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The Application of Forecasting Techniques to Modeling
Emergency Medical System Calls in Calgary, Alberta

Abstract We develop and evaluate time-series models of call volume to the emergency medical
service of a major Canadian city. Our objective is to offer simple and effective models that could
be used for realistic simulation of the system and for forecasting daily and hourly call volumes.
Notable features of the analyzed time series are: a positive trend, daily, weekly, and yearly seasonal
cycles, special-day effects, and positive autocorrelation. We estimate models of daily volumes via
two approaches: (1) autoregressive models of data obtained after eliminating trend, seasonality, and
special-day effects; and (2) doubly-seasonal ARIMA models with special-day effects. We compare
the estimated models in terms of goodness-of-fit and forecasting accuracy. We also consider two
possibilities for the hourly model: (3) a multinomial distribution for the vector of number of calls
in each hour conditional on the total volume of calls during the day and (4) fitting a time series to
the data at the hourly level. For our data, (1) and (3) are superior.

Keywords: Emergency Medical Service, arrivals, time series, simulation, forecasting.
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1 Introduction

Most cities in the developed world have organizations that provide Emergency Medical Service
(EMS), consisting of pre-hospital medical care and transport to a medical facility. Demand for
such services is increasing throughout the developed world, in large part because of the aging of
the population. In the U.S., EMS funding decreased following conversion of direct federal funding
to block grants to states (U.S. Congress, 1989; Committee on the Future of Emergency Care in
the United States Health System, 2006) that have, in many cases, been used for purposes other
than EMS. Tighter budgets make efficient use of resources increasingly important. Reliable demand
forecasts are crucial input to resource use planning, and the focus of this paper is on how to generate
such forecasts.

Almost all demand to EMS systems arrives by phone, through calls to an emergency number
(911 in North America). Calls that arrive to 911 are initially routed to EMS, fire, or police. Calls
routed to EMS are then evaluated, which involves obtaining an address, determining the nature and
importance of the incident, and possibly providing instructions to a bystander on the use of CPR
or other first-aid procedures. Dispatching an ambulance to the call, the next step, is a separate
function that can occur partly in parallel with call evaluation. The crew of the dispatched vehicle(s)
then begins traveling toward the scene of the call, where they assess the situation, provide on-site
medical care, and determine whether transport to a medical facility is necessary (this is the case
roughly 75% of the time). Once at the medical facility, EMS staff remain with the patient until
they have transferred responsibility for her or his care to a nurse or physician. The crew may then
need to complete various forms before it becomes available to take new calls.

The resource requirements per EMS call are on the order of a few minutes for call evaluation
and dispatch, and on the order of an hour for an ambulance and its crew. The latter component is
growing in many locations because of increased waiting times in hospital emergency rooms (Eckstein
et al., 2005; Eckstein and Chan, 2004; Sprivulis and Gerrard, 2005; Segal et al., 2006).

The primary performance measure for an EMS system is typically the fraction of calls reached
within some time standard, from the instant the call was made. In North America, a typical target
is to reach 90% of the most urgent calls within 9 minutes. Although universal standards are lacking
(Moeller, 2004), the response time is typically considered to begin when call evaluation begins and
end when an ambulance reaches the call address. Secondary performance measures include waiting
times on the phone before reaching a 911 operator; (for example, 90% in 10 seconds (National Fire
Protection Association, 2002) or 95% in 5 seconds (E-Comm, 2005)), average call evaluation times,
average dispatch times, and average time spent at hospital.

The main decisions that require medium-term call volume forecasts (a few days to a few weeks
into the future) are scheduling decisions for call evaluators, dispatchers, and, most importantly,
ambulances and their crews. Longer-term call volume forecasts are needed for strategic planning
of system expansion or reorganization. Shorter-term (intra-day) forecasts could be used to inform
decisions about when to call in extra resources.

Service level standards for EMS systems are imperfect proxies for the real goal of such systems,
namely to save lives and prevent suffering (see Erdogan et al. (2006) for a discussion of models
that attempt to quantify such goals more explicitly). Meeting these service-level standards is
expensive, so it is a problem of substantial economic and social interest to manage EMS systems
efficiently. Generally speaking, efficiency involves balancing quality of service against system costs.
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An important input to this operational problem is the call volume. Uncertainty in future call
volume complicates the process of determining levels of EMS staffing and equipment. It is therefore
important to correctly model the stochastic nature of call volumes, and in particular, to make
predictions of future call volumes, including uncertainty estimates (via prediction intervals).

Operations researchers have been developing planning models for EMS systems, as well as
police and fire services, since the 1970’s. Green and Kolesar (2004) provide a recent perspective
on the impact of this work. Swersey (1994) surveys the academic literature on this topic and
Goldberg (2004) provides an EMS-practitioner-oriented literature survey. EMS planning models
include simulation models (Henderson and Mason (2004) and Ingolfsson et al. (2003) are recent
examples), analytical queueing models (notably the hypercube queueing model, see Larson (1974,
1975)), and optimization models for location of facilities and units. All of these models require
estimates of demand as input. Typically, planning models assume that demand follows a Poisson
process—an assumption that is supported by both theoretical arguments (e.g., Henderson, 2005)
and empirical evidence (e.g., Zhu et al., 1992; Gunes and Szechtman, 2005). However, empirical
studies of demand for both EMS and other services (notably Brown et al. (2005)) indicate that the
rate of the Poisson arrival process varies with time and may be random. The work we report in this
paper is aimed at estimating the arrival rate during day-long or hour-long periods. We elaborate
in Section 3 on how our estimates can be used to support simulation and analytical studies that
assume a Poisson arrival process.

Goldberg (2004) mentions that “the ability to predict demand is of paramount importance”
but that this area has seen little systematic study. The work that has been done can be divided
in two categories: (1) models of the spatial distribution of demand, as a function of demographic
variables and (2) models of how demand evolves over time. In the first cateogry, Kamenetsky
et al. (1982) surveyed the literature before 1982 and presented regression models to predict EMS
demand as a function of population, employment, and two other demographic variables. Their
models successfully explained most of the variation in demand (R2 = 0.92) among 200 spatial
units in southwestern Pennsylvania. McConnell and Wilson (1998) is a more recent article from
this category which focuses on the increasingly important impact of the age distribution in a
community on EMS demand. We refer the reader to Kamenetsky et al. (1982) and McConnell and
Wilson (1998) for further relevant references.

This paper falls in the second category, of modeling and forecasting EMS demand over time.
EMS demand varies strongly by time of day and day of week, for example see Zhu et al. (1992) and
Gunes and Szechtman (2005). Past related work that attempts to forecast daily EMS demand in-
cludes Mabert (1985), who analyzed emergency call arrivals to the Indianapolis Police Department.
He considered several simple methods based on de-seasonalized data and found that one of them
outperforms a simple ARIMA model (Box et al., 1994). In a similar vein, Baker and Fitzpatrick
(1986) used Winter’s exponential smoothing models to separately forecast the daily volume of emer-
gency and “routine” EMS calls and used goal programming to choose the exponential smoothing
parameters.

