximation especially when µ1 and µ2 differ significantly.

Alternatively, one can use the following exact approach (discussed, for example, in Grass-

mann 1977b and Gross and Miller 1984) to calculate F̄a(τ) for a = 1, 2, . . . , 5. The state

space for each model can be partitioned into states where some agents are idle and states

where all agents are busy, i.e.,

S1
a = {s ∈ Sa : b(s) < n}
S2
a = {s ∈ Sa : b(s) = n}.

The probability that Wq > τ is the same as the probability that the first passage time to

the set S1
a is greater than τ in a modified version of the original CTMC. To obtain the

modified process, we collapse the state space into S ′a = {s1}∪S2
a, where state s1 corresponds

to an aggregation of S1
a. We discard transitions corresponding to inbound arrivals and

outbound dialing and we direct all transitions whose original destination state was in S1
a to

the aggregated state s1. State s1 thus becomes absorbing, and reaching this state corresponds

to the `th customer entering service.

Denote the transient probability of the modified process being in state s at time t by

φs(t). We set the initial state probabilities for the modified process equal to the stationary

probabilities for the original process, i.e.,

φs1(0) =
∑
s∈S1

a

πs and

φs(0) = πs for s ∈ S2
a.

Then, we calculate the transient probabilities for the modified process at time τ , using the

uniformization method (see, e.g., Grassmann 1977a or Gross and Miller 1984). We then have

that F̄a(τ) = 1 − φs1(τ).

Although this exact approach requires the calculation of transient probabilities, the com-

putation time is typically considerably less than that required to calculate the stationary

probabilities for the original process, for two reasons. First, the modified process typically

has far fewer states than the original process. For example, the modified state space for M3

can be represented as

S ′3 = {s1} ∪ {s ∈ S3 : b1 = n1, b21 + b22 = n2, 0 ≤ q ≤ c}

with cardinality 1 + (n2 + 1)(c + 1). With n1 = n2 = c = 20, the original process has 5,271

states while the modified process has only 442 states. Second, the waiting time standard τ is

typically very small (often it is 20 seconds), and the uniformization method requires O(ντ)

matrix multiplications (see Grassmann 1977a), each of which requires O(n2c) operations,

where ν is the maximum transition rate out of any state in the modified process. This can
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be compared to the computational effort required to calculate the stationary probabilities

for M3. This computational effort will depend on the method used to solve the linear system

of equations, but it must be at least proportional to the number of states, i.e., larger or equal

to K(n1n
2
2 + n2c) for some constant K. For M3, ν = nmax(µ1, µ2) + cη. If one assumes

that c = O(
√
n), n1 = O(n), and n2 = O(n), then uniformization has overall complexity

O(τ max(µ1, µ2)n
2.5) while solving for the steady state probabilities is at least Kn3 for some

constant K. In our numerical examples, the CPU time to compute the service level by

the exact method was always smaller than the time required to compute the steady-state

probabilities, usually by a factor of 10 or more. But we cannot qualify this time as negligible.

Moreover, implementing this exact method requires more work than just using the pooled

means approximation.

We conducted a small set of experiments to assess the effect of this approximation error

on the service level, defined as 1 − F̄ (τ). We compare the exact values under M3, the M3

approximation with the pooled mean (4), and the approximation via M4. We are mainly

interested in the effect of the ratio ζ = µ2/µ1 on model error. In Table 1, rows 1-3 correspond

to our call center for time periods 13, 16, and 25, respectively (see Section 5.1 for the values

of all parameters). Rows 4-6 and 7-9 correspond to the same periods, where we keep the

original values for µ1 and adjust µ2 so that ζ = 2 and 0.5, respectively.

Table 1: Computed service level 1 − F̄ (τ) under alternative models (τ = 20 sec).

Period ζ M3 exact M3 pooled M4

13 1.307 0.9106 0.9117 0.9255
16 1.155 0.9611 0.9615 0.9735
25 1.155 0.9429 0.9593 0.9613
13 2 0.9257 0.9259 0.9495
16 2 0.9794 0.9779 0.9939
25 2 0.9673 0.9746 0.9840
13 0.5 0.8715 0.8712 0.8041
16 0.5 0.8931 0.8897 0.8229
25 0.5 0.8928 0.9192 0.9083

These and further experiments suggest that the M3 pooled-mean approximation is very

good for a wide range of the ratio ζ, whereas the M4 approximation is considerably less

robust to deviations of ζ from one.

3.2 Other performance measures

Other long-run performance measures can be obtained using the steady-state probabilities,

as outlined in this subsection.
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Agent utilization

Let B(t) denote the number of busy agents at time t, and ua = limt→∞
∫ t

0
B(ζ)dζ/nt be

the steady-state agent utilization fraction under Model Ma, for a = 1, 2, . . . , 5. If b(s) is the

value of B(t) for state s ∈ Sa, then we have that

ua =
1

n

∑
s∈Sa

b(s)πs. (5)

The following performance measures are concerned with the number of calls per unit

time.

Rate of lost inbound calls

Let R`
a be the rate at which inbound calls are lost for Ma, a = 1, 2, . . . , 5. We have that

R`
a = λ(1 − γ)

∑
s∈Sa:b(s)=n,q(s)<c

πs + η
∑
s∈Sa

q(s)πs + λ
∑

s∈Sa:q(s)=c

πs

for a = 1, 2, . . . , 5.

