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ABSTRACT

In this review, we introduce key notions and describe the de-
cision problems commonly encountered in call center man-
agement. Main themes are the central role of uncertainty
throughout the decision hierarchy and the many operational
complexities and relationships between decisions. We make
connections to analytical models in the literature, emphasiz-
ing insights gained and model limitations. The high opera-
tional complexity and the prevalent uncertainty suggest that
simulation modeling and simulation-based decision-making
could have a central role in the management of call centers.
We formulate some common decision problems and point
to recently developed simulation-based solution techniques.
We review recent work that supports modeling the primitive
inputs to a call center and highlight call center modeling
difficulties.

1 INTRODUCTION

Call centers are an important component of the global
economy. Around 3% of the workforce in the United
States and Canada works at a call center (Call Center News
Service 2001). More people in North America work in
call centers than in agriculture. Most of the operating
cost of call centers (around 3/4) is labor costs. These call
centers handle customer support, phone orders and sales,
marketing, governmental information services, emergency
services (police, ambulance), etc. A current trend is the
extension to acontact center, whereby telephone services
are enhanced by services in other media such as e-mail,
fax, or chat.

In this review, we introduce key notions and describe
the decision problems commonly encountered in call center
management. The main themes elaborated are: the central
role of uncertainty throughout the decision hierarchy; the
many operational complexities and relationships between
decisions; and a review of work that supports modeling the
primitive inputs to a call center. We also make connections

to analytical models in the literature, emphasizing insights
gained and model limitations. The high operational com-
plexity and the prevalent uncertainty suggest that simulation
modeling and simulation-based decision-making could have
a central role in the management of call centers.Mehrotra
and Fama (2003)also discusses simulation-based decisions
for call centers, from an applied point of view.Gans et al.
(2003) is an excellent, in-depth tutorial on call centers.

2 KEY NOTIONS

A call center is a set of resources (communication equip-
ment, employees, computers, etc.) which enable the delivery
of services via the telephone.Inbound callsare those initi-
ated by customers calling in to the center. A customer can
be blocked, i.e., receive a busy signal, if all of the center’s
phone lines are busy at the time he calls. At first, calls
may be connected to aninteractive voice response(IVR)
unit. The latest generation of speech-recognition technol-
ogy allows IVRs to interpret complex user commands, so
customers may be able to “self-serve”, i.e., complete the
service interaction at the IVR. Otherwise, calls are passed
from the IVR to anautomatic call distributor(ACD). An
ACD is a specialized switch designed to route each call to an
individual agent; if no qualified agent is available, then the
call is placed in a queue. Modern ACDs are sophisticated,
allowing routing rules based on many criteria. A queued
customer mayabandonwithout receiving service.

In a multi-skill call center, we distinguish various call
types (or skills), and we distinguish agents by theirskill
group, defined as the subset of call types they can han-
dle. Skill-based routing(SBR), or simplyrouting, refers
to rules (programmed in the ACD) that control in real time
the agent-to-call and call-to-agent assignments. There is a
trend towards multi-skill centers with SBR (Koole and Man-
delbaum 2002); according toMehrotra and Fama (2003),
the multi-skill call center has become ubiquitous.

A blend centeris one where inbound calls are blended
with outbound calls; these are initiated by agents calling
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customers, usually aided by apredictive dialerthat tries to
anticipate the number of free agents at the time customers
are reached. Amismatchoccurs whenever the called party
answers but cannot be served immediately.

Typically, call center managers are interested in many
performance measures; commonly encountered are: (1) the
service level(SL); this is the fraction of calls that wait less
than anacceptable wait time(typically 20 to 30 seconds),
usually observed separately by pre-selected target periods
(e.g., each hour, day, etc.) and, in multi-skill centers, by call
type; (2) theabandonment ratio; this is the fraction of calls
that abandon; (3) the expected wait time. Additionally, for
blend centers: (4) the number of outbound calls completed;
(5) the number of mismatches.

