
EFFICIENCY IMPROVEMENTS FOR PRICING AMERICAN OPTIONS WITH A
STOCHASTIC MESH: PARALLEL IMPLEMENTATION1

Thanos Avramidis2, Yuriy Zinchenko 3, Thomas F. Coleman4, Arun Verma5

Abstract

We discuss a parallel implementation of Monte Carlo simulation algorithms for
estimating the price of American-style options. We focus on the stochastic mesh method
originally proposed in [3]. The method’s statistical efficiency was improved by a bias-
reduction technique developed in [1] and [2]. We report results on the efficiency of the
parallel implementation of these two algorithms on an SGI Origin 2000 computer with up
to 32 processors. Our conclusion is that the algorithm gains almost linear performance
improvement with respect to the number of processors engaged in computations for
moderate to large mesh sizes.

1. Introduction

In the financial markets, sophisticated, complex products are continuously offered and
traded. With the increasing complexity of these products, Monte Carlo simulation is
steadily becoming an important tool used in valuing and hedging complex products. In
this paper, we focus on American options, where we assume that the option can be
exercised discretely, as opposed to continuously--that is, the option holder can exercise
the option at a fixed set of time points (also called exercise opportunities, or stages) up to
expiration.

Until recently, the prevailing opinion was that American options could not be handled by
Monte Carlo simulation; e.g., Hull (1997, p. 364). Recent developments, however, have
started to pave the way for estimating American option prices via simulation [1,2,3,4].
An important method developed recently for pricing American options via simulation is
the stochastic mesh method proposed in Broadie and Glasserman (1997a), henceforth
BG1997a. For a general-purpose implementation of the method, Avramidis and Hyden
(1999) observed severe bias in the mesh estimators and developed a bias-reduced mesh
estimator that drastically improves the accuracy, measured as the inverse of the mean
square error. For a more complete treatment of the bias-reduced estimator, see
Avramidis (2000).

1 This work was funded by the Financial Industry Solutions Center, a joint venture of
Silicon Graphics International and Cornell University based in New York City.
2 Assistant Professor, School of Operations Research and Industrial Engineering, Cornell
University, Ithaca, NY 14853.
3 School of Operations Research and Industrial Engineering, Cornell University, Ithaca,
NY 14853
4 Director, Cornell Theory Center, Ithaca, NY 14853 and Director, Financial Industry
Solutions Center, 55 Broad St, New York, NY.
5 Cornell Theory Center and Financial Industry Solutions Center

 2

In this paper, we report on a parallel implementation of mesh-type estimators. The paper
is organized as follows. For completeness, we describe the estimators in BG97 and A00
in Section 2. Section 3 contains the algorithm structure and implementation details. In
Section 4 we report computational results on timings and the efficiency of the parallel
implementation.

2. Background: American Option Pricing and Mesh Estimation

Let),...,(1 n

ttt SSS = denote the vector of securities underlying the option, modeled as a

Markov process on Rn with discrete time-parameter t = 0, 1,…, T. The argument t = 0, 1,
…, T indexes the set of time points (in increasing order) when the option is exercisable,
also called exercise opportunities or simply stages. Let h(t, s) be the payoff from
exercise at time t in state s, discounted to time 0 with the (possibly stochastic) discount
factor recorded in St. Since St is Markovian, the option value at (time, state) pair (t,s) is
obtained by dynamic programming:

!
"
#

<
=

=
sTtstcsth

sTtsTh
stq

 all and for)},(),,(max{

 all and for),(
),(

where c(t, s) is the discounted value of the option associated with the decision to
“continue”, i.e., not exercise the option at (t, s), thereby holding it until at least stage t +1:

]|),1([),(1 sSStqEstc tt =+= + (1)

The quantity c(t, s) is called the continuation value at (t, s). Arbitrage-pricing theory
suggests that the arbitrage-free price of the option is obtained when the conditional
expectation in (1) is with respect to the Equivalent Martingale Measure (EMM). Under
the EMM, the value of any tradeable security, discounted to time 0, is a martingale.
The problem is to compute the option value at time 0, q(0, s0), where s0 is the known state
of underlying assets at time 0.