Rate of calls served

The steady-state rate of calls served of any type, denoted Rt
a for model a, is

Rt
a =

∑
s∈Sa

b(s)µπs, a = 1, 2, 4, (6)

Rt
3 =

∑
s∈S3

((b1(s) + b21(s))µ1 + b22(s)µ2)πs, (7)

and

Rt
5 =

∑
s∈S5

((b1(s)µ1 + b2(s)µ2)πs. (8)

The rate of inbound calls served equals, by inbound-call conservation, the rate of inbound

calls accepted into the system: λ − R`
a. Now the rate of outbound calls served can be

calculated as

Ro
a = Rt

a − (λ−R`
a), a = 1, 2, .., 5. (9)

Rate of mismatches

We denote the steady-state rate of mismatches by Rm
a for Ma, for a = 1, 2, . . . , 5. Recall that

Rm
1 is zero. For the other four models, the steady-state rate of calls answered by outbound

customers (not all are necessarily connected) is:

Rr
2 = κ

ṅ+1∑
b=1

bµv(n− b+ 1)πb, (10)
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Rr
3 = κ

∑
s∈S3:b(s)−1≤ṅ,i2(s)>0

b1(s)µ1v(i2(s))πs+κ
∑

s∈S3:b(s)−1≤ṅ

(b21(s)µ1 + b22(s)µ2) v(i2(s)+1)πs,

(11)

Rr
4 = κ

∑
s∈S4:b(s)−1≤ṅ,i2(s)>0

b1(s)µv(i2(s))πs + κ
∑

s∈S4:b(s)−1≤ṅ

b2(s)µv(i2(s) + 1)πs, (12)

Rr
5 = κ

∑
s∈S5:b(s)−1≤ṅ

(b1(s)µ1 + b2(s)µ2) v(n− b(s) + 1)πs, (13)

where we used that the expected number of calls answered by outbound customers, condi-

tional on dialing at a state with i idle blend agents, is κv(i). Thus the rate of mismatches

is

Rm
a = Rr

a −Ro
a, a = 1, 2, ..., 5. (14)

We will compare the above long-run performance measures of M1–M5 with the results of

a more realistic simulation model in Section 5. Before that, we discuss some extensions of

M1–M5.

4. Refinements

In this section, we consider “relaxing” the assumptions of equal average service times in M1,

M2 and M4, and of deterministic time-stationary arrival rates in all models.

4.1 Different inbound and outbound service times: adapting M1,
M2 and M4

The analysis of M1, M2 and M4 was made under the simplifying assumption that inbound and

outbound service times are i.i.d. with rate µ. In practice, however, inbound and outbound

service rates are usually different. In this section, we propose a method for choosing µ, so

that these models can provide reasonable approximations in such cases.

Suppose that the inbound and outbound service times are i.i.d. with means 1/µ1 and

1/µ2, respectively. Then it seems intuitive to approximate the mean service time 1/µ with

the weighted average p/µ1 + (1− p)/µ2, where p is the long-run proportion of calls that are

inbound. However, this p actually depends on µ. Denoting it by p(µ), we thus have the

relationship
1

µ
=
p(µ)

µ1

+
1 − p(µ)

µ2

. (15)

We will show that this equation has a solution µE which we call the effective service rate.

(This notion of effective service rate parallels the definition in Wolff 1989, page 266, and we

will characterize µE so that it can be numerically determined; see Lemma 2).
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For Model Ma, a = 1, 2, 4, the function p(·) is

p(µ) = 1 − Ro
a(µ)

Rt
a(µ)

, (16)

where Ro
a(µ) and Rt

a(µ) are calculated in (9) and (6), respectively.

A solution to (15) is equivalent to a root of the function

h(µ) =
p(µ)

µ1

+
1 − p(µ)

µ2

− 1

µ
. (17)

The following lemma characterizes this function and proves the existence of a solution to

(15). It also implies a simple algorithmic solution approach.

Lemma 2 The CTMC corresponding to each model of interest (M1, M2, or M4) and induced

by any µ in the interval I def
= (min(µ1, µ2),max(µ1, µ2)) is positive recurrent. The function

h(·) is continuous, with h(µ1) < 0 < h(µ2) if µ1 < µ2, and h(µ2) < 0 < h(µ1) if µ1 > µ2.

Thus, Equation (15) has at least one solution in I.

Proof. For any relevant model Ma, a = 1, 2, 4, and for any µ ∈ I, the associated Markov

chain is easily seen to be irreducible, aperiodic and, in view of the finiteness of the state

space, positive recurrent. This establishes the existence of a stationary distribution and that

the stationary probabilities πi(µ), i ∈ Sa are all positive. The transition rates are continuous

functions of µ, which implies that the stationary probabilities are also continuous functions

of µ. The continuity of h(·) follows from the continuity of Ro
a(µ) and Rt

a(µ), for a = 1, 2, 4

(see (9) and (6)). Now we consider the case µ1 < µ2 and M1. Since the stationary probabil-

ities πi(µ), i = 1, 2, . . . , n + c, are all positive, we have p(µ1) < 1, implying h(µ1) < 0, and

p(µ2) > 0, implying h(µ2) > 0. The remaining cases are handled analogously.

In light of Lemma 2, a solution to (15) for M1, M2 and M4 can be found via root-bracketing

methods. Bracketing algorithms begin with a closed interval known to contain a root. The

size of this interval is iteratively reduced until it encloses the root to within a desired tol-

erance. The width of the search interval when it terminates provides an error estimate for

the location of the root. In our implementation (see Section 5.2), we use the Brent-Dekker

method (Brent 1971 and Bus and Dekker 1975), which combines an interpolation strategy

with a bisection algorithm. From our experience, this algorithm is fast and robust. We note

that under M1, a potentially more efficient way of solving (15) is via algorithms that exploit

derivative information, e.g., Newton-Raphson. The birth and death rates for that model can

be used to express πk(µ) in closed form (see Ross 1983 or Taylor and Karlin 1998) and the

resulting expressions can then be differentiated.
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4.2 Non-stationary and doubly stochastic Poisson arrival processes

In practice, the arrival process to a call center is not time-stationary; the arrival rate varies

from day to day and within each day. The usual modelling approach in such a context is to

partition the time period of interest into subintervals over which the arrival rate is assumed

to be constant. A CTMC model can be used by adopting the simplifying assumption that

the system is in steady-state during each subinterval (Deslauriers 2003, Green et al. 2001,

Jongbloed and Koole 2001). After computing the performance measure for each subinterval,

the overall performance is simply the appropriate weighted average. The planning intervals

are usually 15 or 30-minute long for the reason that the available data in call centers is

typically aggregated into averages over 15 or 30-minute periods. Of course, such a model

is only a rough-cut approximation; in reality, the arrival rate is not piecewise constant over

fixed-length periods, and the system is never in steady-state. We assess the amount of error

introduced by this approximation for a particular example in Section 5.