Recent work on forecasting arrivals to call centers from a variety of industries is also relevant.
For the prediction of daily call volumes to a retailer’s call center, Andrews and Cunningham (1995)
incorporate advertising effects in an ARIMA model with transfer functions; their covariates are
indicator variables of certain special days and catalog mailing days. Bianchi et al. (1998) use an
ARIMA model for forecasting daily arrivals at a telemarketing center, compare against the Holt-
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Winters model, and show the benefits of outlier elimination. Tych et al. (2002) forecast hourly
arrivals in a retail bank call center via a relatively complex model with unobserved components
named “dynamic harmonic regression” and show that it outperforms seasonal ARIMA models; one
unusual feature of their methodology is that estimation is done in the frequency domain. Brown
et al. (2005) develop methods for the prediction of the arrival rates over short intervals in a day,
notably via linear regression on previous day’s call volume.

In this paper, we study models of daily and hourly EMS call volumes and we demonstrate their
application using historical observations from Calgary, Alberta. Although we focus on the Calgary
data, we expect the models could be used to model EMS demand in other cities as well and we will
comment on likely similarities and differences between cities.

We have 50 months (from 2000 to 2004) of data from the Calgary EMS system. Preliminary
analysis reveals a positive trend, seasonality at the daily, weekly, and yearly cycle, special-day
effects, and autocorrelation. In view of this, we consider two main approaches: (1) autoregressive
models of the residual error of a model with trend, seasonality, and special-day effects; and (2)
doubly-seasonal ARIMA models for the residuals of a model that captures only special-day effects.
Within approach (1), we explore models whose effects are the day-of-week and month-of-year. We
also consider a model with cross effects (interaction terms) and a more parsimonious model, also
with cross effects, but where only the statistically significant effects are retained. The latter turns
out to be the best performer in terms of both goodness-of-fit and forecasting accuracy. All the
models are estimated with the first 36 months of data and the forecasting error is measured with
the data from the last 14 months. We used the R and SAS statistical software for the analysis.

The remainder of the paper is organized as follows. Section 2 provides descriptive and prelim-
inary data analysis. In Section 3 we present the different models of daily arrivals and compare
them in terms of quality of fit (in-sample) and forecast accuracy (out-of-sample). In Section 4, we
address the problem of predicting hourly call volumes. Section 5 offers conclusions.

2 Preliminary data analysis

We have data from January 1, 2000 to March 16, 2004, containing the time of occurrence of each
ambulance call, the assessed call priority, and the geographical zone where the call originated. We
work with the number of calls in each hour instead of their times of occurrence, to facilititate the
application of time series models. We explain in the next section how such hourly counts can be
related to a stochastic model of the times of individual arrivals. The average number of arrivals is
about 174 per day, or about 7 per hour.

Figure 1 provides a first view of the data; it shows the daily volume for year 2000. The figure
suggests a positive trend, larger volume in July and December, and shows some unusually large
values, e.g., on January 1, July 8, November 11, December 1; and low values, e.g., on January
26, September 9. Figure 2 shows monthly volume over the entire period. This plot reveals a clear
positive trend; the likely explanation is a combination of population growth and aging in the city.
Figure 3 shows average volume by hour over the weekly cycle. The plot reveals a clear hour-of-day
seasonality: over a 24-hour cycle, higher call volumes are usually observed between 10 a.m. and 8
p.m.; substantially lower volumes are seen overnight. One also observes day-of-week effects. Closer
inspection reveals, not surprisingly, increased activity during Friday and Saturday evening and
early night. With respect to daily volume, larger values are observed over Friday and Saturday
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Figure 1: The daily call volume for the year 2000. Some outliers appears in the plot.

relative to the other days of the week. These observations would have to be taken into account
when designing shift schedules for the ambulance crews.

Figures 4 and 5 give box-plots of the daily volume for each day of the week and monthly volume
for each month of the year, respectively. Each box plot gives the median, the first and third
quartiles (the bottom and top of the central box), the interquartile range (the height of the box),
and two bars located at a distance of 1.5 times the interquartile range below the first quartile and
above the fourth quartile, respectively. The small circles denote the individual observations that
fall above or below these two bars. We see again that Friday and Saturday have more volume than
the average. July, December, and November are the busiest months (in this order) while April is
the most quiet month.

3 Models for daily arrivals

We now consider five different time-series models for the arrival volumes over successive days.
Although in the end we conclude that one of these models fits the Calgary data best, we discuss all
of them because different models from the collection that we present may be appropriate depending
on the city being studied and the purpose of the analysis. These models are defined and studied
in Sections 3.1 to 3.5. In Section 3.6, we compare these models in terms of both quality of fit (in-
sample) and forecast accuracy (out-of-sample). Throughout the paper, t denotes the time index in
days and the number of arrivals on day t is denoted Yt, for t = 1, 2, . . . , n, where n = 1537. The
models are fitted to the first 1096 observations (January 1, 2000 through December 31, 2002), and
the remaining 441 observations are used for prediction (January 1, 2003 through March 16, 2004).

There are compelling theoretical reasons to assume that call arrivals follow a nonhomogeneous
Poisson process (NHPP). The Palm-Khintchine theorem (e.g., Cinlar, 1972) states, approximately,
that the superposition of arrival processes from many small and independent “sources” (patients,
in an EMS context) is well-approximated by a Poisson process. The rate of this process will vary
with time (because medical emergencies are more likely to occur at certain times) and the rate may
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Figure 2: The monthly call volume over the entire period.

2
4

6
8

10
12

hours (24x7 days)

nu
m

be
r 

of
 c

al
ls

1 43 85 127 168

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Figure 3: The average hourly call volume over the weekly cycle.
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Figure 4: Box plots of arrival volumes per day for each day of the week.
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Figure 5: Box plots of mean daily arrival volumes per month.
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not be known with certainty (because it may be influenced by factors other than time).
For purposes of illustration, suppose that arrivals during hour h follow a Poisson process with

a random rate that remains constant during the hour. Conditional on the number of calls during
the hour, call it Zh, the arrival times of individual calls within the hour are independently and
uniformly distributed between 0 and 1. This is the “order statistic property” for a Poisson process
and it holds regardless of whether the arrival rate is deterministic or random (see Resnick, 1992,
Sections 4.5-4.6). Our models in this and the next section quantify the distribution of the daily
arrival counts Yt and the hourly counts Zh. One can use the following procedure to simulate call
arrival times on day t:

1. Simulate the daily count Yt. As we will see in this section, this involves simulating the residual
from a standard autoregressive process.

2. Given Yt, generate the vector Zt of hourly counts on day t. As we will see in the next section,
this involves simulating a multinomial random vector.

3. Use the order statistic property to distribute the simulated number of arrivals in each hour.

If the arrival rate varies too rapidly to be approximated as constant over hour-long periods, then
it is straighforward to modify our models to use shorter periods, for example half-hours. Thus, if
one limits attention to this general and plausible NHPP model, then each of our models of arrival
counts by period yield corresponding stochastic models of all the arrival times, which can support
analytical and simulation studies.

