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Abstract 
 
We discuss a parallel implementation of Monte Carlo simulation algorithms for 
estimating the price of American-style options.  We focus on the stochastic mesh method 
originally proposed in [3].  The method’s statistical efficiency was improved by a bias-
reduction technique developed in [1] and [2]. We report results on the efficiency of the 
parallel implementation of these two algorithms on an SGI Origin 2000 computer with up 
to 32 processors.  Our conclusion is that the algorithm gains almost linear performance 
improvement with respect to the number of processors engaged in computations for 
moderate to large mesh sizes. 
 
1.  Introduction 
 
In the financial markets, sophisticated, complex products are continuously offered and 
traded. With the increasing complexity of these products, Monte Carlo simulation is 
steadily becoming an important tool used in valuing and hedging complex products. In 
this paper, we focus on American options, where we assume that the option can be 
exercised discretely, as opposed to continuously--that is, the option holder can exercise 
the option at a fixed set of time points (also called exercise opportunities, or stages) up to 
expiration.   
 
Until recently, the prevailing opinion was that American options could not be handled by 
Monte Carlo simulation; e.g., Hull (1997, p. 364).  Recent developments, however, have 
started to pave the way for estimating American option prices via simulation [1,2,3,4]. 
An important method developed recently for pricing American options via simulation is 
the stochastic mesh method proposed in Broadie and Glasserman (1997a), henceforth 
BG1997a.  For a general-purpose implementation of the method, Avramidis and Hyden 
(1999) observed severe bias in the mesh estimators and developed a bias-reduced mesh 
estimator that drastically improves the accuracy, measured as the inverse of the mean 
square error.  For a more complete treatment of the bias-reduced estimator, see 
Avramidis (2000).  
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In this paper, we report on a parallel implementation of mesh-type estimators.  The paper 
is organized as follows.  For completeness, we describe the estimators in BG97 and A00 
in Section 2.  Section 3 contains the algorithm structure and implementation details.  In 
Section 4 we report computational results on timings and the efficiency of the parallel 
implementation.  
 
2.  Background: American Option Pricing and Mesh Estimation 
 
Let ),...,( 1 n

ttt SSS =  denote the vector of securities underlying the option, modeled as a 

Markov process on Rn with discrete time-parameter t = 0, 1,…, T. The argument t = 0, 1, 
…, T indexes the set of time points (in increasing order) when the option is exercisable, 
also called exercise opportunities or simply stages.  Let h(t, s) be the payoff from 
exercise at time t in state s, discounted to time 0 with the (possibly stochastic) discount 
factor recorded in St. Since St is Markovian, the option value at (time, state) pair (t,s) is 
obtained by dynamic programming: 
 

 
!
"
#

<
=

=
sTtstcsth

sTtsTh
stq

 all and for )},(),,(max{

 all and for ),(
),(  

 
where c(t, s) is the discounted value of the option associated with the decision to 
“continue”, i.e., not exercise the option at (t, s), thereby holding it until at least stage t +1: 
 
 ]|),1([),( 1 sSStqEstc tt =+= +   (1) 

  
The quantity c(t, s) is called the continuation value at (t, s).  Arbitrage-pricing theory 
suggests that the arbitrage-free price of the option is obtained when the conditional 
expectation in (1) is with respect to the Equivalent Martingale Measure (EMM).  Under 
the EMM, the value of any tradeable security, discounted to time 0, is a martingale. 
The problem is to compute the option value at time 0, q(0, s0), where s0 is the known state 
of underlying assets at time 0. 
 