Besides the non-stationarity, it has been observed that the arrivals to a call center are not

realistically modeled by a process with a deterministic time-varying arrival rate (Avramidis

et al. 2004, Jongbloed and Koole 2001). This has led to models with piecewise constant

arrival rates, whose actual values are random variables. Brown et al. (2005) developed a

model that induces dependence between arrival rates across days and across time intervals

within a day, while Avramidis et al. (2004) developed models that focus on the dependence

of arival rates across time intervals within a day. Specifically, suppose the time period

of interest, [tbegin, tfin], is partitioned into ` subintervals defined by the time cut points

tbegin = t0 < t1 < . . . < t` = tfin. We assume that over the time period [ti−1, ti], arrivals

occur according to a Poisson process whose arrival rate Λi is a continuous random variable

with density gi, for i = 1, 2, . . . , `, and where the densities gi are allowed to be conditional

densities given past (relevant) information, e.g., Avramidis et al. (2004) or Brown et al.

(2005). In the analysis below, we develop approximate performance measure formulæ for a

Poisson arrival model with a generally distributed rate parameter.

Suppose there is an infinite stream of independent realizations of the time period [tbegin, tfin],

and we are interested in performance measures defined by averages over these realizations.

In our context, the time period [tbegin, tfin] will correspond to one day of operation of the

call center. Finally, in order to be able to compute the quantities of interest via the formulæ

developed for our CTMC models, we make the important simplifying assumption that the

initial state of the CTMC at the beginning of each subinterval, conditional on Λi = λ, obeys

the steady-state probabilities that correspond to an arrival rate of λ for that subinterval.

Some performance measures are time-averages (e.g., agent utilization and rate of out-

bound calls completed), while others are averages per call (e.g., fraction of calls whose wait-

ing time exceeds a given threshold). To see how to compute these averages, we concentrate

on some subinterval i and first consider the case of an infinite-horizon average per call, for the
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successive realizations of subinterval i only. For example, suppose we want to compute the

long-run fraction of inbound calls whose waiting time exceeds a given constant τ . If Wq is the

waiting time of a random inbound call in steady-state, in subinterval i, then this fraction is

F̄
(i)
a (τ)

def
= Pr{Wq > τ}. When the arrival rate is fixed at λ, we denote this fraction as F̄a,λ(τ)

for Model Ma, given in (2). For a given subinterval [ti−1, ti], let D be the number of inbound

call arrivals, Aτ of which wait for longer than τ , during this subinterval. Across successive

days, we have i.i.d. realizations of the pair (D,Aτ ). Because the system is assumed to be

always in steady-state within a given subinterval, we have that E[Aτ ] = E[D] Pr{Wq > τ},
and

F̄ (i)
a (τ) = Pr{Wq > τ} =

E[Aτ ]

E[D]
=

E[Aτ ]

(ti − ti−1)E[Λi]

=
1

(ti − ti−1)E[Λi]

∫ ∞

0

E[Aτ |Λi = λ]gi(λ)dλ

=
1

E[Λi]

∫ ∞

0

λF̄a,λ(τ)gi(λ)dλ (18)

for Model Ma, a = 1, 2, . . . , 5. The quantities F̄
(i)
a (τ) and F̄a,λ(τ) can be interpreted as

average costs per call if we define the cost for a call as equal to 1 when its waiting time

exceeds τ and 0 otherwise. Equation (18) can be generalized to an arbitrary cost function

by replacing Aτ by the total cost of all calls over the given subinterval and the quantities

F̄
(i)
a (τ) and F̄a,λ(τ) by the appropriate infinite-horizon (or steady-state) average costs per

call. For Model Ma, we denote these averages by ν
(i)
a and νa,λ to obtain

ν(i)
a =

1

E[Λi]

∫ ∞

0

λνa,λgi(λ)dλ. (19)

The overall average per call over [tbegin, tfin] is the weighted average νa =
∑`

i=1wiν
(i)
a , where

wi =
(ti − ti−1)E[Λi]∑`
j=1(tj − tj−1)E[Λj]

represents the fraction of inbound calls arriving in subinterval i in the long run.

In the case of time-average performance measures ϑ
(i)
a and ϑa,λ, the analog of (19) is

ϑ(i)
a =

∫ ∞

0

ϑa,λgi(λ)dλ, (20)

and the overall average is ϑa =
∑`

i=1(ti − ti−1)ϑ
(i)
a /(t` − t0).

Now we consider the distribution of Λi. Jongbloed and Koole (2001) model Λi as a

gamma random variable, with density

gi(λ) =
β−αi
i

Γ(αi)
λαi−1e−λ/βi , (21)
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for λ > 0, where Γ(a) =
∫∞

0
ta−1e−tdt is the gamma function. They assume that the Λi’s

are mutually independent. This model, which we call the Poisson-gamma arrival process

model, is appealing because it is flexible and mathematically tractable; under it, the number

of arrivals in a given subinterval has the negative binomial distribution. Alternatives to (21)

include a multivariate generalization of the above model in Avramidis et al. (2004) that

allows dependence over different time intervals within a day, or an auto-regressive model of

Brown et al. (2005) that assumes dependent and normally distributed Λi’s.

5. Case study: Bell Canada call center

In this section, we compare the CTMC performance measures with the results of a realistic

simulation model of a Bell Canada call center developed in Deslauriers (2003) and also

described in Pichitlamken, Deslauriers, L’Ecuyer, and Avramidis (2003). That model was

made as realistic as possible given the information we had and was calibrated so that its

behavior (in terms of performance measures) was very close to that of the real system. Here

we actually use a slightly simplified version of the simulation model, but the simplifications

have little impact on the model’s behavior. First, we describe the experimental setup.