3 DECISION PROBLEMS

The hierarchy of call-center decisions can be summarized
as follows (loosely adapted fromKoole (2005)): Strategic
decisions: made by upper management, concerning the
role of the center in the company, the type of service to
be delivered, the budget.Tactical decisions: how resources
(e.g., budget, human knowledge) should be used; hiring and
training of agents.Planning decisions: usually, on a weekly
basis, new rosters (work schedules for each employee) are
made by planners at the call center.Daily control: reactions
to the current situation, usually taken by shift leaders that
monitor service levels and productivity. Typical reactions
may be: if the load is less than planned for, then release
agents for training or other activities; if the load is more than
planned for, then make employees work overtime.Real-
time control: usually made by the ACD software, sometimes
complex; e.g, the call selection and agent selection under
SBR; this is therouting problem.

Many of these decisions must be made in the face of
large uncertainties. At the tactical level, agent hiring and
training decisions face uncertain future agent attrition. At
the planning level, the staffing and scheduling decisions
face uncertainty in future arrival rates (see section7.1) and
also inrealized staffing, which differs fromplanned staffing
due to agentabsenteism.

The agent hiring and training decisions are part of
the broader problem of manpower planning.Bartholomew
et al. (1991)review statistical techniques in this field,
applying more broadly to sectors beyond call centers.Gans
and Zhou (2002)develop a dynamic programming model
of long-term hiring and derive optimal policies that are
analogs of the inventory literature’s “order-up-to” policies.
One may envision simulation-based decision-making at this
level, but we are not aware of any such work.

In the remainder of this section, we emphasize the
decisions at and below the planning level. Consider the
decision on how many agents of each skill group to have in
the center as a function of time. In astaffingproblem, the day

is divided into periods (e.g., 30 minutes or one hour each)
and one simply decides the number of agents of each group
for each period, subject to meeting performance constraints,
most often on SL, and usually on the abandonment rate.
These constraints can be imposed per call type, per period,
and/or for aggregations over call types and periods. In a
schedulingproblem, a set of admissible work schedules is
first specified, and the decision variables are the number
of agents of each skill group in each work schedule. This
determines the staffing indirectly, while making sure that
it corresponds to a feasible set of work schedules. A yet
more constrained version of the problem is when there is
a fixed set of available agents to be scheduled for the day
or the week, where each agent has a specific set of skills.
Then we have ascheduling and rosteringproblem. To
issue employee work schedules in a timely manner, these
problems must typically be solved several weeks ahead.

These planning problems are closely intertwined with
the daily and real-time control problems. The multi-skill
and blend capabilities are powerful tools for controlling
system performance. In a multi-skill center, the routing
may be used as a tool to equalize the SL across classes
or enforce desired differences on the SL across classes.
The routing may in some cases be subject to technological
constraints, and it may also involve objectives that conflict
with queueing-system efficiency. As an example of the
latter condition, suppose we have call class 1 with a high
revenue-generation potential and call class 2 with low or
no revenue-generation potential. In addition, agents type
A are stronger in selling services, and agents type B are
stronger in servicing. Arguably, it is desirable to route calls
of class 1 preferentially to type A, and if all type-A agents
are busy, only then route to type B. The reverse agent order
applies to calls type 2. This “crossed” routing attempts to
maximize the rate of assigning “the best agent type for the
call type”. Similarly, in a blend call center, the outbound
capability is a powerful tool for maintaining high agent
utilization. Notably, the outbound dialing policy may not
be transparent, due to, e.g., a proprietary predictive policy;
one such instance is discussed inDeslauriers (2003).

Typically, call center planners solve a single-skill
staffing, scheduling, and rostering problem as follows: they
ignore (or model very crudely) the uncertainties andinvert
classical formulas such as Erlang-C (M/M/c, i.e., without
blocking or abandonment) or Erlang-A (M/M/c+M, i.e.,
with abandonment), fed by point forecasts of the arrival,
service, and time-to-abandonment rate for the target period,
where “inverting” means finding the minimal staffing that
meets all target performance constraints. (Encouragingly,
Brown et al. (2005)find Erlang-A to work well against
empirical data.) The above procedure is applied separately
for sub-periods of the day defined so that the arrival rate
in each period is deemed near-constant. This is justified
by the Pointwise Stationary (PS) approximation (Green and
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Kolesar 1991, Whitt 1991). This time-varying staffing is
input to a set covering integer programming problem, where
decision variables are the counts of selected admissible work
schedules and one seeks to minimize staffing costs subject
to meeting the target staffing for all periods. A roster is
usually created via employee bidding, controlled by a rank-
ing of employees, e.g., according to seniority. SeeGans
et al. (2003)for more details.