Example. In a simple application, St is a vector of d stock prices. A max call option has 
payoff +−= ))..,,.((max),( 1 KSSSth d

ttt ; a geometric average call option has payoff 
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In reviewing the mesh method, we follow BG1997a. The method generates a mesh of 
randomly sampled states (also called points) St,i , i=1,…,b for each t=1,…,T. For 
convenience, we define nonrandom mesh points at stage 0 equal to the state of underlying 
securities at time 0, S0,i = s0, i=1,…,b. For t=1,…,T, let gt(.) denote the probability density 
from which the points {St,i : i=1,…,b} are sampled (to be specified later), and let ft (x,⋅) 
denote the conditional EMM density of St+1 given St = x.  It is assumed that ft (x,⋅) exists 
for all x and is known in closed form or can be evaluated numerically at negligible cost.  
The high mesh estimator of the option value is defined recursively: 
 



 3

 biSThSTq iTiTH ,...,1),,(),(ˆ ,, == ;  (2a) 

 
for t=T-1, T-2,…,0, the high mesh estimator is 
 
 biStcSthStq itititH ,...,1)),,(ˆ),,(max(),(ˆ ,,, == ,  (2b) 

 
where the estimated continuation value of each point sampled at stage t depends on the 
previously estimated continuation values of all points sampled at stage t+1: 
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where the weights w(⋅,⋅) are  
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The weighing of the combination of points (St,i , St,i+1) above is necessary in light of the 
fact that the points at stage t + 1 were sampled from the density gt+1 (⋅) instead of the 
density ft (St,i , ⋅) appropriate for sampling a path to estimate the continuation value of 
point St,i .  
 
The choice of densities gt (⋅) is crucial. For the rest of the paper, we assume the mesh is 
generated by sampling b independent and identically distributed paths of St: 
 
 {St,i , t = 0,…, T}, i=1,…, b are i.i.d. paths of St .  (5) 
 
We call the pair ),( ,1, itit SS +  a parent and child, respectively, to indicate the stochastic 

dependence.  BG1997a provide evidence that a good choice is to sample b paths as in (5) 
and view the points at stage t+1 as a sample of identically distributed points from the 
average conditional EMM density associated with their parents:  
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where ),...,1,( , biS itt ==S .  Note that gt+1(St, ⋅) depends on all parents of points sampled 

at stage t, and corresponds to “forgetting” the parent-child relationship. 
 
We continue by defining the mesh estimators in Avramidis (2000).  A first step is to 
construct the mesh low estimator ),(ˆ ,itL Stq , which is a biased-low estimator for the 

option value at (t, St,i) obtained from within the mesh.  The idea behind the construction is 
to use disjoint sets of points for estimation of the optimal exercise policy and the 
estimation of continuation values (in case the estimated optimal policy is to continue).  
Unlike the BG1997a mesh high estimator, we “remember” the parent of each point. For 
simplicity, assume b is even, and define 
 



 4

 },...2
2

,1
2

{B },
2

,...,2,1{ 21 b
bbb

B ++== , and 
!
"
#

∈
∈

=
2

1

,1

,2
)(

Bj

Bj
jτ . (7) 

 
To calculate the low mesh estimator at (t, St,i), assume the low mesh estimator of the 
option value at each of the sampled points at stage t+1 has been calculated.  Define the j-
th estimate of the optimal-exercise action using only the points in Bj from stage t+1: 
 
 2,1)},,,(ˆ),({1),(ˆ ,,, =>= jBStcSthSte jitLititj ,  (8) 

 
where 1{⋅} is the indicator function of the corresponding event, and 
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where the weights above are 
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The weights in (10) correspond to viewing the points 

jBkktS ∈+ }{ ,1 as being identically 

distributed from a density equal to the average conditional EMM density associated with 
their parents: 
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The low mesh estimator of the option value is defined recursively: 
 
 biSThSTq iTiTL ,...,1),,(),(ˆ ,, == ;  (12a) 

 
for t=T-1, T-2,…,0, the low mesh estimator is 
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By construction, each forward point St+1,j is used in conjunction with an estimate of the 
optimal exercise action ),(ˆ )( ⋅⋅jeτ  based on points other than St+1,j (recall (7)). 

 
We are ready to define the recursively averaged estimator of Avramidis (2000): 
 
 biSThSTq iTiTA ,...,1),,(),(ˆ ,, == ;  (13a) 

for t=T-1, T-2,…,0, the recursively averaged estimator is 
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where ),(ˆ ,, itAH Stq and ),(ˆ ,, itAL Stq differ from ),(ˆ ,itH Stq and ),(ˆ ,itL Stq , respectively, in 

that in the former estimators, we use the values of the recursively averaged estimator at 
stage t+1, ),1(ˆ ⋅+tqA , instead of the values ),1(ˆ ⋅+tqH and ),1(ˆ ⋅+tqL for the calculation at 
stage t, respectively.  For motivation and results on the statistical efficiency of these 
estimators, see Avramidis (2000). 
 
