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We develop stochastic models of time-dependent arrivals, with focus on the application to call centers.
Our models reproduce three essential features of call center arrivals observed in recent empirical studies:

a variance larger than the mean for the number of arrivals in any given time interval, a time-varying arrival
intensity over the course of a day, and nonzero correlation between the arrival counts in different periods within
the same day. For each of the new models, we characterize the joint distribution of the vector of arrival counts,
with particular focus on characterizing how the new models are more flexible than standard or previously
proposed models. We report empirical results from a study on arrival data from a real-life call center, including
the essential features of the arrival process, the goodness of fit of the estimated models, and the sensitivity of
various simulated performance measures of the call center to the choice of arrival process model.
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1. Introduction
Telephone call centers have become an integral part of
the operations of many large organizations. With cen-
ters’ growing presence and importance in the orga-
nization, managing their operations more efficiently
has become an issue of significant economic inter-
est (Gans et al. 2003). In modeling and analyzing
call centers with quantitative methods, an important
issue is the modeling of external customer call volume
(we use equivalently the term demand). This demand
involves uncertainty and should thus be studied with
the appropriate statistical and stochastic techniques.
In this paper, we develop and study statistical

models of the arrival process. Our development is
influenced by two properties of call center arrivals
observed in recent empirical studies, namely, a vari-
ance that is considerably higher than implied by
Poisson arrivals (Jongbloed and Koole 2001) and
strong positive association between the arrivals in dif-
ferent periods within the same day (Tanir and Booth
1999). The models extend those proposed recently by
Jongbloed and Koole (2001) and Whitt (1999).
Brown and coauthors (2002) have also observed

positive correlation between the demands of succes-
sive days in call centers and have developed mod-
els that account for this dependency via a time series
component. This type of model can provide better
short-term (day-to-day) forecasting of the demand

than a model that assumes independence between
days. Here we focus on intraday correlations only. The
initial motivation for our models was to develop sim-
ulation tools for staffing and scheduling two weeks
in advance in a call center. (For the centers we were
involved with, union agreements specified that man-
agers would provide working schedules two weeks in
advance. Such constraints are frequent.) In this con-
text, the demand of the 14 days that precede the target
day is unknown, and a 14-day lag forecast of demand
for the target day based on time-series models would
have very little predictive power (time-series analysis
of our data set has confirmed this assertion). In short,
staffing decisions in call centers may have to be made
far in advance so that the target day may be rea-
sonably viewed as being independent of the current
information set.
Our aim is to build models of call centers that per-

mit one to estimate the expected value of certain per-
formance measures (proportion of customers whose
waiting time exceeds a given threshold, proportion of
calls lost due to customer’s abandonment, etc.) for a
given daily staffing via simulation. We seek a valid
model of the arrival process that is faithful enough
to reproduce the behavior of interest in the sys-
tem. A stronger positive correlation between demands
of successive periods during the day favors queue
buildup and therefore has an important impact on
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the performance measures. On the other hand, queues
do not build up across successive days. Modeling
the dependencies at that level can also be important
because it permits one to better forecast tomorrow’s
demand. But this is not our purpose here. On the
other hand, our models can be combined with a
time-series component for successive days, which we
briefly discuss at the end of the paper.
We will provide both theoretical and empirical evi-

dence of the improved modeling ability of the new
models within a day. The theoretical evidence is a
characterization of how the new models are more flex-
ible in modeling the variances and correlations of the
intraday arrival counts. Our empirical evidence is an
improved ability of the new models to reasonably
approximate the empirical means, variances, and cor-
relations simultaneously on our data set and to match
the behavior of a simulation model “bootstrapped”
by our arrival data. We study empirically the sensitiv-
ity of various call center performance measures to the
choice of arrival process model. The sensitivity anal-
ysis was executed via a simulation model of a Bell
Canada call center that was developed, validated, and
documented in Deslauriers (2003).
It is also important that the number of parameters

that we have to estimate in the new models remains
small, to avoid the danger of overfitting. As it turns
out, our models have fewer parameters than the one
proposed by Jongbloed and Koole (2001).
Although the model development was motivated

by a specific call center application, stochastic mod-
els of arrival counts capturing simultaneously a time-
varying arrival intensity and intraperiod correlation
may be useful in many other application areas. As
an example, we sketch the significance of such mod-
els for modeling and forecasting the arrival process of
reservation requests for seats in a flight. Such arrival
processes are typically observed by airlines as part
of yield-management practice, which aims to man-
age (that is, sell at an attractive price) the inven-
tory of seats. In typical airline yield-management
practice, an important component is the model that
forecasts future demand (reservation requests). The
arrival process typically occurs over a fixed time
horizon (typically the time period starting 360 days
before the departure of a flight) and occurs repeatedly
over many calendar days. In this setting, the feature
of time-varying arrival intensity is well known and
modeled by reservation profiles, which are estimates
of the time-varying arrival rate. Such profiles are rou-
tinely computed by airline yield-management depart-
ments or airline yield-management system providers
(Smith et al. 1992). The feature of correlation between
the arrival counts in different time periods over the
reservation horizon is less well understood and mod-
eled, partly because of the increased modeling com-
plexity required. However, it is clear that the presence

of nonzero correlation can be leveraged for forecast-
ing future demand based on the past (already real-
ized) demand, in a manner similar to that discussed
under Further Model Properties in §3.1.
Other potential applications are for modeling arri-

vals at ticket offices (for cinemas, museums, etc.), bus
stops and subway stations, fast-food restaurants, and
so on, where the arrival process is likely to behave in
a similar way as for call centers.
This paper is organized as follows. Section 2 con-

tains an introduction to some empirical aspects of call
center arrival patterns and reviews previous work on
modeling call center arrivals. In §3 we develop and
study three new models. In §4 we describe a case
study with arrival data from an actual call center,
including various data-specific findings, the empiri-
cal quality of the fitted models, and the sensitivity
of various performance measures of the call center to
the choice of alternative models of the arrival process.
Section 5 contains our conclusions and a perspective
on future application of this work.

2. Background
Four properties of call center arrival processes have
emerged in recent studies:

Property 1. The total daily demand (number of calls)
has overdispersion relative to the Poisson distribution (the
variance is greater than the mean) ( Jongbloed and Koole
2001, Deslauriers 2003).

Property 2. The arrival rate varies considerably with
the time of day (see Tanir and Booth 1999, p. 1643;
Deslauriers 2003).

Property 3. There is strong positive association (cor-
relation) between arrival counts in a time partition of a
day.