4 MULTI-SKILL STAFFING AND SCHEDULING:
A FORMULATION

As an illustration of a typical real-life call center optimiza-
tion problem, we adapt fromCez̧ik and L’Ecuyer (2004)a
Mathematical Programming (MP) formulation of the staffing
and scheduling problems in the multi-skill setting. We then
briefly review solution approaches, emphasizing those mak-
ing substantial use of simulation.

There areK call types,I skill groups,P time periods, and
Q types of work schedules (which we also callshifts). The
cost vectoris c = (c1,1, . . . ,c1,Q, . . . ,cI ,1, . . . ,cI ,Q)t, where
ci,q is the cost of an agent of typei having shiftq and “t” de-
notes vector transposition. The vector ofdecision variables
is x = (x1,1, . . . ,x1,Q, . . . ,xI ,1, . . . ,xI ,Q)t, where is xi,q the
number of agents of typei having shiftq. We use the vector
of auxiliary variablesy = (y1,1, . . . ,y1,P, . . . ,yI ,1, . . . ,yI ,P)t

whereyi,p is the number of agents of typei in period p.
This vectory satisfiesy = Ax whereA is a block diagonal
matrix with I blocks Ã, where the element(p,q) of Ã is
1 if shift q covers periodp, and 0 otherwise. The service
level for call typek and periodp is

gk,p(y) =
E[# calls answered withinsk,p sec. in periodp]

E[# calls in periodp]

for some constantsk,p. Similarly, the aggregate service level
over call typek is the expected total number of calls of
type k answered within some time limitsk over the day
(say), divided by the expected total number of calls of type
k received over the day. We denote bygp(y), gk(y) and
g(y) the aggregate service levels for periodp, call typek,
and overall, respectively. The corresponding time limits are
sp, sk, ands, and the corresponding minimal service-levels
are lp, lk and l .

A formulation of thescheduling problemis

min ctx = ∑I
i=1 ∑Q

q=1ci,qxi,q

subject to Ax = y,
gk,p(y)≥ lk,p for all k, p,
gp(y)≥ lp for all p,
gk(y)≥ lk for all k,
g(y)≥ l ,
x≥ 0, and integer.

(P1)

Thestaffing problemis a relaxationof the scheduling prob-
lem where we assume that any staffingy is admissible. The
cost vector isc= (c1,1, . . . ,c1,P, . . . ,cI ,1, . . . ,cI ,P)t whereci,p

is the cost of an agent of groupi in period p. The MP is

min cty = ∑I
i=1 ∑P

p=1ci,pyi,p

subject to gk,p(y)≥ lk,p for all k, p,
gp(y)≥ lp for all p,
gk(y)≥ lk for all k,
g(y)≥ l ,
y≥ 0, and integer.

(P2)

Simpler instances of (P2) arise by considering asingle
period. Solving the single-period problem in itself should
yield practical answers and possibly insights on the joint
effect of staffing and routing decisions.

To solve any of these problems, one needs to approxi-
mate or estimate the functionsg•. Note thatgk,p(y) generally
depends on the values ofyi, j for all i and j ≤ p, in a very
complicated way, and similarly for the other functionsg•.
For example, the arrival process is generally nonstationary,
the service times may have arbitrary distributions, there
could be abandonments, routing rules could be complex,
etc. Simulation seems to be the only reliable way of esti-
mating the value of these functions for realistic call centers.
Ingolfsson et al. (2003)and Atlason et al. (2004)solve
multi-period single-skill instances of (P2), andCez̧ik and
L’Ecuyer (2004)solve single-period multi-skill instances of
(P2). In all three, the solution algorithm involves iterative
addition ofcuts to relaxations of the integer programming
problems; the first paper addresses a time-dependent arrival
rate and staffing via transient analysis of a continuous-time
Markov chain model; the other two papers use simulation to
estimate the service levels, and cuts are derived from sub-
gradient estimates for asample average approximationof
g•, i.e., a function ˜g• estimated by simulation. A necessary
condition for cut validity is concavity of the functionsg•.
Atlason et al. (2004)andCez̧ik and L’Ecuyer (2004)docu-
ment non-concavity ofg•, unless the staffing is “sufficiently
large”, and suggest practical solution heuristics.Avramidis
et al. (2005)also solve single-period multi-skill instances of
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(P2) heuristically, using a randomized search driven by the
performance approximation discussed in section5.3, and,
at a final stage, simulation-based, local adjustment.