 
3. Algorithm structure and implementation 
 
The following three estimators were implemented: 
• The high mesh estimator Hq̂  of BG1997a 

• The low mesh estimator Lq̂ of Avramidis (2000) 

• The recursively-averaged estimator Aq̂  of Avramidis (2000) 
 
An algorithm for the computation (including parallel processing) of Lq̂ follows (the code 
for the other two estimators is similar and is thus omitted). 
  
Step 1. Generate random mesh points as in (5) 
Step 2 (Backwards recursion): 
t =T; Compute option values as in (12a). 
For t = T-1, T-2, …, 0:  
 For j = 1, 2, …, b     % IN PARALLEL 
  Compute the density function as in (6) with u = jtS ,1+  (O(b) work) 

 End For 
 For j=1,2 
  For k∈Bj               % IN PARALLEL 
   Compute the density function as in (11) with u = ktS ,1+   (O(b) work) 

  End For 
 End For 
 For i = 1, 2, …, b     % IN PARALLEL 
  For j=1,2 
   Compute the weight as in (10)  
   Compute the continuation value as in (9)   (O(b) work) 

  Compute the estimate of the optimal exercise action as in (8)    
  End For 

 Compute low mesh estimator as in (12b)   (O(b) work) 
 End For 
End For 
 
For statements that involve work that grows with b, we indicated the work requirement in 
parentheses in O(⋅) notation.  The algorithm complexity as a function of T and b is as 
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follows.  The generation of mesh points in Step 1 requires O(Tb) work.  The backward 
computation of option values for all mesh points in Step 2 has total work requirement of 
order O(Tb2).  Since the work in Step 1 is an asymptotically negligible fraction of total 
work as b increases, we implemented parallel processing only for Step 2 (clearly, the 
generation of paths in Step 1 could also be parallelized).  The For loops labeled “% IN 
PARALLEL” are executed in parallel, as the computations for each loop iteration are 
independent of each other.  This analysis shows that the O(Tb2) work of mesh-type 
algorithms can be parallelized up to b processors with almost perfect efficiency, in which 
case the execution time will be approximately O(Tb), an impressive speedup. 
  
We implemented all three estimators in the C++ programming language, which is 
convenient for dealing with dynamical data structures.  The implementation was done in 
the object-oriented framework and the following classes/templates were created: 
 
• template class Vector – used to store the information on the underlying securities and 

estimators for each node in the mesh, used to create a class for mesh points at a 
particular stage and also used as a base class for a whole mesh 

• class TSeed – represents a single point of a mesh 
• class TPSeedVector – container class for all the mesh points at stage t 
• class TMesh – contains a mesh data structure itself and is able to resample mesh, 

compute the estimators etc 
 
Here is a diagram showing how these objects are interrelated: 

Template <class T> class Vector

Class TSeed
- Vector<float> underly ing securities
- Vector<float> estimators
- Vector<int> forward links

Class TPSeedVector – Vector<TSeed*>

Class TMesh: public Vector<TPSeedVector>
 

 
 
3.1  Parallel Implementation 
 
For parallel implementation, we used the OpenMP libraries on the SGI’s Origin 2000 
machine. The pragma directives were used for the automatic parallelization of the C++ 
code.  No changes to the original code were necessary. We simply identified the parallel 
portions and added the pragma calls before each parallel-execution loop as shown below. 
 