5.1 Simulation model

The call center modeled in Deslauriers (2003) operates from 8:00 to 20:30, i.e., 8:30 pm.

Agents receive only inbound calls before 14:00. After that, some of the agents are in blend

mode, and there are also outbound calls. All of the available data is aggregated as averages

over half-hour periods. That is, for each half hour, we have the number of arrivals (inbound),

the number of outbound calls, the sum of service times for the inbound calls served and

similarly for the outbound calls, but not the call-by-call arrival times or service times (with

one exception; see below). Therefore, we assume that the model parameters (e.g., arrival

rate and service time distributions) are constant over each half hour; with the notation of

Section 4.2, we have ` = 25 and ti = 8 + i/2 for i = 0, 1, . . . , 25.

In the simulation model, the arrival process is doubly stochastic, with random arrival

rate Λi that is constant within period i. Moreover, for a given day, these random variables

Λi are dependent and are distributed as

Λi = Wλi, (22)

where the λi’s are parameters, and W is a gamma random variable with parameters (α′, β′),

and E[W ] = 1 (see Avramidis et al. 2004 and Deslauriers 2003 for further discussion of this

model). The idea of the random factor W is to account for the day-to-day traffic variation.

The parameter values estimated from the data were α′ = 29.7, β′ = 0.0336 (the coefficient

of variation of W is 5.45), and the λi’s can be found in Table 2, along with all other
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relevant model parameters. Because the parameter values depend on the day of the week

(see Pichitlamken et al. 2003 for further discussion), we simulate each day of the week

separately; the values given here are for Monday.

The inbound service times are gamma distributed with parameters (αi, βi) in period i.

For the outbound service times (only), we happened to have over 50 thousand individual

observations which we use to estimate the service time density via a kernel density estimation

method. We generate the service times from that density, using the UNURAND package

(Leydold and Hörmann 2002).

The other aspects of the simulation model not mentioned here are the same as in M3.

The patience time is exponentially distributed with mean 1/ηi in period i. The probability

1 − γ of a customer immediately leaving the queue once realizing that he is put on hold is

0.005. When the total number of idle agents is at least 4 and I2 ≥ 1 of them are blend

agents, the system dials v(I2) = 2I2 outbound calls in parallel. We thus have ṅ = n− 4. We

do not claim that this policy is close to optimal in any sense; it is just an approximation of

the rule that was used in the center. The dial resolution delay, i.e., the time required for the

dialer to either start the call or recognize that the attempt is not successful, is exponentially

distributed with a mean of 2 seconds (also for M1). The simulation results are essentially

unchanged when we set the delay to zero, which is what we have in Models M2—M5. The

success probability is κi in period i.

The staffing used in this particular center (last two columns of Table 2) may look a

bit strange (for example, compare the mix of inbound-only and blend agents in period 13

and near the end of the day). We neither claim nor believe that this staffing is optimal in

any sense. It was determined by the managers under restrictive constraints on the shifts of

individual agents, due to union agreements (for example, no agent can be put in blend mode

for more than 4 hours a day, agents must work for a certain number of consecutive hours,

etc.). Determining an “optimal” staffing without taking these constraints into account would

most certainly not give a feasible solution to the scheduling problem.

5.2 Implementation details for models M1 to M5

For the CTMC models in this case study, we adopted the Poisson-gamma arrival process

model detailed in Section 4.2. The parameters of these models were chosen to match the

corresponding values in the simulation model over each period i, whenever possible. All

models had the same mean service times for inbound calls as well as for outbound calls, and

the same mean for each Λi. The input parameters of the CTMC models that differ from

those of the simulation model can be found in Table 3. The number of agents for M1, M2

and M5 is n1 + n2. The average service time of outbound calls is 440.2 seconds.

The service rate µ in M1, M2 and M4 is the effective service rate µE defined in Section 4.1.

We find a root of the function h(·) in (17), where each evaluation of h(·) requires solving
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Table 2: Input parameters of the simulation model.

Period Start Arrival Outbound Mean Inbound serv. Inbound Blend
i time rate λi per success patience time time (sec) agents agents

(hour) half hour prob. κi 1/ηi (sec) αi βi n1 n2

1 8.0 32.11 0 400 0.729 817.0 12 0
2 8.5 45.96 0 400 0.729 817.0 18 0
3 9.0 58.48 0 400 0.729 817.0 22 0
4 9.5 66.50 0 700 0.729 817.0 25 0
5 10.0 73.44 0 700 0.729 817.0 27 0
6 10.5 72.87 0 600 0.729 817.0 26 0
7 11.0 74.13 0 600 0.729 817.0 26 0
8 11.5 71.40 0 600 0.729 817.0 24 0
9 12.0 68.32 0 600 0.620 927.6 22 0
10 12.5 68.04 0 600 0.620 927.6 23 0
11 13.0 71.55 0 500 0.620 927.6 28 0
12 13.5 70.11 0 500 0.620 927.6 25 0
13 14.0 68.50 0.27 500 0.620 927.6 25 5
14 14.5 67.71 0.27 500 0.620 927.6 23 11
15 15.0 68.45 0.28 500 0.755 753.8 23 16
16 15.5 72.93 0.29 500 0.755 753.8 23 18
17 16.0 71.92 0.29 500 0.755 753.8 21 16
18 16.5 66.15 0.30 500 0.553 996.9 17 14
19 17.0 49.50 0.33 500 0.553 996.9 15 11
20 17.5 48.45 0.37 500 0.553 996.9 10 16
21 18.0 39.00 0.40 500 0.553 996.9 4 16
22 18.5 34.97 0.38 500 0.518 981.6 3 16
23 19.0 30.80 0.41 500 0.518 981.6 3 16
24 19.5 28.26 0.41 100 0.518 981.6 3 17
25 20.0 20.68 0.41 50 0.518 981.6 3 16

22



the system of linear equations identifying the steady-state probabilities. For the root-finding

problem, we use the GSL (Galassi et al. 2002) implementation of the Brent-Dekker root-

bracketing method. The algorithm starts with the interval given in Lemma 2 and stops with

an error smaller than 10−7 on 1/µE.