3.1 Model 1: Fixed-effect model with independent residuals

One would expect to see month-of-year and day-of-week effects in EMS demand in most cities.
Our preliminary analysis of the Calgary data indicates a positive trend and confirms the pres-
ence of month-of-year and day-of-week effects. This suggests the following linear model as a first
approximation:

Yj,k,l = a + β̃j + γ̃k + α̃l + ε̃j,k,l, (1)

where Yj,k,l is the number of calls on a day of type j in month k of year l, the parameters a, β̃j , γ̃k,
and α̃l, are real-valued constants, and the residuals εj,k,l are independent and identically distributed
(i.i.d.) normal random variables with mean 0. The preliminary analysis suggests that for Calgary,
the yearly effect is approximately a linear function of l, which allows us to express the model more
conveniently as

Yt = a + bt +
7∑

j=1

βjCt,j +
12∑

k=1

γkSt,k + Et, (2)

where a, b, the βj , and the γk are constants, the indicator Ct,j is 1 if observation t is on the jth
day of the week and 0 otherwise, the indicator St,k is 1 if observation t is in the kth month of
the year and 0 otherwise. In other cities, it might be more appropriate to model the yearly effect
as a nonlinear function of t. We assume that the residuals Et are i.i.d. normal with mean 0 and
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Figure 6: The residuals Et for the simple linear model of Equation (2).

variance σ2
E,0, i.e., a Gaussian white noise process. Given the presence of the constant parameter

a, we impose the standard identifiability constraints:
7∑

j=1

βj =
12∑

k=1

γk = 0. (3)

(Without these constraints, there would be redundant parameters; for example, adding a constant κ

to all the βj ’s and subtracting κ from a would give the same model.) We estimated the parameters
for the regression model (2) using least squares and obtained the residuals displayed in Figure 6, in
which the circled points are at a distance larger than 3σ̂E,0 from zero, where σ̂2

E,0 is the empirical
variance of the residuals. There is a single residual larger than 4σ̂E,0, which corresponds to January
1, 2002, and seven other residuals larger than 3σ̂E,0: December 1, 2000; January 1, 2001; May
27, 2001; August 2, 2001; September 8, 2001; June 27, 2002; July 12, 2002. The single residual
smaller than −3σ̂E,0 is on July 30, 2001. January 1 appears to be a special day, with a call volume
systematically larger than average. The month of July also has a larger volume per day than the
other months (in the data). One potential explanation that we decided to consider is the Calgary
Stampede, held every year in July. The Stampede includes one of the largest rodeos in the world
and it is the most important annual festival in Calgary (http://calgarystampede.com). The
dates for this event are: July 7 - 16, 2000; July 6 - 15, 2001; July 5 - 14, 2002; and July 4 - 13,
2003.

To account for those two types of special days, we add two indicator variables Ht,1 and Ht,2 to
our model, where Ht,1 is 1 if observation t is on January 1 and 0 otherwise, whereas Ht,2 is 1 if
observation t is on one of the 40 Stampede days enumerated above, and 0 otherwise. This gives
the model

Yt = a + bt +
7∑

j=1

βjCt,j +
12∑

k=1

γkSt,k + ω1Ht,1 + ω2Ht,2 + Et, (4)

in which we now have two additional real-valued parameters ω1 and ω2, and the residuals now have
variance σ2

E. The timing, nature, and number of such special events will vary between cities but the
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same general approach can be used if the dates of the special events are known. We estimate all
the parameters of this linear regression model by standard least-squares, using the first n = 1096
observations. If we denote the parameter estimates by â, b̂, β̂j , γ̂k, ω̂1 and ω̂2, then the estimates
of Yt and Et are given by

Ŷt = â + b̂t +
7∑

j=1

β̂jCt,j +
12∑

k=1

γ̂kSt,k + ω̂1Ht,1 + ω̂2Ht,2 (5)

and

Êt = Yt − Ŷt. (6)

A naive estimator of σ2
E would be the empirical variance

σ̂2
E =

1
n− s

n∑

t=1

Ê2
t , (7)

where s = 21 is the number of parameters estimated in the model. However, this variance estimator
is biased if the residuals are correlated (Bell and Hillmer, 1983), and we will see in a moment that
they are.

We must test the hypothesis that the residuals are a white-noise process, i.e., normally dis-
tributed and uncorrelated with zero mean and constant variance. Stationarity and normality of
the residuals is plausible, based on Figure 6 and on Q-Q (quantile-quantile) plots not shown here.
To test for autocorrelation, we use the Ljung-Box test statistic, defined by

Q = n(n + 2)
l∑

i=1

r̂2
i

n− i
,

where n is the number of residuals, r̂i is the lag-i sample autocorrelation in the sequence of residuals,
and l is the maximum lag up to which we want to test the autocorrelations. Under the null
hypothesis that the residuals are uncorrelated and n À s, Q has approximately a chi-square
distribution with l degrees of freedom. Here we have n = 1096 and s = 21. We apply the
test with l = 30 and obtain Q = 154.8. The corresponding p-value is smaller than 2.2× 10−16, so
the null hypothesis is clearly rejected. This strong evidence of the presence of correlation between
the residuals motivates our next model.

3.2 Model 2: An autoregressive process for the errors of Model 1

We improve Model 1 by fitting a time-series model to the residuals Et. Since the Et process appears
to be normal and stationary, it suffices to capture the autocorrelation structure. We do this with
an autoregressive process of order p (an AR(p) process), defined by

Et = φ1Et−1 + · · ·+ φpEt−p + at, (8)

where the at are i.i.d. normal with mean zero and variance σ2
a. Based on the residuals defined by

(6), and using standard tools of model identification (Box et al., 1994; Wei, 1990), we find that
p = 3 is adequate (different values of p will be appropriate for different cities). When estimating
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the coefficients φl in a model with p > 3, we find that the coefficients φl for l > 3 are non-significant
at the 5% level. For example, the p-value of the t-test for φ4 is about 0.153.

The model obtained by combining (4) and (8) with p = 3 can be written alternatively as

φ(B)


Yt − a− bt−

7∑

j=1

βjCt,j −
12∑

k=1

γkSt,k − ω1Ht,1 − ω2Ht,2


 = at, (9)

where φ(B) = 1− φ1B − φ2B
2 − φ3B

3, B is the back-shift operator defined by BpEt = Et−p, and
φ1, φ2, φ3 are the autoregressive parameters. We estimate the parameters (a, b, β1, ..., β7, γ1, ..., γ12,

ω1, ω2, φ1, φ2, φ3) by (nonlinear) least squares (Abraham and Ledolter, 1983, page 67), based on
the observations Yt for t = 4, ..., n, where n = 1096.

The parameter estimates are given in Table 1, together with their standard errors and the p-
value of a t-test of the null hypothesis that the given parameter is zero, for each parameter. We
then compute the residuals ât = φ̂(B)(Yt− Ŷt) in a similar manner as for Model 1 and we estimate
σ2

a by

σ̂2
a =

1
n− s

n∑

t=4

â2
t , (10)

where n = 1096 and s = 24. This gives σ̂2
a = 250.1. Figure 7 presents visual diagnostics for

residual normality: we see the estimated residual density and a normal Q-Q plot, i.e., the empir-
ical quantiles of normalized residuals plotted versus the corresponding quantiles of the standard
normal distribution (with mean 0 and variance 1). Figure 8 is a diagnostic for (lack of) residual
autocorrelation: it shows the standardized residuals, the sample autocorrelations up to lag 30, and
the p-values of the Ljung-Box test for each lag. We conclude that the residuals at appear to be
white noise. Thus, Model 2 is a much better fit than Model 1.