#define _MAKE_PARALLEL_  % initialize 
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… 
… 
 
#ifdef _MAKE_PARALLEL_  % typical parallel For loop 
#pragma omp parallel for 
#endif 
For j = 1, 2, …, b     % IN PARALLEL 
… 
End For 

 
4. Computational Results 
 
Experiments were run for two option types (max and geometric average payoff function) 
for different mesh sizes and varying dimensionality of the option (for the case of the 
geometric average option) and number of exercise opportunities (for the case of the max 
option).  The machine used was an SGI Origin 2000 cc-NUMA multiprocessor server. 
Timing results were obtained with up to 32 processors.  Since all three estimators have 
similar computational complexity, we report execution times only for Aq̂  in Table 1.  As 
expected, given a fixed number of processors engaged, the execution time grows 
approximately linearly with the number of exercise opportunities T and the number of 
underlying securities n, and grows quadratically with the number of mesh points per stage 
b.   For large mesh sizes (b =2048) we achieved almost perfect parallel efficiency, with 
an approximate speedup by a factor of 28 on 32 processors.  The speedup improves with 
the mesh size.  
 
Table 1.  Execution time (seconds) on SGI Origin 2000. 
 
Option 
Type 

 # processors -> 1 2 4 8 16 32 

Geometric 
Average 

# assets d Mesh size b        

 5 b = 512 93.67 47.26 23.94 12.47 7.57 6.37 
  b = 1024 380.71 191.53 96.72 48.75 25.37 16.15 
  b = 2048 1547.7 772.39 388.8 195.6 100.1 54.15 
 7 b = 512 128.1 64.33 32.58 16.77 9.87 8.03 
  b = 1024 518.02 261.81 130.8 66.36 34.72 20.89 
  b = 2048 2090.8 1046.6 527.2 264.8 134.9 72.07 
Max # stages T        
 3 b = 512 20.63 10.43 5.39 2.90 1.87 1.78 
  b = 1024 82.18 41.20 20.77 10.64 5.80 3.77 
  b = 2048 328.88 164.52 88.96 42.53 21.77 12.05 
 6 b = 512 52.14 26.01 13.26 7.01 4.24 3.79 
  b = 1024 209.4 104.9 58.82 26.88 14.19 9.08 
  b = 2048 847.7 425.0 216.1 108.3 55.16 30.28 
 9 b = 512 82.82 41.90 21.11 11.45 6.73 5.74 
  b = 1024 333.2 167.6 84.15 43.26 22.19 13.98 
  b = 2048 1338.1 671.7 336.7 171.6 86.59 46.69 
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4.1  Parallel Efficiency Results 

 
We define: 
 
• Speedup = serial time/parallel time. 
• Parallel efficiency = Speedup/P, where P is the number of processors.  
 

Speedup Chart  for variable mesh sizes (Geo - 7 case)
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4.2  Empirical study of serial and parallel components via regression 
 
To separate the serial and parallel components of the code execution time, we used the 
following formulas to represent parallel and serial execution times: 
 
serial = c*(s1+s2*N+s3*N^2) 
parallel = c*(p1+p2*N+p3*N^2). 
 
Here c is a constant, N = b/512 measures the normalized mesh size, and s1, s2, s3 and p1, 
p2, p3 are the coefficients to be determined.  The regression model we estimated is 
 
Totaltime = serial + parallel/P + error, 
 
where P is the number of processors.  
 
The estimated coefficients were: s1= 0.2101, s2 = 0.1150, s3 = 0.0044, p1 = 0.0439, p2 = 
0.1240, p3 = 19.1197.  This confirms our expectation that the quadratic component of 
execution time is dominant.  The chart below compares the actual and regression-fitted 
execution times; note that regression results very accurately match the data. 
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5.  Conclusion 
 
In this paper, we describe a parallel implementation of Monte Carlo simulation 
algorithms for the estimation of American-style option prices.  We focus on the stochastic 
mesh method developed in [3] and [1] as a general-purpose Monte Carlo algorithm for 
addressing the estimation problem. Three important mesh-type estimators were 
implemented using C++ on SGI Origin 2000 cc-NUMA multiprocessor server.  
 
A direct algorithm analysis and an empirical study demonstrate that almost perfect 
parallel efficiency can be achieved.  For moderately large mesh sizes we achieved almost 
perfect parallel efficiency, i.e., execution time declines almost linearly with the number 
of processors used, and almost perfect processor utilization is achieved.  The resulting 
benefits are: much faster estimation is feasible for computationally-intensive and/or 
critical applications; as American option pricing in dimension greater than 3-4 is still a 
hard problem computationally, fast estimation by parallel processing may facilitate 
further advances in research. 
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