Property 4. There is significant dependency between
arrival counts on successive days (Brown et al. 2002).

The standard nonhomogeneous Poisson process
(that is, a Poisson process with a deterministic arrival
rate function), referred to in the future as model
NHPP, is inconsistent with both Properties 1 and 3. In
view of Property 1, Jongbloed and Koole (2001) pro-
posed a doubly stochastic model under which arrivals
follow a standard Poisson process with a random
arrival rate. They model the rate as a gamma random
variable, which results in the number of arrivals N
being a negative binomial random variable. To model
a time-varying arrival rate in their application, these
authors estimated independent versions of the model
for time periods having a priori different arrival rates.
That is, in the model of Jongbloed and Koole (2001),
referred to henceforth as Model 0, the different time
periods are randomized separately by independent
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gamma variables, and thus the correlations between
the arrival counts in different time periods within the
same day are constrained to be zero. On the issue
of correlations, we quote the authors: “Details on the
correlation between call volume in different intervals
fall outside the scope of this paper” (Jongbloed and
Koole 2001, p. 315).
To address the time-varying arrival rate while

allowing nonzero correlations, Whitt (1999) proposed
a doubly stochastic Poisson process model where
the arrival rate function over a day is of the form
��t�=Wf �t�, where the only random quantity is W ,
a real-valued random variable. This W can be inter-
preted as the (unpredictable) “busyness" of a day,
whereas f �t� models the time-varying arrival inten-
sity during the day. The presence and significance of
Property 3 are less well known but became apparent
in our case study. The new models introduced in the
next section capture simultaneously Properties 1–3.
Our models do not capture Property 4 because they
are for a single day, as explained in the introduction.
Note that a common practice in call center manage-

ment is to divide the day into equal (e.g., 30-minute)
periods; assume that the arrival rate over period i
is w
i, where the 
i are prespecified constants and
the real number w is a “guess” (or “estimate”) of
the “busyness” of that day; and use Erlang formulas
to approximate performance measures of the system
over each period. These formulas effectively assume
that the system is in steady state with arrival rate w
i
for each i. This is somewhat related to Whitt’s model,
but a major difference is that w is a constant factor in
one case and a random variable in the other case.

3. New Models of Arrival Counts
3.1. Model 1: Doubly Stochastic Poisson Model
We consider here a special case of the model pro-
posed by Whitt (1999) and introduced in §2, where
we make the particular assumption that the factor W
is gamma distributed. The motivation for consider-
ing this special case is that the joint distribution of
arrival counts turns out to be analytically tractable; it
is the negative multinomial distribution. This leads to
straightforward model estimation, variate generation,
and an analytical expression for the conditional mean
function.
Arrivals follow a Poisson process with random

arrival rate function ��t�, tS ≤ t ≤ tE, where tS and tE
are the time points in a day when operations begin
and end, respectively. Model 1 postulates that the
arrival rate function is randomized by a gamma
variable:

Model 1: ��t�=Wf �t�� W ∼Gamma���1�� (1)

where f is nonnegative and integrable on �tS� tE� and
characterizes the time variation of the arrival rate over
a day; Gamma���1� is the gamma distribution with
shape parameter � > 0 and scale parameter 1. The
function f captures the scale of the arrival rate, so
there is no loss in generality by taking the gamma
scale parameter as one.
Let tS = t0 < t1 < t2 < · · · < tk−1 < tk = tE denote

a partition of �tS� tE�. In applications, the partition
will be chosen based on considerations such as data
availability for model estimation, and the a priori
known approximate behavior of the arrival inten-
sity profile f �·�. Define the random vector of arrival
counts X= �X1�X2� � � � �Xk�, where Xi is the number
of arrivals in the time interval �ti−1� ti�, i = 1� � � � � k,
and define the total daily demand Y =∑k

i=1Xi. Let


i =
∫ ti

ti−1
f �t� dt� i= 1� � � � � k�

Proposition 1 characterizes the distribution of the
vector X as a negative multinomial distribution with
parameters ���
1� � � � �
k�. The probability mass func-
tion is

P�X= �x1�x2�����xk��

= ���+∑k
i=1xi�

����
∏k

i=1xi!
(

1

1+∑k
j=1
j

)� k∏
i=1

(

i

1+∑k
j=1
j

)xi

(2)

for �x1� � � � � xk� ∈ �0�1�2� � � ��k; see Johnson and Kotz
(1969, p. 292) for an account of this distribution.
The negative multinomial distribution is a multivari-
ate generalization of the negative binomial distribu-
tion, where both distributions’ most general definition
allows the parameter � to be positive real valued. For
the negative binomial, we use the parameterization of
Johnson and Kotz (1969) (which differs from that of
Shao 1999, for example), so a negative binomial ran-
dom variable with parameters � and 
 has mean �

and variance �
�1+
�. In the special case where � is a
positive integer, the negative multinomial has the fol-
lowing intuitive interpretation. Consider a sequence
of independent trials, where each trial has k+ 1 pos-
sible outcomes and the probability of occurrence of
outcome i is

pi =

i

1+∑k
i=1 
i

� i= 1� � � � � k� (3)

and pk+1 = 1−∑k
i=1 pi. We perform trials until exactly

� occurrences of outcome k + 1 are observed, and
we let Xi be the number of occurrences of outcome
i, i = 1� � � � � k. In this setting, we see immedi-
ately that the vector �X1�X2� � � � �Xk� has mass func-
tion (2). We denote the distribution defined in (2) as
NegMult���p1� p2� � � � � pk� pk+1�. Let CV�Z� denote the
coefficient of variation (CV) of a random variable Z.
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Proposition 1. (a) Under Model 1, the arrival count
vector X has the negative multinomial distribution with
parameters ���
1� � � � �
k�. The marginal distribution of
Xi is negative binomial with parameters ���
i� and the
marginal distribution of Y is negative binomial with
parameters ���

∑k
i=1 
i�.

(b) The conditional distribution of X given Y = y
is multinomial with y trials and success probabilities

i/

∑k
j=1 
j .