The most significant parameters in Table 1 are a (the mean), b (the positive trend), ω1 (the
positive January 1 effect), φ1, φ2, and φ3 (the positive AR parameters), γ7 (the positive July effect),
and β5 and β6 (the positive Friday and Saturday effects). Other parameters significant at the 10%
level are β1 to β3 (the negative effects of Monday to Wednesday) and γ1 (the negative effect of
January). (Since April has the lowest average in Figure 5, one may find it surprising that January
has significant negative coefficient and not April. But the average for January becomes smaller
after removing the January 1 effect. Also, this estimation uses only the first 1096 days of data,
whereas Figure 5 combines all 1537 days). This gives a total of 13 significant parameters. We could
eliminate the other ones; we will do that in Section 3.4. Observe that ω2 (the Stampede effect) is
not significant; most of the increased volume during the Stampede days is captured by the July
effect. In fact, the average volume per day is about 186 during the Stampede days compared with
180 during the other days of July and 174 on average during the year.

We can also use this model to estimate the variance of the residuals Et in Model 1. Their sample
variance (7) underestimates σ2

E = Var[Et] because they are positively correlated. If we multiply
both sides of Equation (8) by Et and take the expectation, we get

σ2
E = E[E2

t ] = φ1γ1 + φ2γ2 + φ3γ3 + σ2
a = (φ1ρ1 + φ2ρ2 + φ3ρ3)σ2

E + σ2
a,

where γi = Cov(Et, Et−i) and ρi = Corr(Et, Et−i) for each i. Replacing all quantities in this last
expression by their estimates and resolving for σ2

E, we obtain σ̂2
E = 291.8 as an estimate of σ2

E. By
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Parameter a b ω1 ω2

intercept trend/month Jan. 1 Stampede
Estimate 149.3 0.031 60.5 2.7
St. error 3.3 0.003 11.0 4.5
p-val. of t-test < 0.001 < 0.001 < 0.001 0.544
Parameter β1 β2 β3 β4 β5 β6 β7

Mon. Tue. Wed. Thu. Fri. Sat. Sun.
Est. -4.2 -5.0 -5.3 -0.9 8.5 7.6 -0.8
St. error 2.5 2.5 2.5 2.5 2.5 2.5 2.5
p-val. of t-test 0.095 0.046 0.034 0.719 0.001 0.002 0.747
Parameter γ1 γ2 γ3 γ4 γ5 γ6 γ7

Jan. Feb. Mar. Apr. May Jun. Jul.
Estimate -5.6 -4.1 -2.5 -4.0 0.5 4.1 13.2
St. error 2.9 2.8 2.8 2.8 2.7 2.8 2.9
p-val. of t-test 0.048 0.152 0.358 0.149 0.849 0.138 < 0.001
Parameter γ8 γ9 γ10 γ11 γ12

Aug. Sep. Oct. Nov. Dec.
Estimate -1.3 -0.3 -4.3 0.3 4.1
St. error 2.8 2.8 2.8 2.8 2.8
p-val of t-test 0.627 0.928 0.121 0.916 0.150
Parameter φ1 φ2 φ3 σ2

a

Estimate 0.192 0.108 0.083 250.1
St. error 0.030 0.031 0.030 –
p-val. of t-test < 0.001 < 0.001 0.006

Table 1: Parameter estimates for Model 2

comparing with the estimate σ2
a = 250.1, we see that Model 1 has about 17% more variance than

Model 2.

3.3 Model 3: Adding cross effects

We now extend Model 2 by adding second-order terms to capture the interaction between the
day-of-week and month-of-year factors. We simply add the term

7∑

j=1

12∑

k=1

δj,kMt,j,k (11)

to the right side of (4) and subtract the same term inside the brackets in (9), where the indicator
variable Mt,j,k is 1 if observation t is on the jth day of the week and kth month of the year. This
introduces the additional model parameters δj,k, which must satisfy the identifiability constraints∑12

k=1 δj,k = 0 for each j and
∑7

j=1 δj,k = 0 for each k.
We found that the estimates for the parameters βj , γk, and ωi in this model were almost the

same as in Model 2. Table 2 gives the estimated values of the parameters that differ from those
of Model 2, together with the p-value of a t-test that the given parameter is zero. The estimated
variance of the residuals has been reduced to σ2

a = 241.5, about 4% less than for Model 2. The
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Figure 7: Diagnostic for normality of residuals for Model 2
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Figure 8: Diagnostic for (lack of) residual autocorrelation for Model 2
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Figure 9: Diagnostic for the normality of residuals, Model 3

diagnostics for the residuals are in Figure 9. The Ljung-Box test does not detect correlation in the
residuals (we have n = 1096, get Q = 5.394, and the p-value of the test is 0.944).

The slightly better fit of this model compared with Model 2 is obtained at the expense of a
much larger number of parameters and several of these parameters do not appear to be significant.
The next step is to remove them.

3.4 Model 4: Considering only the significant parameters

This model is a stripped-down version of Model 3, in which we keep only the parameters that are
significant at the 10% level (i.e., for which the p-value of the t-test in Table 1 or 2 is less than
0.10). In Table 2, 8 parameters δj,k and 3 parameters φi are significant at the 90% level. There are
10 other significant parameters in Table 1, for a total of 20. With the identifiability constraints,
there remain s = 15 independent parameters out of those 20. The same strategy of including only
the significant parameters from Model 3 could be used in other cities, but the set of significant
parameters will vary between cities, of course.

We reestimate the model with those parameters only (all other parameters are set at zero)
and obtain the values given in Table 3. All these parameters are significant. The most significant
interaction parameters δj,k are for Saturday in March (negative interaction) and Thursday in June
(positive interaction). Other mildly significant interactions, at the 10% level, are (by order of sig-
nificance) Saturday in December, Wednesday in November, Monday in March, Sunday in October,
Friday in June, and Monday in December.

The estimated variance of the residuals is σ2
a = 241.9. The diagnostics for the residuals are