For a given µ, we obtain the steady-state probabilities by solving the system of linear

equations, using the LU decomposition method implemented in LAPACK (Anderson et al.

1999). To compute the steady-state performance measures of interest via (19) and (20),

we perform numerical integration with the adaptive 15-point Gaussian quadrature method

called the Gauss-Kronrod rule (Piessens et al. 1983). The integration terminates when the

estimated relative error is deemed sufficiently small. In our example, the error was small

enough so that all the digits given in Table 4 are significant.

5.3 Comparison between the simulation and CTMC models

With the parameter settings of Tables 2 and 3, we now compare the performance measures

provided by the CTMC models to those obtained from simulation. If we assume that the

simulation model is realistic, this amounts to assessing the approximation error made by the

CTMC models.

Table 4 summarizes the performance measures averaged (a) when being in inbound mode,

and (b) in blend mode. Column Simulation (§5.1) contains the simulation results whose

underlying distributions are as described in Section 5.1, whereas column Simulation (exp)

presents the simulation results when the arrival and service time distributions are exponen-

tial. (The values are given with 95% confidence intervals. The symbol ε represents a value

smaller than 0.1.) The quality of service (QoS) is defined as the probability that an inbound

call waits in the queue for less than 20 seconds. The other performance measures were defined

in Section 3. Note that during inbound mode, there is only one set of results for M1–M5,

because M2–M5 reduce to M1 when there are no outbound calls. There are no mismatches

for M1 because this model does not allow them. As a result of input modelling, the expected

total number of inbound calls arriving to the call center, which is the sum of the number of

inbound calls served and lost, is identical across all the CTMC models and the simulation

model. We see greater discrepancies between our CTMC models and the simulation in the

inbound mode (Table 4a) than in the blend mode (Table 4b), mostly because the CTMC

models wrongly assume steady-state conditions at all times and this has a larger impact at

the beginning of the day. Indeed, in the simulation model, the day begins with an empty

system, and the arrival rate and number of agents change significantly during the first five

half hours; see Table 2.

Other than the steady-state condition, M1–M5 differ from the simulation model in the

following ways: (a) the arrival rates Λi are dependent within the same day in the simulation

(see (22)) and independent in the CTMC models; (b) the service times in the CTMC models
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Table 3: Input parameters of M1–M5. The average service times are in seconds.

Period Arriv. proc. param. (/0.5 hr) Avg. svc. time
i αi βi (1/µ1 for M3 and M5, 1/µE for M1, M2 and M4)
1 16.9 1.9 595.6
2 38.3 1.2 595.6
3 13.6 4.3 595.6
4 26.6 2.5 595.6
5 21.6 3.4 595.6
6 34.7 2.1 595.6
7 35.3 2.1 595.6
8 23.8 3.0 595.6
9 24.4 2.8 575.1
10 24.3 2.8 575.1
11 15.9 4.5 575.1
12 17.1 4.1 575.1

Period Arriv. proc. param. (/0.5 hr) Avg. in. svc. time 1/µ1 Avg. svc. time 1/µE

i αi βi M3 and M5 M1 M2 M4

13 27.4 2.5 575.1 534.9 530.6 554.4
14 18.3 3.7 569.1 518.2 514.5 529.5
15 18.5 3.7 569.1 508.3 505.0 516.3
16 22.1 3.3 569.1 509.1 505.9 515.0
17 24.8 2.9 569.1 516.1 512.5 520.9
18 24.5 2.7 551.3 511.1 507.6 513.7
19 16.5 3.0 551.3 504.0 500.3 509.3
20 28.5 1.7 551.3 502.8 498.9 502.1
21 19.5 2.0 551.3 506.9 502.0 503.3
22 26.9 1.3 508.5 477.6 474.8 475.4
23 11.0 2.8 508.5 473.2 470.5 471.1
24 31.4 0.9 508.5 468.7 465.6 466.4
25 51.7 0.4 508.5 462.4 459.4 460.5
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do not have the same distributions as those in the simulation; and (c) the dialer operates

differently across the different models. Despite these differences, M3 yields results that are

close to the simulation values on most measures when the call center is in the blend mode

(see Table 4b). It is not surprising that M3 outperforms our other CTMC models since it

is the most faithful in details to the simulation model. What is interesting is that M4 also

performs very well in this problem setting. This is because µ1 and µ2 are not drastically

different; therefore, the pooled service time, 1/µE, is not too far apart from either 1/µ1 or

1/µ2 (see Tables 2–3). On the other hand, M5 performs poorly in the current setting because

it assumes that every agent is blend, but the fraction of blend agents varies from 15% to

85%.

Let us recall that we propose M4 and M5 as simplified versions of M3 to speed up the

computation because the number of states in the CTMCs is significantly reduced when we

assume either that µ1 = µ2 (as in M4) or that every agent is blend (as in M5). For example,

for half hour 16, there are 4940 states in M3, compared to only 476 states in M4 and 1743

states in M5 (the number of states as a function of n1, n2, and c is given for models M3-M5

in section 2). We expect M4 to provide a good approximation of M3 when µ1 and µ2 are

close, whereas M5 should yield results close to M3 when most agents are blend.

To evaluate how much of the difference between M1–M5 and the simulation model is due

to the choices of distributions, we performed simulations using the same distributions as in

the CTMC models. The results are given in column Simulation (exp.) of Table 4. We see that

matching the distributions has little effect on the simulation results. The other two factors,

the steady-state condition and the dialer’s policy, appear to be more important sources of

difference between the simulation and CTMC models. The dialer’s policy certainly has a

significant impact on the mismatch rate and the QoS (compare M1–M5 in Table 4). Further

sensitivity analysis is pursued in the next subsection.