5 ANALYTICAL MODELS, INSIGHTS AND
LIMITATIONS

5.1 Single-skill staffing

Important insights on call-center sizing are available from
existing analysis of single-class queueing systems under
limiting conditions. Halfin and Whitt (1981)consider a
sequence ofM/M/s queues indexed byn with number of
serverssn = n, arrival rateλn, service rateµ, and load
ρn = λn/µ. Under the assumptions thatλn → ∞ and (1−
ρn/n)

√
n→ β for 0 < β < 1 as n→ ∞, they show that

P(Wn > 0) → α, whereWn denotes steady-state delay in
queue for thenth queue,α = [1+ βΦ(β )/φ(β )]−1, and
Φ and φ are the c.d.f. and p.d.f. of a standard normal
random variable. This limiting result justifies thesquare-
root safety staffingformula (approximation) for achieving a
given delay probabilityα under loadρ: n = ρ +δ , where
δ = β

√
ρ is the “safety staffing” above the load to account

for stochastic variability. To obtain this formula, it suffices
to multiply the approximation(1− ρ/n)

√
n≈ β by

√
n

and note that
√

n/
√

ρ → 1 asn→ ∞. The approximation
has a long history, has been extended to more general
queues (Whitt 2004a), and is very robust (Borst et al.
2004). Given the target delay probability, the formula
shows the load-staffing relationship in simpler terms than
the Elang-C formula. An important insight is the economies
of scale resulting from increasing system sizen. Notably,
largen ensures simultaneously high quality of service and
high server utilization, which characterize aquality-and-
efficiency driven(QED) call center.

5.2 Arrival-rate uncertainty and time dependence

Two sources of risk in the recipe for staffing described in
section3 are that future arrival rates are uncertain and time-
dependent.Harrison and Zeevi (2005)and Whitt (2004d)
demonstrate the importance of arrival-rate uncertainty and
show that ignoring this uncertainty typically leads to under-
staffing. This can be explained by the fact that typical
measures of service quality are, in great generality, concave
decreasing functions of the arrival rate in the usual region
of system loads; seeChen and Henderson (2001). Second,
the arrival rate varies considerably within a day (see Sec-
tion 7.1), so the PS approximation may suffer from large
error. Steckley et al. (2004)analyze this error for simple
Markovian models.

5.3 Control, performance analysis, and staffing under
SBR

Insightful results on good routing policies have been obtained
under a limiting regime known asconventional heavy traffic:
the traffic intensity goes to one (from below) and the fraction
of delayed calls goes to one; these conditions characterize
an efficiency-drivencall center. In this limit, the call-to-
agent assignment problem disappears (because essentially
all calls must wait in queue) and, under certain conditions,
complete resource poolingoccurs; loosely speaking, this
means that the agents are coordinated as if they were a
generalist “super-server” which serves the workload at the
maximum possible rate. In typical models, the incurred
cost isCi(τi) for each call of typei, whereCi is a convex
increasing function andτi is either queue time or sojourn
time; then one derives anasymptotically optimalpolicy, i.e.,
one whose expected cumulative cost (possibly discounted)
is minimal over a large class of routing policies, in this
heavy-traffic limit. Such results are usually obtained by
analyzing simpledesigns; examples are: (i) anN design
has two call types and two agent types, aspecialisttype
that can handle only one call type and ageneralist type
that can handle both call types; and (ii) a design where all
agents are generalists.