in Figures 11 and 12. The Ljung-Box test does not detect correlation in the residuals (we have
n = 1096, get Q = 11.581, and the p-value of the test is 0.48).
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Mon. Tue. Wed. Thu. Fri. Sat. Sun.
Param. δ1,1 δ2,1 δ3,1 δ4,1 δ5,1 δ6,1 δ7,1 Jan.
Est. -0.3 5.0 4.6 -6.9 4.0 -6.3 -0.2
St. error 3.9 4.0 4.0 4.2 4.2 4.2 4.2
p-v. of t-test 0.942 0.210 0.256 0.102 0.339 0.137 0.965
Param. δ1,2 δ2,2 δ3,2 δ4,2 δ5,2 δ6,2 δ7,2 Feb.
Est. -5.4 5.6 3.7 -3.6 1.0 2.9 -4.2
St. error 4.2 4.1 4.2 4.2 4.2 4.2 4.2
p-v. of t-test 0.193 0.173 0.382 0.386 0.805 0.486 0.321
Param. δ1,3 δ2,3 δ3,3 δ4,3 δ5,3 δ6,3 δ7,3 Mar.
Est. 8.1 6.2 -3.7 6.2 0.5 -12.3 -4.9
St. error 4.1 4.2 4.1 3.9 3.9 4.2 4.2
p-v. of t-test 0.052 0.137 0.364 0.113 0.891 0.003 0.240
Param. δ1,4 δ2,4 δ3,4 δ4,4 δ5,4 δ6,4 δ7,4 Apr.
Est. 1.7 -3.7 0.4 4.2 -3.3 4.1 -3.4
St. error 4.2 4.2 4.2 4.2 4.2 3.9 3.9
p-v. of t-test 0.686 0.369 0.927 0.314 0.434 0.287 0.393
Param. δ1,5 δ2,5 δ3,5 δ4,5 δ5,5 δ6,5 δ7,5 May
Est. 5.6 -0.8 -0.5 0.1 -6.6 -1.8 4.0
St.err 3.8 3.9 3.9 4.2 4.2 4.2 4.2
p-v. of t-test 0.143 0.840 0.908 0.986 0.113 0.663 0.345
Param. δ1,6 δ2,6 δ3,6 δ4,6 δ5,6 δ6,6 δ7,6 Jun.
Est. -2.6 -4.5 -1.3 11.5 -6.7 3.0 0.7
St. error 4.1 4.1 4.2 3.8 3.9 4.2 4.2
p-v. of t-test 0.525 0.276 0.747 0.003 0.083 0.468 0.875
Param. δ1,7 δ2,7 δ3,7 δ4,7 δ5,7 δ6,7 δ7,7 Jul.
Est. -3.9 -4.6 1.5 0.2 6.6 1.8 -1.6
St. error 3.9 4.2 4.2 4.2 4.2 3.8 3.9
p-v. of t-test 0.324 0.269 0.728 0.954 0.112 0.649 0.685
Param. δ1,8 δ2,8 δ3,8 δ4,8 δ5,8 δ6,8 δ7,8 Aug.
Est. 6.1 4.7 -1.4 -0.8 -3.1 0.1 -5.4
St. error 4.2 3.9 3.9 3.9 4.2 4.2 4.2
p-v. of t-test 0.142 0.227 0.711 0.833 0.452 0.986 0.195
Param. δ1,9 δ2,9 δ3,9 δ4,9 δ5,9 δ6,9 δ7,9 Sep.
Est. -1.6 -5.3 -4.5 -2.3 2.9 4.9 5.9
St. error 7.1 6.8 6.7 6.7 5.4 5.8 7.9
p-v. of t-test 0.819 0.441 0.502 0.732 0.594 0.399 0.457
Param. δ1,10 δ2,10 δ3,10 δ4,10 δ5,10 δ6,10 δ7,10 Oct.
Est. 0.9 -1.5 -3.7 -6.8 3.2 0.8 7.1
St. error 4.0 4.0 4.2 4.2 4.2 4.2 3.9
p-v. of t-test 0.822 0.702 0.371 0.105 0.436 0.839 0.073
Param. δ1,11 δ2,11 δ3,11 δ4,11 δ5,11 δ6,11 δ7,11 Nov.
Est. -1.2 0.1 7.8 -2.2 4.5 -5.4 -3.5
St. error 4.3 3.9 3.9 3.9 4.1 4.1 4.6
p-v. of t-test 0.775 0.982 0.044 0.578 0.280 0.187 0.444
Param. δ1,12 δ2,12 δ3,12 δ4,12 δ5,12 δ6,12 δ7,12 Dec.
Est. -7.3 -1.1 -2.7 0.4 -3.1 8.2 5.7
St. error 4.3 4.3 4.2 4.2 3.9 3.9 4.0
p-v. of t-test 0.092 0.797 0.518 0.924 0.417 0.036 0.154

Param. φ1 φ2 φ3 σ2
a

Est. 0.213 0.126 0.085 241.5
St. error 0.030 0.031 0.031 -
p-v. of t-test < 0.001 < 0.001 0.006

Table 2: Parameter estimates for Model 3
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Figure 10: Diagnostic for the correlation between residuals, Model 3

Parameter a b ω1

intercept trend/month Jan. 1
Estimate 149.6 0.032 57.8
St. error 1.9 0.003 10.7
p-val. of t-test < 0.001 < 0.001 < 0.001
Parameter β1 β2 β3 β5 β6

Mon. Tue. Wed. Fri. Sat.
Est. -4.3 -5.3 -6.2 7.8 7.9
St. error 1.5 1.4 1.4 1.4 1.5
p-val. of t-test 0.004 < 0.001 < 0.001 < 0.001 < 0.001
Parameter γ1 γ7

Jan. Jul.
Estimate -5.7 12.4
St. error 2.9 2.7
p-val. of t-test 0.050 < 0.001
Param. δ1,3 δ6,3 δ4,6 δ5,6 δ7,10 δ3,11 δ1,12 δ6,12

Mon. Sat. Thu. Fri. Sun. Wed. Mon. Sat.
Mar. Mar. Jun. Jun. Oct. Nov. Dec. Dec.

Est. 7.9 -11.1 12.0 -7.1 8.3 8.5 -7.8 8.2
St. error 4.2 4.3 3.9 3.9 3.8 4.0 4.5 4.1
p-v. of t-test 0.060 0.010 0.002 0.069 0.029 0.034 0.083 0.046
Param. φ1 φ2 φ3 σ2

a

Est. 0.212 0.132 0.094 241.6
St. error 0.030 0.031 0.031 -
p-v. of t-test < 0.001 < 0.001 0.002

Table 3: Parameter estimates for Model 4
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Figure 11: Diagnostic for the normality of residuals, Model 4
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Figure 12: Diagnostic for the correlation between residuals, Model 4
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3.5 Model 5: A doubly-seasonal ARIMA process

We now consider a different model: an ARIMA model with two seasonal cycles. We decompose
our time series as

Yt = Nt + ω1Ht,1 + ω2Ht,2, (12)

where {Nt} is modeled as a doubly-seasonal ARIMA process and the other components capture
the special days (January 1 and Stampede days). Given the seasonality patterns across the weekly
and yearly cycle implied by the analysis in Section 2, we propose an ARIMA model with two
seasonal cycles: a weekly cycle, with period s1 = 7, and an approximate annual cycle, with period
s2 = 365. This choice of periodicities means that the conditional mean of Nt is regressed on Nt−365;
for example, January 1, 2004 is regressed on January 1, 2003. In other words, after eliminating
February 29 (which we did), this regression “aligns” the same dates across years.

The general form of a doubly-seasonal ARIMA model with periods s1 and s2 is (Box et al.,
1994; Brockwell and Davis, 1991; Wei, 1990):

φ(B)Φs1(B
s1)Φs2(B

s2)∇d∇d1
s1
∇d2

s2
Nt = θ(B)Θs1(B

s1)Θs2(B
s2)at, (13)

where ∇d
s = (1− Bs)d, φ, Φs1 , Φs2 , θ, Θs1 , and Θs2 are polynomial functions of order p, p1, p2, q,

q1, and q2, respectively, and {at} is a Gaussian white noise process. This model is referred to as an
ARIMA(p, d, q)× (p1, d1, q1)s1 × (p2, d2, q2)s2 process.

We follow a standard model-building protocol to identify the model (choice of the polynomial
orders and exponents d, d1, and d2), estimate the parameters (ω1, ω2, and the polynomial coeffi-
cients), and perform diagnostic checks (Box et al., 1994; Wei, 1990). ARIMA models with more
than one seasonal cycle are difficult to estimate in general, because the multiple seasonalities com-
plicate (13) with several operators, due to the multiplicative nature of the expressions involved.
A concrete selection criterion must be adopted for model selection. Here, we used Akaike’s infor-
mation criterion (AIC), discussed in Section 3.6. We keep the model with minimum AIC, subject
to non-rejection of the null hypothesis that model residuals are a white-noise process (Box et al.,
1994). Based on this criterion, we identify the following model for Nt:

(1− φ7B
7 − φ14B

14 − φ28B
28)(1− φ365B

365)(1−B)Nt = (1− θ1B)at. (14)

The parameters are estimated jointly via least squares based on (12) and (14), i.e., we find the
parameter values that minimize the sum of squares of the estimated residuals. The estimates are
given in Table 4, together with their p-values. Note that Model 5 has considerably fewer parameters
than the other models. It is also interesting to observe that for this model, the parameter ω2

(Stampede days effect) is highly significant, in contrast with Models 2 to 4. The explanation is
that there is no “July effect” term in the model.