(c) Regardless of the choice of model parameters 
i, the
coefficients of variation of the Xi and Y are constrained as
follows:

CV2�Xi�−
1
EXi

=CV2�Y �− 1
EY

= 1
�

for all i� (4)

(d) The correlation between Xi and Xj , expressed in
terms of the means EXi, EXj , and the parameter � is

 
�1�
i� j ���=

1√
�1+��EXi�

−1��1+��EXj�
−1�

� (5)

Proof. Conditional onW , the components Xi of the
vector X are independent Poisson random variables
with rates W
i, respectively; this is a consequence of
the property of independent increments of a Poisson
process. The probability mass function of X can be
written in closed form:

f �1��x1�x2� � � � � xk�

=
∫ 


0

k∏
i=1

(
�
iw�

xi e−
iw

xi!
)(

w�−1e−w

����

)
dw

=
∏k

i=1 
i
xi

����
∏k

i=1 xi!
∫ 


0
w

∑k
i=1 xi+�−1 e−w

(∑k
i=1 
i+1

)
dw

=
(∏k

i=1 
i
xi
)
��

∑k
i=1 xi +��

����
(∏k

i=1 xi!
)(
1+∑k

i=1 
i
)∑k

i=1 xi+�
�

which can be rewritten as (2). We note that the inte-
gration argument above can be used to derive each
of the marginals of Xi and Y , proving that they are
all negative binomial. This proves (a). To prove (b),
we record the negative binomial mass function of Y ,
where for notational simplicity we use the parameters
pi instead of 
i:

fY �y�=
���+ y�

����y!
( k∑

i=1
pi

)y(
1−

k∑
i=1

pi

)�

� (6)

The required conditional distribution is the quotient
of (2) over (6); that is:

fX�Y �x1�����xk �y�

= ����+∑k
i=1xi�/����

∏k
i=1xi!�

∏k
i=1p

xi
i �1−

∑k
i=1pi�

�

�����+y��/�����y!���∑k
i=1pi�y�1−

∑k
i=1pi��

= y!∏k
i=1xi!

k∏
i=1

(
pi∑k
i=1pi

)xi

� (7)

proving (b). Result (c) follows by direct calculation
invoking the mean and variance of the negative bino-
mial distribution. Result (d) is a known property of
the negative multinomial distribution (Johnson and
Kotz 1969, p. 295). �

Remark 1. Item (c) characterizes how Model 1 gen-
eralizes model NHPP in terms of the variances of
Xi; under NHPP, the quantities in the left and mid-
dle of display (4) are constrained to equal zero. Item
(d) characterizes how Model 1 generalizes Model 0 in
terms of the correlation between Xi and Xj with i �= j ;
under Model 0, this correlation is constrained to equal
zero for all i �= j .

Further Model Properties. In this paragraph we
list further properties of the negative multinomial
distribution. The reader interested in derivations or
other properties not listed here may consult Johnson
and Kotz (1969). We note that the variance of each
marginal distribution (of the Xi as well as Y ) is higher
than the mean (Property 1); moreover, a variance
less than or equal to the mean cannot be induced
by this model. Note that the correlations are posi-
tive. The conditional distributions, given any subset
of the variates, are also negative multinomials. Thus,
Model 1 yields distributional forecasts of the remain-
ing demand (rather than point forecasts), given the
observed demand up to a given time point; such fore-
casts may have substantial value in short-term plan-
ning decisions (Gans et al. 2003). In particular, the
mean of the conditional distribution of Xj given any
subset of the Xi is a linear function of the sum of
the Xi:

E
[
Xj �Xi1

�Xi2
�����Xim

] = 
j

1+∑m
l=1
il

(
�+

m∑
l=1

Xil

)
for j �= i1�i2�����im� (8)

Parameter Estimation. Let �Xj= �X1�j � X2�j �����
Xk�j ��

n
j=1 be a sample of independent and identically

distributed observations of the vector X. The maxi-
mum likelihood estimators (MLEs) of the parameters
of the negative multinomial distribution satisfy the
following equations (Johnson and Kotz 1969):

M∑
l=1
��̂+l−1�−1Fl= log

(
1+ 1

n�̂

n∑
j=1

Yj

)
(9)

and


̂i=
∑n

j=1Xi�j

n�̂
for i=1�����k� (10)

where

Yj=
k∑
i=1

Xi�j for j=1�����n�

Fl=
1
n

n∑
j=1
1
{
Yj≥ l

}
for l=1�����M�
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1�·� denotes the indicator function, and M=maxj �Yj�.
Solving the nonlinear equation (9) will typically
require a numerical solver. Then the value of �̂ is sim-
ply plugged into (10).

3.2. Model 2: Seeking a More Flexible Covariance
Matrix

In our case study, the correlations corresponding to
the estimated Model 1 were too high relative to the
sample correlations (see §4.2). This motivated the
need to explore models that allow a richer covariance
structure for X.
We first considered modeling X by a multinomial

distribution with a fixed number of trials and success
probabilities that may be either constant or random.
Under this type of model, the sum of the compo-
nents is equal to the number of trials and is a param-
eter instead of being random, as required in our
setting; moreover, the correlations are always nega-
tive (Mosimann 1963), which is inconsistent with the
empirical evidence. A more general class of models
is obtained by allowing the number of trials in the
multinomial model to be random; Model 1 is a special
case with analytically tractable properties, as Proposi-
tion 1 showed.
A second class of multivariate discrete distributions

considered was the compound negative multinomial
distribution (Mosimann 1963), which generalizes the
negative multinomial distribution (i.e., it generalizes
Model 1) by allowing the parameters pi, i=1�����k,
in (3) to be random. Under the compound negative
multinomial distribution, the correlations supported
are always positive (Mosimann 1963). The particu-
lar case where the vector �p1�p2�����pk�pk+1� has a
Dirichlet distribution has been studied by Mosimann
(1963), who derived the mass function and moments
in closed form. We recall that the Dirichlet distribu-
tion � with parameters 'i>0, i=1�����k, is a mul-
tivariate generalization of the beta distribution. Its
density function is

fQ�q1�����qk�=
��'0�∏k
i=1��'i�

k∏
i=1
q
'i−1
i (11)

over the simplex ��q1�����qk�) qi≥0 for each i and
q1+···+qk=1� and zero elsewhere, where '0=

∑k
i=1'i.

Its genesis is as follows. Let Z1�����Zk be independent
random variables where Zi has the Gamma�'i�2� dis-
tribution for each i (when 'i is integer, this is the
*2 distribution with 2'i degrees of freedom). Then
the distribution of �Z1�����Zk�/

∑k
j=1Zj is Dirichlet

with parameters �'1�����'k�. In particular, we have
EQi='i/'0, Var�Qi�= �'i/'0��1−'i/'0�/�'0+1�, and
Cov�Qi�Qj�=−�'i'j�/�'

2
0�'0+1��. For a complete

account of this distribution, see Johnson and Kotz
(1969).