Figure 1 shows the evolution of the QoS by half-hour (the confidence intervals are not

shown as they are smaller than the size of the series symbols). In the blend mode, the QoS of

M2 and M5 are lower than that of the simulation, except for half-hour 21, when the QoS drops

dramatically. (This is due to the sudden decrease in the total number of agents available

that occurs at the same time as the reduction in the fraction of inbound-only agents; see

Table 2.) On the other hand, the QoS of M3 and M4 closely follows the QoS of the simulation

model.

Figure 1: Comparison of the QoS obtained from the CTMC and simulation models for the
call center in blend mode.
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Table 4: Comparison of the CTMC and the simulation models. The number of calls reported
is per day.

(b) Inbound mode
Daily M1—M5 Simulation
measures (§5.1) (exp)
QoS (%) 63.33 69.5 ± ε 67.8 ± ε

Agent
utilization (%) 83.3 82 ± 0.1 82.7 ± ε

# inbound calls
served 709.80 721± 4 725 ± 1.1
# of lost
inbound calls 62.5 47± 1.4 47 ± 0.5

(c) Blend mode
Daily M1 M2 M3 M4 M5 Simulation
measures (§5.1) (exp)
QoS (%) 89.81 80.44 87.46 89.22 79.30 87.3 ± ε 86.4 ± ε

Agent
utilization (%) 91.5 95.1 89.1 87.9 95.2 89 ± 0.1 89 ± ε

# inbound calls
served 657.5 647.2 653.3 655.5 645.6 648 ± 4 651 ± 1.1
# of lost
inbound calls 9.8 20.0 13.9 11.8 21.7 11.6 ±1.4 12.1 ± 0.5
# outbound calls
served 523.2 590.3 492.5 472.3 592.5 480.4 ± 2 484.7 ± 0.9
# mismatches 0 27.7 50.6 50.6 27.7 60.9 ± 0.3 62.0 ± 0.2
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5.4 Sensitivity to selected model assumptions

In this section, we study empirically the effect of the dial resolution delay and non-exponential

service and patience times on both true system performance and the accuracy of the CTMC

models. We focus on steady-state call center performance measures, which we estimate

to high accuracy via simulation and compare to results from the CTMC models to assess

model errors. We will use two half-hour periods from the Bell call center to illustrate how the

appropriateness of the different models depends on model parameters. We begin by assuming

a Poisson arrival process and then repeat the analysis using the the Poisson-Gamma model

of Section 5.1. Dial resolution delays are i.i.d exponentially distributed with mean δ.

Tables 5 to 7 show results for period 16 (high staffing, a balanced mix of agents). Sim-

ulation point estimates are accompanied by 95% confidence intervals; ε denotes entries less

than 0.1; when point estimates are small and there is high simulation accuracy, we show

interval half-widths as percentages of the point estimate.

Table 5 shows sensitivity to mean dial resolution delay δ and compares to the CTMC

values (for M1, we set ν = 1/δ). We see that with the exception of mismatch volume, all

performance measures are insensitive as we move from δ = 0.001 (indicated as ’0’ in tables)

to δ = 10 seconds. Table 6 shows sensitivity of the system to distributional assumptions by

substituting a lognormal distribution (L) with the same mean as the assumed exponential

(E) and coefficient of variation (CV, standard deviation divided by the mean) equal to two;

this yields more variable times than the exponential case (CV is one). Here, all performance

measures are virtually constant across the four pairs of distributions for service time and

patience. With respect to CTMC model errors in Tables 5 and 6, M3 and M4 are overall

very good—relative errors are small for all performance measures, with the exception of mis-

matches. The other models do much less well, and their weakness is easily explained by the

fact that the all-agents-are-blend assumption is strongly violated; M2 and M5 overestimate

the outbound volume and agent utilization and underestimate QoS; M1 is sensitive to the

mean delay δ but is not accurate in either case.

Table 7 shows sensitivity to dial resolution delay and then to non-exponential service

and patience time distributions for a Poisson-Gamma arrival process; here, naturally, CTMC

models use the refinement in Section 4.2. Remarkably, performance measures (simulated and

CTMC-based) are very close to the Poisson case, with a notable exception being the inbound

loss rate, which is more than doubled. The CTMC model errors behave qualitatively the

same as in the Poisson case.

Table 8 summarizes results for period 21 (low staffing, agent majority is blend type).

While the overall picture is mostly in line with period 16, a difference is that M2 and M5

do much better than in period 16; this is expected, since the all-blend-agents assumption is

closer to reality.

While extrapolating from limited empirical results is risky, these results suggest: (1) the
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assumption of exponential service and patience times is robust against a lognormal, higher-

variance alternative; this holds for all performance measures; (2) the assumption of zero

dial resolution delays is robust against the alternative of reasonable dial resolution delays;

this holds for all performance measures except mismatches; (3) our models’ weakest point

is estimating mismatches because the dialing process is not modeled well; (4) violations of

the all-blend-agents assumption are costly in terms of CTMC model accuracy; and (5) when

service rates for inbound and outbound calls differ by a reasonable amount, the heuristic of

section 4.1 makes it possible to use simpler models with small loss of accuracy (evidenced

by the closeness of M4 to M3 and the closeness of M2 to M5).

Table 5: CTMC and simulation results showing sensitivity of simulation to outbound res-
olution delay δ. Period 16, arrival process is Poisson, service and patience are exponential.
Call volumes are per half hour.

Perf. measure M1 M2 M3 M4 M5 Simulation
δ = 0 δ = 10 δ = 0 δ = 10

QoS (%) 94.8 98.9 88.5 96.1 97.3 88.2 96.7±ε 96.4±ε
Agent util.(%) 94.9 81.7 96.5 90.4 88.4 96.5 89.5±ε 89.2±ε
Inb. calls 72.5 72.8 71.9 72.6 72.7 71.9 72.65±ε 72.62±ε
Lost inb. calls 0.45 0.09 1.00 0.33 0.23 1.02 0.29±1.4% 0.31±1.1%
Outb. calls 65.4 42.7 68.8 57.7 54.2 68.8 55.95±ε 55.64±ε
Mismatches 0 0 1.82 5.64 5.74 1.82 3.77±ε 7.37±ε

Table 6: Sensitivity of simulation to some service-patience distribution pairs; E/L denotes
exponential service and lognormal patience, and so on. Period 16, arrival process is Poisson,
mean outbound resolution is 10 seconds. Call volumes are per half hour.