3.6 Model comparison: Goodness of fit and forecast performance

In this section, we compare the five models in terms of their quality of fit and forecasting perfor-
mance. The results are in Table 5.

With respect to quality of fit, we report the standard error of model residuals, σ̂a, the number
s of parameters estimated, and Akaike’s information criterion (AIC, see Akaike (1973) and Wei
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Param. ω1 ω2

Jan. 1 Stampede
Est. 43.8 16.6
St. error 12.0 3.8
p-v. of t-test < 0.001 < 0.001
Param. φ7 φ14 φ28 φ365 θ1 σ2

a

Est. 0.064 0.103 0.082 0.128 0.905 251.7
St. error 0.03 0.03 0.03 0.04 0.01 -
p-v. of t-test 0.038 0.001 0.007 0.001 < 0.0001

Table 4: Parameter estimates, Model 5

(1990, page 153)). The AIC has the advantage of taking into account both the mean-square error
of the residuals and the number of estimated parameters in the model. It is designed to be an
approximately unbiased estimator of the Kullback-Leibler distance (or cross-entropy or relative
entropy) between the true model and fitted model. It is defined by

AIC(s) = n ln(σ̂2
a) + 2s, (15)

where n is the number of observations, s is the number of estimated parameters in the model, and
σ̂2

a is the maximum likelihood estimator of the variance of residuals, which is approximately the
same as the sample variance (10) under the assumption that the residuals are i.i.d. normal (Pierce,
1971). Bias-reduced variants known as the AICC are discussed, e.g., in Brockwell and Davis (1991,
pages 301–304). A model with minimal AIC is a good compromise between parsimony and small
(empirical) variance of the residuals.

The models of Sections 3.1 to 3.5 were fitted to the first 1096 days of data. We then used
the estimated models to forecast for the remaining 441 days (t = 1097, . . . , 1537), at forecast lag
ranging from 1 day ahead to 21 days ahead. The lag-` forecast error at day t is defined as

et(`) = Yt+` − Ŷt(`),

where Ŷt(`) is the forecast of Yt+` based on the information available on day t. Forecasts for doubly-
seasonal ARIMA processes obey fairly complicated recursive formulas; see, for example, Brockwell
and Davis (1991, pages 175-182), but forecasting software facilitates their computation.

Commonly used forecast-accuracy metrics are the Root Mean Square Error (RMSE) and the
Mean Relative Absolute Error (MRAE) at various forecast lags, defined in our case as

RMSE(`) =

√√√√ 1
442− `

1538−`∑

t=1097

e2
t (`) and

MRAE(`) =
1

442− `

1538−`∑

t=1097

|et(`)|
Yt+`

.

for lag `. The MRAE standardizes each forecasting error term by the corresponding process value
Yt+`, to reflect the idea that larger numbers usually require less absolute accuracy; it must be
used with caution because it may be inflated substantially by a few moderate absolute errors that
correspond to very small values |Yt+`|.
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Model 1 Model 2 Model 3 Model 4 Model 5
σ̂2

a 291.8 250.1 241.5 241.6 251.7
St.error of fit σ̂a 17.08 15.81 15.54 15.55 15.87
s 21 24 90 15 7
Degrees of freedom 1075 1072 1006 1081 1088
AIC(s) 6099 6194 6045 6068
RMSE(1) 17.82 15.38 15.31 13.91 15.68
MRAE(1) (in %) 7.58 6.14 6.14 5.72 6.91

Table 5: Comparison of models for daily arrivals
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Figure 13: Forecast RMSE(s) for Models 1 to 5, for forecast lags ` = 1, . . . , 21.

Table 5 summarizes the model evaluation. The upper part of the table collects information
on the fit with the data used for the estimation (the first 36 months). It recalls the estimated
variance of the residuals, σ̂2

a, then its square root σ̂a called the standard error of fit, the number
s of independent estimated parameters, the number n − s of degrees of freedom, and the AIC(s)
criterion (for Model 1, σ̂2

a is replaced by σ̂2
E, defined at the end of Section 3.2). According to the

AIC criterion, Model 4 is the winner, followed by Model 5 and then Model 2. It must be underlined,
however, that Model 5 was selected by minimizing the AIC over a class of ARIMA models, so the
AIC measure is biased to its advantage.

The second part of the table gives the RMSE and MRAE for the forecasts of lag 1. The RMSE
for lags 1 to 21 are displayed in Figure 13. For small lags, Model 4 is clearly the best model in
terms of forecast accuracy, followed by Models 2 and 3. For lags s ≥ 13 (approximately), RMSE(s)
is about the same for all models except Model 5, whose forecasts are much noisier. Encouragingly,
the AIC measure at the estimation stage has successfully identified the best model.

In interpreting the standard error of fit and the RMSE, it is helpful to recall from our preliminary
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data analysis that the average number of calls per day was about 174. If calls were generated by a
stationary Poisson process with a rate of 174 per day, then the standard deviation of the number of
calls per day would be

√
174 = 13.2. The Model 4 RMSE with a lag of 1 comes close to this value.

This suggests that, given knowledge of call volumes up to a certain point in time, the Poisson arrival
rate for the next 24 hours is almost deterministic. The RMSE for longer lags is higher, suggesting
that when modeling arrivals more than one day into the future, one should view them as being
generated by a Poisson process with a random arrival rate. The discussion at the beginning of this
Section outlines how one can quantify the distribution for the arrival rate.

4 Modeling hourly arrivals

Now that we have a good model of day-by-day call volumes, we turn to the modeling of hour-by-
hour call volumes. We will denote the number of calls during hour h by Zh, where h = 1, . . . , 24n
and n = 1537. We investigate two modeling and forecasting approaches. Both build on a model
for the daily call volume Yt and add to that model a component that divides the daily volume
across the 24 hours of the day. Our first approach is via the conditional distribution of the vector
of number of calls in each hour, given the total daily call volume. The second approach fits a
time-series model directly to the data at the hourly level.

4.1 Model 6: Modeling the conditional distribution

Here we use Model 4 for the daily arrival volumes, then assume that on day t, the conditional
distribution of the vector Zt = (Z24(t−1)+1, . . . , Z24t), given Yt, is independent of what happens on
days other than t. A simple candidate for this conditional distribution is a multinomial distribution
with parameters (N, p1, . . . , p24), where N = Yt. Each pi represents the probability that a randomly
selected call arriving during the day arrives in hour i. The vector (p1, . . . , p24) is called the daily
profile. Use of the multinomial distribution implies that the hours of occurrence of different calls
on day t are independent, conditional on Yt.