We define

Model 2:
�p1�p2�����pk�pk+1�∼��,1�����,k+1��

X∼NegMult�-�p1�p2�����pk�pk+1��

}
(12)

The conditional distributions, given any subset of
components of X, are of the same form; that is, they
are Dirichlet compound negative multinomial (see
Johnson and Kotz 1969, p. 312). Thus the results of
Mosimann (1963) yield closed-form expressions for
the conditional means. To generate X for this model,
once - and the Dirichlet parameters have been esti-
mated, first generate the vector �p1�p2�����pk�pk+1�,
compute the corresponding 
1�����
k by inverting (3)
(this gives 
i=pi/pk+1), then generate W and X just as
in Model 1. (This actually gives a method for generat-
ing variates from a compound negative multinomial
distribution.) Generating a vector from the Dirichlet
distribution can be accomplished directly from the
discussed genesis of the distribution following (11), if
we assume the availability of a generator of gamma
random variables.

3.3. Model 3: A Different Type of Flexibility
Our next model, denoted Model 3, will be shown to
be more flexible than all other models discussed so far
in certain aspects, including the range of induced cor-
relations. A summary of this is contained in Table 1.
To introduce Model 3, we start by defining the vector
of ratios

Q≡ �Q1�Q2�����Qk�≡ �X1/Y �X2/Y �����Xk/Y �� (13)

We assume Q is independent of Y , effectively pos-
tulating that the assignment of total daily demand
to time intervals follows a mechanism that is statisti-
cally independent from the daily volume. As a model
for Q, we use the Dirichlet distribution. This gives

Model 3:

Y ∼G�

Q∼��'1�����'k� and

independent of Y �

X̃≡ �X̃i�
k
i=1=YQ� and

X≡ �Xi�
k
i=1= �X̃��


(14)

where G is an unspecified univariate distribution
with mean /Y and variance 02

Y and �X̃�denotes the
componentwise rounding of X̃ to the closest integer.
This model has a substantially different genesis than
Model 1: It does not arise as a Poisson process (stan-
dard or doubly stochastic) and only specifies the dis-
tribution of the arrival-count vector X, without spec-
ifying a model for the interarrival times. As a model
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for interarrival times, we adopt the following natu-
ral approach. Conditional on X, the Xi arrivals occur-
ring in interval i are distributed uniformly on �ti−1�ti�,
as if the arrival count vector X were generated by a
Poisson process.
Model 3, in modeling the discrete vector X by

rounding the continuous vector X̃ to the closest inte-
ger, is not consistent with a counting process, and
this is a theoretically unattractive feature. However,
in many applications, the number of arrivals in time
intervals of practical modeling interest is large, and
in this case the distributions of X and X̃ will be indis-
tinguishable for practical purposes. In the remainder
of the analysis of Model 3, we do not distinguish
between these two objects and denote them both as X.

Model Properties. Regardless of the specification
of the distribution G in (14), the marginal and con-
ditional distributions of the Xi do not appear to cor-
respond to any distribution with analytically known
properties. However, the moments of Xi follow easily
from the moments of the distribution G and those of
the Dirichlet distribution. We have means

EXi=/Y

'i

'0
� (15)

variances

Var�Xi�=EY 2'i�'0−'i�

'20�'0+1�
+02

Y

'2i
'20

� (16)

and covariances

Cov�Xi�Xj� = E�Cov�Xi�Xj �Y ��
+Cov�E�Xi �Y ��E�Xj �Y ��

= E
[
Y 2

−'i'j

'20�'0+1�
]
+Cov

(
Y
'i

'0
�Y

'j

'0

)
= EY 2

−'i'j

'20�'0+1�
+02

Y

'i'j

'20

= 'i'j

'20

(
02
Y −

EY 2

'0+1
)
� i �= j� (17)

where we used the known moments of the Dirichlet
distribution. Proposition 2 below characterizes the
marginal variances and the correlation structure
of Model 3.

Proposition 2. Under Model 3:
(a) Regardless of the choice of model parameters 'i, the

coefficients of variation of the Xi are constrained as follows:

CV2�Xi�−CV2�Y �

1/EXi−1//Y

= /Y �1+CV2�Y ��

'0+1
for all i� (18)

(b) The correlation between Xi and Xj , expressed in
terms of the means EXi and EXj , is

 
�2�
i�j �'0� =

(
1+ /YEY 2/EXi

�'0+1�02
Y −EY 2

)−1/2

·
(
1+ /YEY 2/EXj

�'0+1�02
Y −EY 2

)−1/2
(19)

for all i �= j . The function  
�2�
i�j �'0� is continuous in '0, neg-

ative for '0∈ �0�/2
Y /0

2
Y �, and positive and strictly increas-

ing for '0∈ �/2
Y /0

2
Y �
�. We have  �2�i�j �/

2
Y /0

2
Y �=0,

lim
'0→0

 
�2�
i�j �'0� = −

[
02
Y

/2
Y

+
(
1+ 02

Y

/2
Y

)(
/Y

EXi

−1
)]−1/2

·
[
02
Y

/2
Y

+
(
1+ 02

Y

/2
Y

)(
/Y

EXj

−1
)]−1/2

and lim'0→
 
�2�
i�j �'0�=1 for all i �= j .

Proof. We prove Proposition 2 by direct manipu-
lation of the moments in (15), (16), and (17) and stan-
dard calculus. �

Parameter Estimation. In view of the assumed
independence of Y and the vector of ratios �X1/Y �����
Xk/Y �, the estimation problem for Model 3 decom-
poses into two separate estimation problems: esti-
mation of the distribution G and estimation of the
parameters '1�����'k. The Dirichlet density is given in
(11), and maximum likelihood estimation based on a
sample of independent, identically distributed obser-
vations �Qj �

n
j=1 is straightforward.