Next we describe two cases as above that exemplify
different types of (optimal) routing policies that arise. For a
multi-skill design with a single generalist agent and convex
increasing cost functionCi on sojourn time, the asymptot-
ically optimal policy was found byvan Mieghem (1995)
and namedgeneralized cµ rule: call type i is assigned the
indexµici(ai(t)), whereµi is the class-i service rate,ai(t) is
the time that the oldest class-i call has been waiting at time
t, andci is the derivative ofCi ; the call served is the oldest
waiting call of the class with highest index. The optimality
result has been extended to the multi-agent, all-generalist
design (Mandelbaum and Stolyar 2004). The dependence
of the cµ rule on only the service rates and cost functions
means that the rule continues to be correct (optimal) under
changes in important factors such as staffing level and arrival
rates.Bell and Williams (2001)study the N design with two
agents; activity 1 corresponds to processing of class-1 calls
by agent 1; forj = 2,3, activity j corresponds to processing
of calls of classj−1 by agent 2; the mean of inter-arrival
times of class-i calls is 1/λi , i = 1,2, and the mean of
service times for activityj is 1/µ j , j = 1,2,3. There is no
abandonment, service preemption is allowed, and cost is
linear on sojourn time with coefficientci for classi. The
limiting N design satisfies: (i)(λ1− µ1)/µ2 + λ2/µ3 = 1,
and (ii) λ1 > µ1; that is, in the limit, the sever capacity is
just sufficient to process the incoming load, and, moreover,
agent 1 needs help from agent 2 to process the load. The au-
thors exhibit an asymptotically optimal policy ofthreshold
type: whenever the number of class-1 calls in the system
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exceeds a threshold, agent 2 gives preemptive-resume pri-
ority to class-1 calls over class-2 calls; otherwise, he gives
priority to class-2 calls.

Another line of research is on non-asymptotic perfor-
mance analysis and/or control. Motivated by simplifying
the analysis, many authors analyze a call center as aloss
system, where calls that cannot be served immediately upon
arrival are lost. Koole and Talim (2000)develop an ap-
proximation of the call-loss process underoverflow routing,
whereby calls overflow downstream along a pre-determined
list of agent groups until they find an agent available, or else
are lost.Franx et al. (2004)impose severe restrictions on
the routing (a crossed routing as in section3 is not allowed)
and develop an approximation of the loss rate for each call
type that is claimed superior to other known approaches.
Bhulai (2004)approximates an optimal routing policy via
dynamic programming; one-step policy improvement of a
“good” initial policy is proposed as a means to making the
procedure practical, given that the state space is very large
(high-dimensional) in typical applications.Chevalier et al.
(2004)work with loss-type models of a call center with a
mixture of single-skill and fully-flexible agents. They show
that routing calls first to specialists, then (if necessary) to
fully-flexible agents, minimizes the loss rate. Further, they
adapt Hayward’s approximation (seeWolff (1989), pp. 354-
355) to support minimum-cost staffing subject to loss-rate
performance constraints. The simple rule-of-thumb “80%
specialist, 20% fully-flexible agents” is shown to work
well in their examples.Avramidis et al. (2005)extend the
ideas ofKoole and Talim (2000)to model call queueing,
allowing abandonment and an arbitrary overflow routing
(including the crossed case); they approximate the tail of
the distribution of virtual queue time (see section7.3) for
each call type. Such performance approximations may be
useful as pure alternatives to simulation or in synergy with
simulation, typically to support the staffing and scheduling
decisions. InAvramidis et al. (2005), synergy between
the analytical performance approximation and simulation
was essential to solving efficiently single-period multi-skill
staffing problems (see Section4).

Recent research provides further insights on the coor-
dination of staffing, routing, and skill-set design.Wallace
and Whitt (2004)demonstrate by examples (but not theo-
retically) that endowing agents with two skills, combined
with a carefully designed routing, gives a performance (in
terms of SL) that is essentially as good as for a system
where all agents have all skills. Their routing entails
a careful balancing of agents’ priorities over different call
types. A key insight is thata little flexibility goes a long
way. Harrison and Zeevi (2005)focus on arrival-rate un-
certainty; they assume an optimal routing can be enforced
(continually over time), impose staffing and abandonment
costs (and no performance constraints), and use fluid ap-
proximations of call abandonment. The obtained insight is

that the staffing problem can be seen as amultidimensional
newsvendorproblem (van Mieghem 1998). For the small
designs they consider, the cost function is nearly flat around
the optimum (2-dimensional) staffing.