Figure 3 suggests that different days of the week should have different daily profiles; for instance,
Fridays and Saturdays have a very different profile than the other days. Based on a more detailed
analysis of our data, we regrouped the days of the week into four daily profile categories: (1)
Monday to Wednesday, (2) Thursday and Sunday, (3) Friday, and (4) Saturday. Each category c

has a different daily profile vector (pc,1, . . . , pc,24) for category c, for c = 1, 2, 3, 4. The probability
pc,i is estimated as the fraction of calls in category c that occur in hour i, i.e.,

p̂c,i =

∑n
t=1 Z24(t−1)+iPt,c∑n

t=1

∑24
h=1 Z24(t−1)+hPt,c

, (16)

for i = 1, 2, . . . , 24, where the indicator variable Pt,c is 1 if day t is in category c and 0 otherwise.
A positive aspect of this model is that the model for Yt remains exactly the same as before. We
could also use other distributions than the multinomial for the conditional distribution of Zt.

One way of testing the goodness-of-fit of this model is as follows. Under the multinomial
assumption, conditional on Yt and if day t is in category c, the chi-square statistic

Qt =
24∑

i=1

(Z24(t−1)+i − Ytpc,i)2

Ytpc,i
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should have approximately the chi-square distribution with 23 degrees of freedom if Ytpc,i is large
enough (e.g., larger than 5) for all i (Read and Cressie, 1988). So we could compute these Qt’s for
all days and compare their empirical distribution to the chi-square distribution. But it turns out
that Ytpc,i is often rather small (less than 5) for the night hours. For this reason, before applying
the test we regrouped four early morning hours, from 3:00 a.m. to 7:00 a.m., in a single period.
All other hours count for one period each. This gives m = 21 periods and the expected number
of calls in each period is at least 5 under the multinomial model. The probability that a call is in
period i on a day of category c is then

p̃c,i =





pc,i for i = 1, 2, 3,
pc,4 + pc,5 + pc,6 + pc,7 for i = 4,
pc,i+3 for i = 5, . . . , 21.

(17)

Let Z̃t,i be the number of calls in period i of day t. We have
∑m

i=1 Z̃t,i = Yt. For a day of category
c, conditional on Yt, our multinomial (null) hypothesis now states that Z̃t = (Z̃t,1, . . . , Z̃t,m) has the
multinomial distribution with parameters (Yt, p̃c,1, . . . , p̃c,m). To estimate the parameters p̃c,i, we
use the consistent estimators ˆ̃pc,i obtained simply by summing the p̂c,i’s of category 4 appropriately
and using the correct hour-to-period correspondence as in (17). Then, for large enough n, the
Pearson test statistic

Qm−1,t =
m∑

i=1

(Z̃t,i − Yt
ˆ̃pc,i)2

Yt
ˆ̃pc,i

, (18)

should have approximately the chi-square distribution with m − 1 = 20 degrees of freedom under
the multinomial model.

We computed the 1537 values of Qm−1,t for our data, and compared their empirical distribution
(distribution A) to the chi-square distribution (distribution C) via a Q-Q plot. Having found a
bit of discrepancy in the right tail, we thought that perhaps the chi-square distribution is not a
good enough approximation of the exact distribution of Qm−1,t under the multinomial model, so
we also generated (by simulation) a times series of 1537 successive realizations of Yt under Model 4,
then a sample of vectors Z̃t conditional on Yt under the multinomial distribution hypothesis, and
computed the corresponding values of Qm−1,t, for t = 1, ..., 1537. The empirical distribution of this
sample is called distribution B. Figure 14 shows a Q-Q plot of distribution A against distribution
B. The fit is excellent except in the right tail. The observations in the right tail correspond to days
where the observed daily profile differed significantly from the usual daily profile for that type of
day. This could be due to unusual (perhaps unpredictable) events that happened on those days.
This has occurred on Sunday October 29, 2000, Monday March 19, 2001, Friday April 13, 2001,
Monday September 30, 2001, Sunday October 28, 2001, Saturday October 28, 2002, Saturday May
21, 2003, and on January 1 of each year. For January 1, the different profile could be predicted
because it happens every year. We conclude that even though the fit is not perfect in the right tail,
it is generally good enough to justify the use of the multinomial model in practice, in particular for
purposes of forecasting.

We now turn to forecasting hourly volumes with this model. If h is the ith hour of day t, a
forecast of Zh made ` days before day t (at the end of day t− `, so ` = 1 means at the beginning
of day t) is simply p̂c,iŶt−`(`), where Ŷt−`(`) is the forecast of Yt as defined in Section 3.6 and c is
the category for day t.
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Figure 14: Q-Q plot of the empirical distribution A against the empirical distribution B of a sample
of Qm−1,t generated from Model 6 under the multinomial assumption.

To forecast Zh on the day that hour h occurs, we could use p̂c,iŶt−1(1), but we should be able
to do better by taking into account the information we have in addition to the call volume of the
previous days, i.e., the call volume on day t, up to hour h− 1. For example, suppose that at 11:00
a.m. we want call volume forecasts for each of the next 13 hours. We assume we already know
the number of calls during the first 11 hours of the day. If Wt,11 is that number, then a naive idea
would be to estimate the remaining call volume on day t as Ŷt−1(1)−Wt,11 and then use

p̂c,i(Ŷt−1(1)−Wt,11)
p̂c,12 + · · ·+ p̂c,24

(19)

as a forecast for the ith hour, for i > 11. This is a bad idea because a larger Wt,11 results in a
smaller forecast for the rest of the day, suggesting a negative correlation between the volumes over
the different hours of the day. In reality, the correlation is typically positive.

Let Wt,i = Z24(t−1)+1 + · · · + Z24(t−1)+i be the number of calls during the first i hours of day
t. Under our model, Ỹt = Ŷt−1(1) is a sufficient statistic for the information from previous days.
Using Bayes’ formula, the conditional distribution of Yt given Ỹt and Wt,i is

P[Yt = y | Ỹt, Wt,i = w] =
P[Wt,i = w | Yt = y] P[Yt = y | Ỹt]

P[Wt,i = w | Ỹt]
(20)

for all integers 0 ≤ w ≤ y. The distribution of Wt,i conditional on Yt = y is binomial with
parameters (y, pc,1:i), where pc,1:i =

∑i
`=1 pc,`. Even though Yt can only take integer values,

Model 4 approximates its distribution conditional on Ỹt by a normal with mean Ỹt and variance σ2
Y =

Var[φ−1(B)(at)]. This could be used to write down a specific expression for the probabilities in (20)
and computing them numerically. For Yt, the probability of any integer value y can be approximated
by integrating the normal density over the interval [y − 1/2, y + 1/2]. Note that conditional on
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Wt,i and Yt, the vector (Zt,i+1, . . . , Zt,24) has a multinomial distribution with parameters (Yt −
Wt,i, pc,i+1/(1− pc,1:i), . . . , pc,24/(1− pc,1:i)).

For forecasting, we may only need the conditional expectation E[Yt | Ỹt, Wt,i] instead of the
entire distribution (20). If we assume that the pair (Yt, Wt,i) has approximately a bivariate normal
distribution, which is close to the truth under our model when pc,1:i is not to close to 0 or 1 and Yt

has a large enough expectation, then we have (Hogg and Craig, 1995, page 93):

E[Yt | Ỹt, Wt,i = w] = Ỹt +
Cov[Yt,Wt,i | Ỹt]

Var[Wt,i | Ỹt]
(w − E[Wt,i | Ỹt]). (21)

But E[Wt,i | Ỹt] = pc,1:iỸt, Cov[Yt,Wt,i | Ỹt] = pc,1:iσ
2
a, and

Var[Wt,i | Ỹt] = EYt [Var[Wt,i | Ỹt, Yt]] + VarYt [E[Wt,i | Ỹt, Yt]]

= Ỹtpc,1:i(1− pc,1:i) + p2
c,1:iσ

2
a.