3.4. Comparison Between Models
Proposition 2(b) shows the increased flexibility of
Model 3 compared to Models 1 and 2 in terms of
correlations; in the latter models, the induced correla-
tions are constrained to be nonnegative. Proposition
2(a) characterizes the increased flexibility of Model 3
compared to Models 1 and 2 in terms of variances, as
we now explain. Under all three models regardless of
the choice of model parameters, we have

CV2�Xi�−CV2�Y �

1/EXi−1/EY
=1 for all i� (20)

where 1 is a constant that depends on the model
parameters and whose explicit expression is given
below. In other words, the ratios of excess coefficient
of variation (CV) of each Xi relative to Y , normalized
by the difference in the respective inverse means, are
constrained to be equal across all i. Under Model 1, by
rearranging terms in (4), we obtain 1=1. For Model 2,
with �p1�p2�����pk�pk+1� distributed as ��l1�����lk�lk+1�,
a direct calculation based on the moments derived
by Mosimann (1963) shows 1= �lk+1−1+-�/�lk+1−2�,
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Table 1 Comparison of Excess Dispersion of Y , Correlations, and �, the Excess Dispersion of Xi

Relative to Y , Under Various Models

Model CV2
�Y �−1/�Y 	i
j � Conditional distributions

NHPP 0 0 0 Indep. Poisson
Model 0 >0 0 1 Indep. negative binomial
Model 1 >0 >0 1 Negative multinomial
Model 2 >0 >0 >1 Dirichlet compound

negative multinomial

Model 3 >, =, or <0 >, =, or <0 >, =, or <1, No closed form
if CV2

�Y �−1/�Y > −1;
<1, otherwise

with the constraint 1>1 (the model’s variances are
finite only if lk+1>2). For Model 3, Proposition 2(a)
established 1=/Y �1+CV2�Y ��/�'0+1�. Thus, Model 3
with /Y �1+CV2�Y ��>1 allows, via '0, values of 1
on either side of one, and ranging anywhere in
�0�/Y �1+CV2�Y ���. Note that /Y �1+CV2�Y ��>1 is
equivalent to CV2�Y �−1//Y >−1, which is a weaker
condition than CV2�Y �−1//Y >0, the condition on the
distribution of Y that constrains both Models 1 and 2.
The above discussion immediately suggests a test

of the null hypothesis that an arbitrary random vector
X is distributed under Model 1 with the parameters
left unspecified. We define the statistical functional of
the distribution of X,

2≡ 1
k

k∑
i=1

(
CV2�Xi�−CV2�Y �

1/EXi−1/EY
−1

)
� (21)

which measures the aggregate excess dispersion of
the Xi relative to Model 1 (under Model 1, 2=0). We
have 2=1−1 under Models 1 to 3, but not for the
general case where X has an arbitrary distribution.
Let 2̂ be a straightforward estimator of 2, obtained
by replacing the means and CVs in the expression of
2 by their sample counterparts. This 2̂ can be used
to test the null hypothesis H0) 2=0 against the alter-
natives H1) 2>0 and H2) 2<0, corresponding to the
cases that the components of X have overdispersion
or underdispersion relative to Model 1, respectively.
The distribution of 2̂ is unknown, but one approach
to executing this test is via bootstrapping methods.
See §4.2 for the results of the test in our case study.
Table 1 summarizes certain properties of models

NHPP, Models 0, 1, 2, and 3, specifying the increased
flexibility achieved by the latter models. Estimation
and variate generation (for simulation studies) are
easy for all the models.

4. Case Study: A Bell Canada
Call Center

For the typical call center, the available data
on customer arrivals is the aggregate number of

arrivals observed over short intraday time intervals
(Gans et al. 2003). For the example considered here,
the data correspond to 25 half-hour intervals between
tS=8:00 a.m. and tE=8:30 p.m. on each of the five
working days of the week. The data cover a period of
a little less than one year.
In §4.1 we discuss the preliminary data analysis

that confirmed Properties 1–3. Section 4.2 contains the
model estimation and the empirical quality of model
fit. In §4.3 we study empirically the sensitivity of var-
ious performance measures of the call center to the
choice of arrival process model.

4.1. Preliminary Data Analysis
The hypothesis that the arrivals follow a standard
Poisson process (allowing the general nonhomoge-
neous case) was immediately rejected. Specifically, the
arrival counts in all time intervals show significant
overdispersion relative to the Poisson distribution
(Property 1). As an indication of the overdispersion,
the daily total number of arrivals, Y , had sample
mean 1,201 and sample variance 53,419; the marginal
distributions of the Xi exhibited similar overdisper-
sion. Deslauriers (2003) provides further empirical
analysis.
Given the a priori knowledge that the traffic pat-

tern varies substantially across the days of the week,
we began the statistical analysis with a multivari-
ate analysis of variance test for the multivariate (25-
dimensional) vector X. The statistical decision prob-
lem is to cluster the five populations corresponding to
each day of the working week so that different clusters
have a different mean vector X (in the statistically sig-
nificant sense). The test’s main results were as follows:
(a) There are three statistically different populations;
and (b) the best clustering of the five populations to
three clusters is Monday, Friday, and the aggregate
Tuesday/Wednesday/Thursday. In the remainder of
the paper, all reported results correspond to the aggre-
gate population Tuesday/Wednesday/Thursday, un-
less otherwise indicated. Moreover, the arrival rate
is clearly time varying (Property 2), as evidenced by
a multiple comparisons test via Tukey’s studentized
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Figure 1 Scatter Plot �X−�m�
X+�m�� for m=4 (10:00 a.m.)
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range distribution. The details are omitted, in light
of the well-known existence of this effect.
Figure 1 contains a scatter plot of the future

demand X+�m�≡
∑25

i=m+1Xi against the past demand
X−�m�≡

∑m
i=1Xi for m=4, corresponding to 10:00 a.m.

The strong positive dependence between past and
future demand within the same day is evident
(Property 3). Scatter plots for other time points
revealed a strong positive dependence of comparable
magnitude.

4.2. Model Estimation and Empirical Quality of Fit
The hypothesis test discussed after Proposition 2
allows a modeler to test the appropriateness of
Model 1 before proceeding into parameter estimation.
This test was executed by inverting a nonparamet-
ric confidence interval for 2 obtained by the hybrid
bootstrap method (Shao 1999, p. 456). Based on a
bootstrap sample of size 2,000, a 95% confidence inter-
val for 2 is (0.239, 0.568). (We verified by Monte Carlo
simulation that the sample size 2,000 is sufficient for
approximating the distribution of the bootstrapped
statistic with negligible error.) The estimated positive
2 suggests that the individual arrival counts Xi are
more dispersed relative to the total arrival count Y
than as predicted under Model 1. This gives some evi-
dence against Model 1.
Model estimation was done for all three models

via maximum likelihood (we completed the spec-
ification of Model 3 by taking G as the gamma
distribution; fitting a negative binomial gave essen-
tially identical results). We attempted to validate the
hypothesis of independence between Y and Q as fol-
lows. Figure 2 depicts the sample correlation function
g�i�≡Corr�log�Y ��log�Xi/Y ��, i=1�����25, with a 95%
confidence interval at each value of i. (Note that the
confidence band depicted does not correspond to a
simultaneous confidence interval for all 25 values of i;