Perf. measure E/E E/L L/E L/L
QoS (%) 96.4±ε 96.4±ε 96.3±ε 96.4±ε
Agent util.(%) 89.2±ε 89.2±ε 89.2±ε 89.2±ε
Inb. calls 72.62±ε 72.62±ε 72.61±ε 72.60±ε
Lost inb. calls 0.32±1.1% 0.32±1.6% 0.33±1.5% 0.34±1.5%
Outb. calls 55.64±ε 55.66±ε 55.57±ε 55.56±ε
Mismatches 7.37±ε 7.38±ε 7.33±ε 7.31±ε

6. Optimization

As mentioned in the introduction, a primary use of the CTMC models developed here would

be to determine an appropriate staffing or work schedule for a call center. Optimization
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Table 7: CTMC and simulation results showing sensitivity of simulation to outbound res-
olution delay and then to non-exponential service and patience: exponential (E) versus
lognormal (L). Period 16, arrival process is Poisson-Gamma. Call volumes are per half hour.

Perf. measure M1 M2 M3 M4 M5 Simulation
δ = 0 δ = 10 δ = 0, E δ = 10, E δ = 10, L

QoS (%) 92.6 97.1 86.3 92.8 94.7 85.0 94.6±.7 94.6±.7 94.5±.6
Agent util.(%) 94.9 80.9 96.5 89.2 87.1 96.6 88.2±.1 89.2±.5 88±.5
Inb. calls 72.3 72.7 71.7 72.3 72.4 71.6 72.5 ±3 72.3±1.2 72.2±1.4
Lost inb. calls 0.65 0.26 1.21 0.66 0.47 1.34 0.64±.2 0.65±.1 0.73±.1
Outb. calls 65.7 41.6 69.1 56.1 52.4 69.3 54.1 ±2 54.1±1.1 54.1±1.1
Mismatches 0 0 1.83 5.55 5.55 1.83 3.75±.2 7.37±.18 7.29±.17

Table 8: CTMC and simulation results showing sensitivity of simulation to outbound res-
olution delay and then to non-exponential service and patience: exponential (E) versus
lognormal (L). Period 21, arrival process is Poisson. Call volumes are per half hour.

Perf. measure M1 M2 M3 M4 M5 Simulation
δ = 0 δ = 10 δ = 0, E δ = 10, E δ = 10, L

QoS (%) 90.2 92.4 77.3 80.5 82.0 76.4 81.6±ε 80.9±ε 81.3±ε
Agent util.(%) 90.1 85.9 93.9 93.0 92.8 94.0 92.7±ε 92.6±ε 92.5±ε
Inb. calls 38.5 38.6 37.8 37.9 38.0 37.7 38.0±ε 37.9±ε 37.7±ε
Lost inb. calls 0.53 0.42 1.23 1.08 0.98 1.30 1.06±ε 1.10±ε 1.33±ε
Outb. calls 27.1 21.9 30.6 28.6 29.5 29.7 28.2±ε 28.2±ε 28.4±ε
Mismatches 0 0 2.39 2.82 2.97 2.32 2.60±ε 4.79±ε 4.81±ε
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in that context raises another set of non-trivial challenges that we plan to address in a

subsequent paper. We now briefly discuss these issues and how they can be handled.

For inbound-only call centers, it is still common practice to use the Erlang-C or Erlang-

A formulæ as crude approximations to determine the minimal staffing, for each half-hour

period, under a given set of constraints on the quality of service. Our CTMC models can be

used in a similar way for call centers operating in blend mode.

In the simplest case of a steady-state model for a single period and where the decision

variables are only the number of agents of each type, for example, we may want to minimize

c1n1 + c2n2 under the constraints that Pr{Wq ≤ τ} ≥ bq, R
` ≤ b`, and Ro ≥ bo, for some

constants c1, c2, bq, b`, and bo, where Wq is the waiting time of a random call, R` is the

expected number of abandonments, and Ro is the expected number of successful outbound

calls.

Due to the nature of the constraints, the set of feasible solutions in this context is normally

an increasing set, i.e., if (n1, n2) is a feasible solution and (ñ1, ñ2) ≥ (n1, n2), then (ñ1, ñ2)

is also feasible. Let us assume that this is the case. For models with a single type of agent

(all agents are blend), the minimal number of agents that satisfies all the constraints can be

found easily via binary search, for example. For models with two types of agents, for each

integer n1 ≥ 0, let us define n∗2(n1) as the minimal value of n2 such that (n1, n2) is a feasible

solution. The optimal solution (if it exists) must lie on the boundary defined by the function

n∗2. Then it suffices to determine this boundary over some reasonable range of values of n1

and evaluate the cost c1n1 +c2n2 of all solutions on the boundary to find the optimal one. To

determine the boundary, start at a given n1 and find n∗2(n1) by binary search. Then search

for n∗2(n1 +1) by starting at n2 = n∗2(n1) and decreasing n2 by 1 until the boundary is found.

Repeat with n1 + 2, and so on. In the other direction, search for n∗2(n1 − 1) by starting at

n2 = n∗2(n1) and increasing n2 by 1 until the boundary is found, and so on. This procedure

exploits the fact that n∗2(n1) and n∗2(n1 ± 1) are usually close to each other.

More generally, the decision variables in the optimization model may also include the

parameters of the dialer’s policy. For instance, one could define v(I) = round((ψ1 + ψ2I)
+)

and optimize the values of ṅ, ψ1, and ψ2. This makes the optimization a bit more challenging.

In the case where the constraints are on daily averages (e.g., the fraction of customers waiting

less than τ in the long run must be at least bq, or the expected total number of outbound

calls per day must be at least bo) then we have an optimization problem where the decision

variables are the values of (n1, n2, ṅ, ψ1, ψ2) for each period of the day. So if there are 25

periods, we have a nonlinear integer programming problem with 125 variables.