From the point of view of practical relevance, some
of the models discussed above are not satisfactory, for sev-
eral reasons. First, many call centers of interest normally
operate under the QED regime, in which, by definition, a
considerable fraction of calls is served immediately, but also
considerable is the fraction of calls that experiences some
delay. That is, neither conventional heavy-traffic, nor loss-
type models are good representations of the QED regime.
Second, there is a gap between the simple designs often
analyzed and the relative complexity in typical call center
designs. Third, the time dependence of arrival rates com-
monly found in practice is incompatible with the constant
arrival rate usually assumed in analytical models; further,
the load may temporarily exceed the system processing
capacity.

6 SIMULATION ROLE AND MODELING
DIFFICULTIES

The discussion in section3 establishes the central role
that uncertainty and complexity play in modern call-center
operation and management. Despite the many insights
obtained from analytical models discussed in Section5,
the gap between these models and call-center reality is still
quite large. In this setting, simulation appears to be the
most viable option for accurate performance measurement
and subsequent decision support.

Simulation of call centers may involve large, complex
models that incorporate some or all of the elements discussed
above, notably: (1) uncertainty in many essential primitives,
e.g., attrition, absenteism, arrival rates, service times; (2)
time-varying arrival patterns; (3) daily control; and (4) real-
time control (routing and outbound dialing policies). (Of
course, such modeling complexity translates to increased
costs.) Such models can be (and already are) useful at
various levels in the decision hierarchy.Mehrotra and
Fama (2003)give academic examples where simulation is
used as a decision-support tool for both staffing and routing
decisions in a blend call center. For numerous applications
of call center simulation, seeMandelbaum (2003).

The biggest modeling difficulty appears to be the com-
plex daily and real-time control actions. Man-made de-
cisions at these levels may be taken ad-hoc and thus are
difficult to model. An outbound dialer with a proprietary
(non-transparent) policy is also a considerable modeling
difficulty. We are aware of a major call center where the
actual SL oscillates many times above and below the tar-
get during one day, presumably due to the lack of good
coordination between daily and real-time control actions.
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Properly modeling actions with such effects is difficult, if
not futile.

A major possible problem is the lack of detailed, high-
quality data. One common difficulty is the lack of connec-
tion between call-by-call data stored at the IVR level and
downstream, aggregate data, tracked by workforce plan-
ning systems, in which the call ID is absent. Collection of
high-quality data and subsequent in-depth statistical analysis
appear to be important pre-requisites for better understand-
ing of call centers, which in turn is a pre-requisite for
advanced simulation modeling.

7 MODELING CALL CENTER PRIMITIVES

We review work relevant to modeling the primitive inputs to a
call center, drawing from recent empirical work, primarily
Brown et al. (2005), and Jongbloed and Koole (2001),
Avramidis et al. (2004), Steckley et al. (2004).

7.1 Arrival process

Properties of call center arrival processes that have emerged
in recent studies are:

P1. The total daily demand (number of calls) has
overdispersion relative to the Poisson distribution
(the variance is greater than the mean).

P2. The arrival rate is strongly time-varying within
each day.

P3. There is positive stochastic dependence between
arrival rates within each day.

P4. There is positive stochastic dependence between
arrival rates across successive days.

Jongbloed and Koole (2001)analyze data from a Dutch bank,
confirm P1, and propose adoubly stochasticmodel under
which arrivals follow a Poisson process with a random
arrival rate. To model a time-varying arrival rate, they
assume independence across successive time periods, thus
being inconsistent with P3.Avramidis et al. (2004)propose
various models that are consistent with P1-P3, including a
multivariate extension of the above model. In a case study of
a Bell Canada call center, they show that simulation-based
call-center performance measurement is sensitive to the
arrival-process model, and more particularly to the presence
of correlation within the day.

P4 was observed in several studies. Regressing a day’s
call volume on the previous day’s volume,Brown et al.
(2005)explain 50% of the variability.Steckley et al. (2004)
report strong call volume correlations between Monday and
all remaining days of the same week, usually in the range
40%-90%, and decreasing with time distance. Our own
unpublished work confirms this phenomenon. Obviously,
P4 implies that an analyst doing a simulation to estimate

future performance a few days in advance, should simulate
the arrival rate from the conditional distribution given the
observed call volume over the recent past (and possibly
other covariates).