Figure 2 Function g�i�≡Corr�log�Y �
log�Xi/Y ��, i=1
���
25
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Note. (Solid line), point estimate; (dashed line), 95% confidence band. For
each estimate 	̂, the confidence band is based on an asymptotic normal dis-
tribution of 0�5log��1+ 	̂�/�1− 	̂��, with an approximate variance equal to
1/�n−3�, where n is the sample size.

such a simultaneous interval could be computed via
the Bonferroni inequality and would be wider. This
also applies to the other figures where confidence
bands are depicted. The lines joining the observations
are only visual artefacts to improve readability.) Two
of those 25 confidence intervals (at i=2 and i=22)
fail to cover zero. Thus, there is mild evidence against
the independence assumption, but it is not strongly
violated.
We compared the quality of model fit as fol-

lows. First, as expected, the fitted means under all
models were essentially indistinguishable from the
corresponding sample means. We thus concentrated
on assessing the quality of fit by the CVs and the
correlations of the Xi. Figure 3 compares the sample
coefficients of variation of Xi, i=1�����25 (including
a nonparametric 95% confidence interval for each i)
to the exact values under the estimated models based
on the same data set. The data provide evidence that
Models 1 and 2 underestimate the CVs toward the
end of the day, whereas Model 3 appears to overes-
timate the CVs at the beginning of the day, but to a
lesser extent. Overall, no model is a clear winner with
respect to “fitting” the coefficients of variation of the
Xi.
The primary motivation for introducing the new

models was in fact to better fit the correlation struc-
ture of the Xi. To assess the effectiveness of models
in fitting these correlations we focus on the function
 �m�≡Corr�X−�m��X+�m��, m=1�����25, that is, the
correlation between past demand X−�m� and future
demand X+�m� as a function of the “observation”
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Figure 3 Comparison of Sample Coefficients of Variation of Xi , i=1
���
25, to the Exact Values Under Estimated Models
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Notes. Point estimate and 95% confidence band (solid lines with �) and exact values under estimated models Model 1 (dash-dotted line with +), Model 2
(dash-dotted line with ×), and Model 3 (dotted line with ∗). Confidence intervals are obtained by the hybrid bootstrap method.

time point m �1≤m≤25−1�. This approach simply
reduces the number of correlations examined (instead
of examining the k×�k−1�/2 correlations between the
Xi, we examine only k−1 correlations). Figure 4 com-
pares the sample function  ̂�m� (estimated by the
entire data set, with a 95% confidence interval for each

Figure 4 Comparison of Sample Correlation Function 	�m�≡Corr�X−�m�
X+�m��, m=1
���
25 to the Exact Function Under Estimated Models
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Notes. Point estimate and 95% confidence band (solid lines with �) and exact function under estimated models Model 1 (dash-dotted line with +), Model 2
(dash-dotted line with ×), and Model 3 (dotted line with ∗). Confidence intervals are obtained by the hybrid bootstrap method.

m) to the exact function  �m� under the estimated
Models 1 to 3 (based on the same data set). It is seen
that all three models tend to overestimate the correla-
tions but are enormous improvements over Model 0,
which assumes zero correlation. Model 3 is the empir-
ical winner, followed by Model 2 and then Model 1.
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Table 2 Performance of Estimated Models 2 and 3 with Respect to the
Measure � of Overdispersion Relative to Model 1

95% Conf. � of � of
Nonparametric interval estimated estimated

Cluster estimate �̂ for � Model 2 Model 3

Monday 0.285 (0.150, 0.481) 0.110 0.536
Tuesday–Thursday 0.406 (0.239, 0.568) 0.234 0.709
Friday 0.465 (0.266, 0.738) 0.257 0.602

Finally, we report the empirical fit of Models 2 and 3
with respect to 2, the measure of overdispersion rel-
ative to Model 1. For each of the three different clus-
ters of days, Table 2 shows the estimate 2̂ discussed
after the definition (21), a 95% confidence interval for
2, and the value of 2 under the estimated Models 2
and 3. The estimated Models 2 and 3, while remov-
ing the modeling constraint 2=0 of Model 1, appear
to underestimate and overestimate 2, respectively.

4.3. Sensitivity of Call Center Performance to
Arrival Process Model

In this section we study empirically the sensitivity
of various call center performance measures to the
choice of alternative models of the arrival process.
The sensitivity analysis was executed via a simula-
tion model of the Bell Canada call center (Deslauriers
2003). The call center handles two types of calls,
inbound and outbound, and is staffed by two types
of agents, inbound only and blend.
The center handles only inbound calls during the

period 8:00 a.m.–2:00 p.m. (inbound mode) and han-
dles both inbound and outbound calls during the
2:00 p.m.–8:30 p.m. (blend mode). Tables 3 and 4 con-
tain the arrival process and all other model parame-
ters, respectively.
For NHPP, the number of arrivals in period i is

Poisson with rate 
0i . For Model 0, the number of
arrivals is negative binomial with parameters ri, si,
where ri is the number of successes and si=1/pi−1,
where pi is the success probability. Arrival process
parameters, in addition to those presented in Table 3
are for Model 1, �̂=36�49; for Model 2, -̂=48�47 and
,̂26=213�55; for Model 3, the estimated moments of
the Gamma distribution of Y are /̂Y =1�169�95 and
0̂2
Y =38�655. Each customer abandons with probability
0.005 upon being asked to wait; otherwise, he or she
joins the queue and abandons if his or her patience
time is exceeded. The patience times are i.i.d. expo-
nentially distributed with mean 1/7i in period i. The
inbound service times have the gamma distribution
with parameters �1i�8i� in period i. For the outbound
service times (only), we used kernel density estima-
tion based on a sample of more than 50,000 individual
observations. In blend mode, when the total number
of idle agents is at least 4 and z≥1 of them are blend

Table 3 Arrival Process Parameters

Model 0
Period NHPP Model 1 Model 2 Model 3
i �0

i ri si �i �i �i

1 24.7 15.6 1.57 0.67 108.2 14.6
2 37.0 60.2 0.61 1.01 164.4 22.5
3 50.0 36.8 1.35 1.37 221.0 30.2
4 56.6 36.7 1.54 1.55 251.3 34.1
5 59.4 36.4 1.63 1.62 264.0 35.9
6 59.1 40.9 1.44 1.61 262.0 35.7
7 60.7 25.0 2.42 1.66 269.8 36.4
8 57.9 24.6 2.35 1.58 254.0 34.7
9 54.7 24.8 2.20 1.50 241.5 32.8