All of this is for the staffing problem. The scheduling problem gives rise to a yet more

complicated integer program where the decision variables n1 and n2 for each period are

replaced by the number xi of agents having the daily working schedule i, for each possible

working schedule. This challenging problem is the subject of our on-going investigation.

30



7. Conclusion and directions for future work

We have studied CTMC models of a call center at different levels of detail. The models were

first developed under a time-stationarity assumption and then extended to cover the case

of a piecewise-constant doubly-stochastic arrival rate. We compared performance measure

estimates obtained by these models with those obtained by a more detailed simulation model

of a real-life call center. In the blend environment, the discrepancy between the results of

the CTMC models and the simulation was less than 1% for important performance measures

such as the fraction of inbound calls with a response time less than 20 seconds (the QoS), but

was higher for other measures such as the rate of mismatches and the rate of abandonments.

The latter measures are strongly influenced by how we model the dialer’s policy.

The practical usefulness of the CTMC models, as “quick” alternatives to simulation,

depends on what performance measure(s) we are mostly interested in and how much error we

are ready to accept. Even with detailed simulation models, the error on certain performance

measures may exceed 10% because of the uncertainty in model parameters (estimated from

the data), monthly and yearly variations and trends, and several modeling assumptions (e.g.,

occasionally, the list of customers to be reached by outbound calls might be empty, or may

contain mostly customers who are rarely at home, whereas we assume that this list is infinite,

etc.).

An important utility of these CTMC models is for the staffing and scheduling problems.

Much like the Erlang-C or Erlang-A formulæ for the case of inbound-only traffic, they provide

rough-cut approximations of certain performances measures of the system that can feed

an optimization algorithm. Solving these optimization problems is non-trivial but feasible.

Eventually, the solutions can be refined in a second stage by using a more detailed simulation

model combined with simulation-based optimization techniques. Studying how to do that

effectively is the subject of current investigation.
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Appendix

A.1 Steady-state probabilities for M1

The steady-state probabilities for model M1 are

θj =



1
j!

(
λ+κν
µ

)j
, j = 1, . . . , ṅ

1
j!

(
λ+κν
µ

)ṅ+1 (
λ
µ

)j−ṅ−1

, j = ṅ+ 1, . . . , n− 1

1
n!

(
λ+κν
µ

)ṅ+1 (
λ
µ

)n−ṅ−1 j−n∏
l=1

γλ
nµ+lη

, j = n, . . . , n+ c

0, otherwise

πk =


[∑∞

j=0 θj

]−1

, k = 0

θkπ0, k = 1, 2, . . . , n+ c

0, otherwise.

(A1)

A.2 M4 transition types

1. Inbound arrival:

• Destination state: (b1 + I{b1 < n1}, b2 + I{b1 = n1, b2 < n2}, q + I{b = n}).

• Condition: q < c.

• Rate: λ(1 − (1 − γ)I{b = n}).

2. Abandonment:

• Destination state: (b1, b2, q − 1).

• Condition: q > 0.

• Rate: qη.

3. Inbound agent completes call, no outbound dialing:

• Destination state: (b1 − I{q = 0}, b2, q − I{q > 0}).

• Condition: b1 > 0 and (b− 1 > ṅ or i2 = 0).

• Rate: b1µ.

4. Blend agent completes call, no outbound dialing:

• Destination state: (b1, b2 − I{q = 0}, q − I{q > 0}).
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• Condition: b2 > 0 and b− 1 > ṅ.

• Rate: b2µ.

5. Inbound agent completes call, followed by z outbound calls that are an-

swered: Of the z answered calls, m = min(z, i2) calls will be connected to blend

agents. This is a family of transitions generated by all z such that 0 ≤ z ≤ v(i2).

• Destination state: (b1 − 1, b2 +m, 0).

• Condition: b1 > 0 and b− 1 ≤ ṅ and i2 ≥ 1.

• Rate: b1µφi2(z).

6. Blend agent completes call, followed by z outbound calls that are answered:

Of the z answered calls, m = min(z, i2 + 1) calls will be connected to blend agents.

This is a family of transitions generated by all z such that 0 ≤ z ≤ v(i2 + 1).

• Destination state: (b1, b2 − 1 +m, 0).

• Condition: b2 > 0 and b− 1 ≤ ṅ.

• Rate: b2µφi2+1(z).

A.3 M5 transition types

1. Inbound arrival:

• Destination state: (b1 + I{b < n}, b2, q + I{b = n}).

• Condition: q < c.

• Rate: λ(1 − (1 − γ)I{b = n}).

2. Abandonment:

• Destination state: (b1, b2, q − 1).

• Condition: q > 0.

• Rate: qη.

3. Inbound call service completion, no outbound dialing:

• Destination state: (b1 − I{q = 0}, b2, q − I{q > 0}).

• Condition: b1 > 0 and b− 1 > ṅ.

• Rate: b1µ1.

4. Outbound call service completion, no outbound dialing:
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• Destination state: (b1 + I{q > 0}, b2 − 1, q − I{q > 0}).

• Condition: b2 > 0, b− 1 > ṅ.

• Rate: b2µ2.

5. Inbound call service completion, followed by z outbound calls that are an-

swered: Of the z answered calls, m = min(z, n− b+ 1) calls will be connected. This

is a family of transitions generated by all z such that 0 ≤ z ≤ v(n− b+ 1).

• Destination state: (b1 − 1, b2 +m, 0).

• Condition: b1 > 0, b− 1 ≤ ṅ.

• Rate: b1µ1φn−b+1(z).

6. Outbound call service completion, followed by z outbound calls that are

answered: Of the z answered calls, m = min(z, n − b + 1) calls will be connected.

This is a family of transitions generated by all z such that 0 ≤ z ≤ v(n− b+ 1).

• Destination state: (b1, b2 − 1 +m, 0).

• Condition: b2 > 0, b− 1 ≤ ṅ.

• Rate: b2µ2φn−b+1(z).
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