Combining this with (21), we obtain

E[Yt | Ỹt, Wt,i = w] = Ỹt +
w − pc,1:iỸt

(1− pc,1:i)Ỹt/σ2
a + pc,1:i

. (22)

We will see the results of applying this formula later in this section.

4.2 Model 7: An extension of Model 4 with an hour-of-day effect

We write this model as

Zh = pc,iYt + Wh

if h is the ith hour of day t and c is the category for day t, where the process Yt obeys one of the
previous day-to-day models and the process Wh is AR(q) for some q.

If Yt obeys Model 4, for instance, then the variance σ2
a of the residuals in that model would

have to be reduced, to account for the additional variance coming from the Wh’s. This gives the
following:

Zh = pc,i

[
Ŷt + Et

]
+

24∑

l=1

αlDh,l + Wh, (23)

where Dh,l = 1 if h is the l-th hour of the day and 0 otherwise, and {Et} and {Wh} are AR
processes.

An important distinction between Models 6 and 7 is the following. With Model 6, there is
positive correlation between the arrivals counts in different hours of the same day, regardless of the
distance between those hours, and the only correlation between the hours of two successive days is
due to the autocorrelations in the process Et. With Model 7, on the other hand, the correlation
between hours on the same day decreases with the distance between them and there is also an
additional correlation between hours on two successive days but that are close in time (e.g., Friday
evening and Saturday morning hours).

When we estimate the model, we add the two constraints
∑24

l=1 αl = 0 and
∑24t

h=24(t−1)+1 Wh = 0,
for t = 1, ..., n, and we force {Et} to be an AR(3) process as in models for days. We estimated the
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Figure 15: Diagnostic for residual normality, hourly model 7

process {Wh}. The largest (observed) lag for which the autoregressive parameter was significant at
the 5% level is lag 44, but few autoregressive parameters for lags larger than 25 were significant at
the 1% level. For this reason, we decided to retain an AR(25) model for Wh and an AR(3) model
for Et. We reestimated the model in (23) with these constraints. This is our Model 7. With it, we
obtained a standard error of fit of 3.6. The residuals diagnostic is shown on Figure 15.

4.3 Comparison of Models 6 and 7

We compare the forecasting performance of Models 6 and 7 by measuring the root mean square
error (RMSE) at different lags in the 441 days for t = 1097, ..., 1537. For h = 24(t− 1) + 1, ..., 24t,
we define the lag-r error at hour h by eh(r) = Zh+r − Ẑh(r), where Ẑh(r) is the forecast of Zh+r

based on the selected model. We consider two cases:
(1) For the forecasts of the 24 coming hours of day t when we are at the beginning of day t and

have Ỹt as a forecast of Yt from model 4, we measure the error by

RMSE(r) =

√√√√ 1
441

1536∑

t=1096

e2
24(t−1)(r);

(2) For the forecasts of the hours i = 12, . . . , 24 of day t after having observed the first 11 hours,
using the formula (22) to update the forecast of Yt for Model 6, we measure the error by

RMSE(r) =

√√√√ 1
441

1537∑

t=1097

e2
24(t−1)+11(r).

Table 6 gives a representative subset of the results. Overall, Model 6 outperforms Model 7
for both Case (1) and Case (2); its RMSE is never larger and it is often clearly smaller. For a
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Table 6: RMSEs by origin and horizon for the two hourly models.

Horizon r Model 6 Model 7
Case (1): 12 (11:00-12:00 a.m.) 3.1 3.5
Forecasts of Z24(t−1)+r to Z24t, 14 (1:00-2:00 p.m.) 3.1 3.9
at time h = 24(t− 1) 17 (4:00-5:00 p.m.) 3.5 3.9

23 (10:00-11:00 p.m.) 3.1 3.2
24 (11:00-12:00 p.m.) 3.2 3.3

Case (2): 1 (11:00-12:00 a.m.) 3.1 3.1
Forecasts of Z24(t−1)+11+r to Z24t, 3 (1:00-2:00 p.m.) 2.9 3.5
at time h = 24(t− 1) + 11 6 (4:00-5:00 p.m.) 2.3 3.7

12 (10:00-11:00 p.m.) 3.1 3.2
13 (11:00-12:00 p.m.) 3.1 3.1

very short horizon of one hour, it is not surprising that the two models perform about the same,
because they both catch the relatively strong correlation between two successive hours. For longer
horizons, they also perform about the same, presumably because the true correlation is not very
strong in that case. But for the values of r in between (horizons of a few hours), Model 6 clearly
performs better. For example, if we are at 11:00 a.m. (we have observed Wt,11) and want to predict
the volume of calls between 4:00 and 5:00 p.m. on the same day (6 hours ahead), the RMSE is 3.7
for Model 7 compared to 2.3 for Model 6. We also see the benefit of using information about the
call volume during the early hours of the day when forecasting for the latter part of the day. For
example, using Model 6 at 11:00 a.m. to forecast the call volume between 4:00 and 5:00 p.m., the
RMSE is 3.5 if we ignore the call volume from midnight to 11:00 a.m. but it drops to 2.3 if we
incorporate this information.

5 Conclusion

We have considered a variety of time series models for estimating and forecasting daily and hourly
EMS call volumes. EMS demand is influenced by when people work, commute, sleep, and cele-
brate, and our models attempt to capture these influences at least in part via yearly, weekly, and
daily seasonal cycles, as well as special treatment of New Year’s day and the Stampede, the most
important festival in the city we studied.

We used three basic approaches for daily call volumes: standard regression ignoring dependen-
cies, regression models with correlated residuals, and a third approach (doubly-seasonal ARIMA)
that takes into account a specific cross-effect dependency structure at the start and captures the
correlations between residuals as well. The usual interpretation of these models is that the first de-
terministic part captures the seasonal and non-seasonal components, and the second stochastic part
(errors) captures the effect of omitted or non-observable effects such as serial correlation. We find
that a model from the second category, that includes a selected subset of significant day-of-week
main effects, month-of-year main effects, and interaction terms, performs best when forecasting
one or two days into the future. The advantage of this model over the standard regression model
decreases as the length of the forecast horizon increases, and disappears at around two weeks.
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The doubly-seasonal ARIMA model performed poorly when forecasting more than a week into the
future.

For hourly call volumes, we used two approaches: one built around the conditional distribution
of hourly volumes, conditional on the daily volume, and another that fits a time-series model to
the hourly data. Both approaches can be combined with any of the daily call volume models that
we investigated, and we illustrated its use with the best-performing daily call volume model. We
also showed how one could compute intra-day forecast updates, which could be useful for real-time
staffing decisions. We found that the conditional distribution approach generally worked better.
We demonstrated that updating hourly forecasts using call volume from the early part of the day
can improve forecast accuracy considerably, at least for certain hours of the day.

The models we present are simple and practical, and could be used for routine forecasting for an
EMS system, as well as in simulation models of such systems. Our models that combine regression
and ARMA processes showed an improvement over pure seasonal ARIMA. We also demonstrated
the importance of modeling the effects of special days, day-of-week, and month-of-year.

Although we expect that the general approach described in this paper should be applicable in
other cities, it is important to investigate whether this is the case. In future research, it would be
interesting and useful to develop models that forecast the spatial distribution of demand, not only
based on time but also on demographic variables.
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