10 54.8 25.2 2.17 1.50 241.1 32.8
11 56.7 21.7 2.60 1.55 251.4 33.9
12 53.9 25.1 2.15 1.47 239.1 32.3

13 54.2 22.8 2.37 1.48 240.2 32.4
14 52.5 23.3 2.25 1.43 231.1 31.4
15 53.4 42.8 1.24 1.46 235.7 32.3
16 56.7 36.1 1.56 1.55 250.0 34.2
17 58.2 47.7 1.22 1.59 255.9 35.3
18 53.0 27.7 1.91 1.45 234.1 31.8
19 43.6 21.0 2.07 1.19 191.4 26.0
20 39.5 26.4 1.49 1.08 173.6 23.7
21 34.0 21.3 1.59 0.93 148.3 20.4
22 30.6 14.8 2.06 0.84 136.2 18.1
23 25.5 16.7 1.52 0.69 112.6 15.1
24 23.2 19.1 1.21 0.63 102.9 13.9
25 18.7 10.9 1.71 0.51 83.4 10.9

Table 4 Parameters of the Simulation Model

Inbound serv.
Outbound Mean time (sec)

Period success patience time # Inbound # Blend
i prob. �i 1/�i (sec) �i �i agents agents

1 0 400 0.729 817.0 10 0
2 0 400 0.729 817.0 16 0
3 0 400 0.729 817.0 21 0
4 0 700 0.729 817.0 23 0
5 0 700 0.729 817.0 24 0
6 0 600 0.729 817.0 24 0
7 0 600 0.729 817.0 24 0
8 0 600 0.729 817.0 24 0
9 0 600 0.620 927.6 22 0

10 0 600 0.620 927.6 22 0
11 0 500 0.620 927.6 28 0
12 0 500 0.620 927.6 26 0

13 0�27 500 0.620 927.6 23 5
14 0�27 500 0.620 927.6 22 11
15 0�28 500 0.755 753.8 22 15
16 0�29 500 0.755 753.8 22 17
17 0�29 500 0.755 753.8 20 16
18 0�30 500 0.553 996.9 17 14
19 0�33 500 0.553 996.9 15 11
20 0�37 500 0.553 996.9 8 16
21 0�40 500 0.553 996.9 4 17
22 0�38 500 0.518 981.6 3 16
23 0�41 500 0.518 981.6 3 15
24 0�41 100 0.518 981.6 3 17
25 0�41 50 0.518 981.6 3 15
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Table 5 Sensitivity of Various Performance Measures to Choice of Alternative Arrival Process Models (Entire Day’s Operation)

NHPP Model 0 Model 1 Model 2 Model 3 Data

Quality of service 92±� 89�1±� 88�7±� 88�1±� 87�7±� 88�1±0�2
Abandonments per day 15�6±0�1 23�4±0�1 24�4±0�2 26�4±0�3 27�8±0�3 26�9±6�8
Calls served per day 1154�1±0�3 1146�3±0�4 1144�6±1�4 1152±1�3 1141±1�4 1143�1±30�6
Agent utilization (%) 71�2±� 70�7±� 70�6±� 70�8±� 70�4±� 70�5±1
Mean waiting,

all calls (sec) 5�1±� 8�8±0�1 9�6±0�1 10�4±0�1 11�2±0�1 10�6±2�3
Mean waiting,

queued calls (sec) 44�9±0�2 60�1±0�2 63�2±0�3 65�6±0�3 68�7±0�3 68±5�2

Note. The performance measure quality of service is defined as the percentage of calls having waited less than 20 seconds before
being answered.

agents, the system dials 2z outbound calls in parallel;
the number of successful outbound calls is a bino-
mial random variable with 2z trials and success prob-
ability :i for period i; outbound calls that cannot be
immediately answered are lost. The time required for
the dialer to start the call is exponentially distributed,
with a mean of 2 seconds.
We compare the estimated performance measures

for the input models discussed in the paper and for a
data-driven model to be explained later. Table 5 sum-
marizes the results for the entire day of operation,
whereas Table 6 provides results for the inbound-
only mode of operation (8:00 a.m.–2:00 p.m.). The
results are more sensitive to the arrival model in the
inbound-only mode than in the blend mode, because
in the latter mode the outbound calls “smooth out”
the workload variations. For each performance mea-
sure, we report the estimated daily mean and the
half-width of a 95% confidence interval (half-width
entries ; correspond to values less than 0.05), based
on 60,000 independent replications for models NHPP
to Model 3. First, we observe that certain perfor-
mance measures are not very sensitive to the input
model (quality of service, agent utilization, and calls
served per day), while the number of abandonments
and customer waiting times appear to be more sen-
sitive. The most striking evidence of the influence of
arrival process model on estimated performance is

Table 6 Sensitivity of Various Performance Measures to Choice of Alternative Arrival Process Models (Inbound Operation Only
8:00 a.m.–2:00 p.m.)

NHPP Model 0 Model 1 Model 2 Model 3 data

Quality of service 89�8±� 85�3±� 84�5±� 83�5±� 83±� 83�8±0�3
Abandonments per day 10�3±0�1 16�9±0�1 18�1±0�2 19�8±0�2 21±0�2 20�1±6�1
Calls served per day 615�7±0�2 609�1±0�3 607�6±0�7 612±0�7 605�3±0�7 606±15
Agent utilization (%) 66�7±� 66±� 65�8±0�1 66�3±0�1 65�6±0�1 65�6±1�6
Mean waiting,

all calls (sec) 6�7±0�1 12�8±0�1 14�5±0�1 15�9±0�2 17�1±0�2 16�2±3�7
Mean waiting,

queued calls (sec) 51�3±0�3 71�6±0�3 77�5±0�3 80±0�3 84�2±0�4 83�9±6�3

Note. The performance measure quality of service is defined as the percentage of calls having waited less than 20 seconds before
being answered.