Summarizing, we havetime-varying, uncertainarrival
rates that are typically positively dependent within a day
and across closely-spaced days.

7.2 Service times

Some studies find the exponential distribution provides an
adequate fit to empirical data (Kort 1983, Harris et al. 1987).
In addition to the exponential, other parametric families that
arose in applications include the gamma and the lognormal
(Chlebus 1997, Deslauriers 2003, Pichitlamken et al. 2003).
Brown et al. (2005)find the lognormal provides an excellent
fit to data, especially after excluding short service times.
The excellent fit of the lognormal was also present after
conditioning: for all types and priorities of customers, for
individual agents, for different days of the week, and for all
times of the day. A positive implication is that one can apply
standard estimation techniques to relate (regress) log(service
time) to variouscovariates, i.e, observed information, with
obvious modeling benefits.

7.3 Abandonment

The maximal time a customer is willing to wait in queue is his
patiencetime, A, also known astime-to-abandonment. The
time hemustwait before beginning service is hisvirtual
queue time, V. The actual wait time isW = min(A,V),
terminated by either abandonment (wheneverV > W), or
beginning of service (V = W).

In heavy traffic, even a small fraction of calls that
abandon the queue can have a dramatic effect on sys-
tem performance (Gans et al. 2003). On the theoretical
side, for a many-server queue with abandonment operat-
ing under heavy traffic conditions, fluid approximations
in Whitt (2004b) show that steady-state performance de-
pends strongly upon the distribution ofA beyond its mean.
This suggests that modeling abandonment, preferably the
distribution of patience (thus going beyond the mean) is
important.

With respect to parametric models of patience, the
Weibull distribution arises in a theoretical model inPalm
(1943)and also inKort (1983), based on laboratory testing.

How can one estimate the distribution of patience?
Typically, the ACD collects data onW and the abandonment-
indicator,1{V > W}; A cannot be observed. We encounter
the classical statistical problem ofcensoring, and techniques
from the field ofsurvival analysisare applicable.Brown
et al. (2005)employ the classical, non-parametric, Kaplan-
Meier estimator of the survival function Pr{A> t}, for t > 0.
They observe that the patience hazard rate has two main
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peaks and explain this phenomenon by observing that both
peaks correspond to time points where customers are offered
a “please wait” message. We caution, echoing these authors,
that the Kaplan-Meier estimator will be biased whenever
there is statistical dependence of observations ofW and
1{V > W}; this is likely to happen for observations made
successively in time due to highly-dependent covariates, e.g.,
announcements such as “please wait” or offering expected
wait times.

To help prioritize modeling efforts,Whitt (2004c)stud-
ies the sensitivity of the Erlang-A model to its parameters
and finds, intuitively, that performance is quite sensitive to
the arrival and service rate and relatively insensitive to the
impatience (time-to-abandonment) rate.

7.4 Retrials

For our purposes, aretrial occurs when a customer re-
dials into the center after having encountered a busy signal
or having abandoned. In most call centers, the majority
of retrials is due to customer abandonment, because the
bottleneck resource is the agents, not the number of telephone
lines. In any case, naively measuring arrival rates leads to
overestimation of the volume offirst-time calls, i.e., net
of retrials. Aguir et al. (2004)demonstrate the danger of
ignoring retrials; working with Markovian queues, they find
that under high-load conditions, the retrial volume can be
of the order of first-time calls. Retrial behavior is often
modeled by some function that equals the probability of an
n-th attempt, given a survival of the customer (no service
received) beyond the(n−1)-th attempt.Hoffman and Harris
(1986)estimate jointly first-call arrival rates and re-trial rates
based on ACD data.

8 CONCLUSION

Modern call centers operate under many uncertainties and
complexities, notably, uncertain and/or time-varying primi-
tives and complex daily control and routing control actions.
These realities stretch the limits of existing analytical mod-
els from queueing theory, optimal queueing control, and
stochastic programming. Simulation appears to be the most
viable option for accurate performance measurement and
subsequent decision support.

Major difficulties that await the call-center modeler are
to achieve a deep understanding of the daily and real-time
control actions and to ensure the availability of high-quality,
detailed data. These are pre-requisites to developping real-
istic models.
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