offered by the mean waiting time of all calls, which is
more than doubled as we go from NHPP to Model 3.
Second, system performance (across all performance
measures) is decreasing in the order NHPP, Models 0,
1, 2, and 3. This last result is not surprising, in view
of the following: X has substantially higher marginal
variances under Models 0, 1, 2, and 3 relative to
NHPP; X has positive covariances under Models 1, 2,
and 3 against zero covariances under Model 0; X has
increasing variances in the order Models 1, 2, and 3, as
seen in Figure 3. We conclude that insights obtained
from a simulation model of the call center are sensi-
tive to the choice of arrival process model.
The data-driven simulation experiment (col-

umn “data”) in the tables has been performed
as follows. Our data set has observations for
120 days corresponding to the cluster Tues-
day/Wednesday/Thursday. For each of these 120
days, we made 500 simulation runs of the model with
exactly the same arrival count as in the data for each
half hour. These arrivals were randomized uniformly
over the half hour. These randomizations and all
other random variables in the simulation model were
independent across the 500 runs. This gave a total of
60,000 runs, which were dependent because many of
them used the same arrival counts. We then took the
average of each performance measure of interest over
the 500 runs associated with each of the 120 days in
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the data, in order to obtain 120 “independent” obser-
vations and then compute confidence intervals in a
standard way. These confidence intervals turn out to
be rather wide, because the variance of the arrival
counts of the 120 days in the data set is large, and no
matter how many simulation runs we perform, this
part of the variance is never reduced. Models 2 and 3
provide performance measures that are closer to the
averages provided by the data-driven simulation
than the other models, especially for the number
of abandonments and waiting times. However, the
results of Model 1—and of Model 0 for many of
the performance measures—are also inside the wide
confidence intervals of the data-driven model. Thus,
there is too much variance in our data to conclude
that any of the Models 1 to 3 produces an output that
behaves closer to the data-driven model, with statis-
tical significance. It seems clear, on the other hand,
that these three models behave better than NHPP
and Model 0.

5. Conclusion and Application
Perspective

We developed and studied models that simultane-
ously capture three features of an arrival process
observed repeatedly over a fixed finite horizon (that
is, a day), namely, overdispersion compared with a
Poisson process, a time-varying arrival intensity over
the course of the horizon, and nonzero covariance
between the arrival counts in different time periods
within the horizon. Our study of the arrival process to
a Bell Canada call center has confirmed the simulta-
neous presence of these properties, and a strong posi-
tive association between arrival counts was observed.
Simple-to-use models such as NHPP (nonhomoge-
neous Poisson process) and Model 0 of Jongbloed
and Koole (2001), while capturing a time-varying
arrival intensity, do not support correlation between
arrival counts in different time periods within the
arrival horizon. Moreover, we have shown in §4.3
that simulation-based call center performance mea-
surement is sensitive to the arrival-process model and
more particularly to the presence of correlation. This
establishes the need for more advanced modeling of
the arrival process for future applications.
Models 1 and 2 are particular cases of dou-

bly stochastic Poisson processes that are especially
appealing in light of their easy-to-use parameter esti-
mation, variate generation, and forecasting. We have
identified and characterized one aspect of the lack
of fit of Model 1 via the statistical functional 2 mea-
suring the degree of overdispersion of the interval-
level arrival counts relative to the total (daily) arrival
count, where overdispersion is with respect to a ref-

erence Model 1. We developed the Dirichlet Model 3
and characterized how it increases the flexibility of
induced moments relative to Models 1 and 2. We have
also documented the superiority of Models 1 to 3 rel-
ative to NHPP and Model 0 in our case study.
We note that the new models can be easily adapted

to handle distinct classes of arriving “jobs,” where
jobs may include distinct classes of calls and possibly
other types of requests, for example, electronic mail
or chat (Koole and Mandelbaum 2002). One simple
approach to such adaptation is to model the aggregate
arriving jobs with the standard models presented here
and then assign each arriving job item to a particular
class by sampling a discrete distribution correspond-
ing to the different job items. This approach preserves
the features of time-varying arrival rate and induced
correlations for each distinct job class.
Our Models 1 to 3 are for a single day of a call

center’s operation. This does not mean that all days
must be assumed to be independent and to have the
same distribution parameters. For example, the distri-
bution of W for Model 1 can be different for different
days of the week or may be on any type of available
information (that is, it is the first working day after
a holiday, a new promotional campaign has just been
launched for a given service, etc.). In particular, the
values of W for successive days may be statistically
dependent and may be modeled by a time series. In
all cases, it suffices to replace the distribution of W
in Model 1 by its conditional distribution given the
available information. If the model is built so that this
conditional distribution is gamma, then our devel-
opment for Model 1 applies for each day. Similarly,
Model 3 can be extended to allow a conditional distri-
bution of Y given available information. Such models
that incorporate day-to-day dependency are certainly
worthy of further development and investigation, but
this is beyond the scope of the present paper. Devel-
opments in that direction can be found in Brown et al.
(2002).
In the context of call center management with

respect to operational efficiency, we envision two uses
of the models developed. First and foremost, in simu-
lation or analytical studies of call centers, the models
aim to be valid, faithful representations of the arrival
process. Second, by capturing the strong dependence
between the arrival counts in different time periods
within the same day, the models yield as a natural
byproduct a predictive distribution of future demand
within the day, given the observed demand so far.
Such short-term forecasts (possibly a vector of fore-
casts of future arrivals by time of day) may prove
useful in short-term, within-the-day planning. For
example, when the forecast of X+�m� is low relative
to the current staffing level, actions can be taken to
improve agent utilization, such as initiating outbound
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calls or scheduling agent training or meetings (Gans
et al. 2003).
We conclude with some suggestions for future

work. Models 1 to 3 introduced here are parsimonious:
They have only one or two parameters in addition to
the mean arrival rate over each period. A good topic
for further research would be to design and study
models with a few more parameters that could bet-
ter fit the correlations and/or individual interval dis-
persions. In our case study, the correlations for Mod-
els 1 to 3 were systematically higher than those in
the data. Conceivably, this could be improved by a
single additional parameter that would control the
overall amount of correlation. With respect to disper-
sions, we note that Models 2 and 3 allowed finer con-
trol of the dispersion of the individual time-interval
demands relative to the total daily demand, with the
constraint that the dispersion can be adjusted (relative
to Model 1) either upward or downward for all time
intervals.
A possible approach for allowing a different direc-

tion of dispersion adjustment across time intervals
is a hierarchical model. At the first level, one mod-
els the multivariate demand over aggregated intervals
(level-1 demand); then, conditionally on the level-1
demand, one assigns (probabilistically) this demand
to the target intervals (level-2 demand). In this model-
ing approach, Model 3 appears interesting because of
its ability to adjust the dispersions of level-2 demand,
relative to level-1 demand in either direction. More-
over, this hierarchical approach facilitates control of
the number of model parameters. Another aspect that
would require further work is the experimentation
of the proposed models with different sets of real-
life data from telephone call centers and from other
types of systems where arrival processes are likely to
behave in a similar way.
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