Example. In a simple application, St is a vector of d stock prices. A max call option has
payoff +−=))..,,.((max),(1 KSSSth d

ttt ; a geometric average call option has payoff

()+
=

−= ∏ KSSth dd

k

k
tt

/1

1
)(),(, where K is the strike price and x+ stands for max (x, 0).

In reviewing the mesh method, we follow BG1997a. The method generates a mesh of
randomly sampled states (also called points) St,i , i=1,…,b for each t=1,…,T. For
convenience, we define nonrandom mesh points at stage 0 equal to the state of underlying
securities at time 0, S0,i = s0, i=1,…,b. For t=1,…,T, let gt(.) denote the probability density
from which the points {St,i : i=1,…,b} are sampled (to be specified later), and let ft (x,⋅)
denote the conditional EMM density of St+1 given St = x. It is assumed that ft (x,⋅) exists
for all x and is known in closed form or can be evaluated numerically at negligible cost.
The high mesh estimator of the option value is defined recursively:

 3

 biSThSTq iTiTH ,...,1),,(),(ˆ ,, == ; (2a)

for t=T-1, T-2,…,0, the high mesh estimator is

 biStcSthStq itititH ,...,1)),,(ˆ),,(max(),(ˆ ,,, == , (2b)

where the estimated continuation value of each point sampled at stage t depends on the
previously estimated continuation values of all points sampled at stage t+1:

 $
=

++ ++=
b

j
jtitjtHit SStwStq

b
Stc

1
,1,,1,),,1(),1(ˆ

1
),(ˆ (3)

where the weights w(⋅,⋅) are

)(

),(
),,1(

,11

,1,
,1,

jtt

jtitt
jtit Sg

SSf
SStw

++

+
+ =+ . (4)

The weighing of the combination of points (St,i , St,i+1) above is necessary in light of the
fact that the points at stage t + 1 were sampled from the density gt+1 (⋅) instead of the
density ft (St,i , ⋅) appropriate for sampling a path to estimate the continuation value of
point St,i .

The choice of densities gt (⋅) is crucial. For the rest of the paper, we assume the mesh is
generated by sampling b independent and identically distributed paths of St:

 {St,i , t = 0,…, T}, i=1,…, b are i.i.d. paths of St . (5)

We call the pair),(,1, itit SS + a parent and child, respectively, to indicate the stochastic

dependence. BG1997a provide evidence that a good choice is to sample b paths as in (5)
and view the points at stage t+1 as a sample of identically distributed points from the
average conditional EMM density associated with their parents:

 $
=

+ =
b

i
itttt uSf

b
ug

1
,1),(

1
),(S , (6)

where),...,1,(, biS itt ==S . Note that gt+1(St, ⋅) depends on all parents of points sampled

at stage t, and corresponds to “forgetting” the parent-child relationship.

We continue by defining the mesh estimators in Avramidis (2000). A first step is to
construct the mesh low estimator),(ˆ ,itL Stq , which is a biased-low estimator for the

option value at (t, St,i) obtained from within the mesh. The idea behind the construction is
to use disjoint sets of points for estimation of the optimal exercise policy and the
estimation of continuation values (in case the estimated optimal policy is to continue).
Unlike the BG1997a mesh high estimator, we “remember” the parent of each point. For
simplicity, assume b is even, and define

 4

 },...2
2

,1
2

{B },
2

,...,2,1{ 21 b
bbb

B ++== , and
!
"
#

∈
∈

=
2

1

,1

,2
)(

Bj

Bj
jτ . (7)

To calculate the low mesh estimator at (t, St,i), assume the low mesh estimator of the
option value at each of the sampled points at stage t+1 has been calculated. Define the j-
th estimate of the optimal-exercise action using only the points in Bj from stage t+1:

 2,1)},,,(ˆ),({1),(ˆ ,,, =>= jBStcSthSte jitLititj , (8)

where 1{⋅} is the indicator function of the corresponding event, and

 $
∈

+++=
jBk

ktitLktLjitL SStwStq
b

BStc),,(),1(ˆ
2/

1
),,(ˆ ,1,,1, , (9)

where the weights above are

),(

),(
),,(

,1,1

,1,
,1,

kttBt

ktitt
ktitL Sg

SSf
SStw

j ++

+
+ =

S
. (10)

The weights in (10) correspond to viewing the points

jBkktS ∈+ }{ ,1 as being identically

distributed from a density equal to the average conditional EMM density associated with
their parents:

 $
∈

+ =
j

j
Bl

ltttBt uSf
b

ug),(
2/

1
),(,,1 S . (11)

The low mesh estimator of the option value is defined recursively:

 biSThSTq iTiTL ,...,1),,(),(ˆ ,, == ; (12a)

for t=T-1, T-2,…,0, the low mesh estimator is

bi
Sg

SStf
StqSteSthSteStq

b

j jttt

jtitt
jtLitjititjitL ,...,1,

),(

),,(
),1(ˆ)],(ˆ1[),(),(ˆ),(ˆ

1 ,11

,1,
,1,)(,,)(, =

%&

%
'
(

%!

%
"
#

+−+=$
= ++

+
+ Sττ

 (12b)
By construction, each forward point St+1,j is used in conjunction with an estimate of the
optimal exercise action),(ˆ)(⋅⋅jeτ based on points other than St+1,j (recall (7)).

We are ready to define the recursively averaged estimator of Avramidis (2000):

 biSThSTq iTiTA ,...,1),,(),(ˆ ,, == ; (13a)

for t=T-1, T-2,…,0, the recursively averaged estimator is

 5

 () biStqStqStq itALitAHitA ,...,1,),(ˆ),(ˆ
2

1
),(ˆ ,,,,, =+= , (13b)

where),(ˆ ,, itAH Stq and),(ˆ ,, itAL Stq differ from),(ˆ ,itH Stq and),(ˆ ,itL Stq , respectively, in

that in the former estimators, we use the values of the recursively averaged estimator at
stage t+1,),1(ˆ ⋅+tqA , instead of the values),1(ˆ ⋅+tqH and),1(ˆ ⋅+tqL for the calculation at
stage t, respectively. For motivation and results on the statistical efficiency of these
estimators, see Avramidis (2000).

3. Algorithm structure and implementation

The following three estimators were implemented:
• The high mesh estimator Hq̂ of BG1997a

• The low mesh estimator Lq̂ of Avramidis (2000)

• The recursively-averaged estimator Aq̂ of Avramidis (2000)

An algorithm for the computation (including parallel processing) of Lq̂ follows (the code
for the other two estimators is similar and is thus omitted).

Step 1. Generate random mesh points as in (5)
Step 2 (Backwards recursion):
t =T; Compute option values as in (12a).
For t = T-1, T-2, …, 0:
 For j = 1, 2, …, b % IN PARALLEL
 Compute the density function as in (6) with u = jtS ,1+ (O(b) work)

 End For
 For j=1,2
 For k∈Bj % IN PARALLEL
 Compute the density function as in (11) with u = ktS ,1+ (O(b) work)

 End For
 End For
 For i = 1, 2, …, b % IN PARALLEL
 For j=1,2
 Compute the weight as in (10)
 Compute the continuation value as in (9) (O(b) work)

 Compute the estimate of the optimal exercise action as in (8)
 End For

 Compute low mesh estimator as in (12b) (O(b) work)
 End For
End For

For statements that involve work that grows with b, we indicated the work requirement in
parentheses in O(⋅) notation. The algorithm complexity as a function of T and b is as

 6

follows. The generation of mesh points in Step 1 requires O(Tb) work. The backward
computation of option values for all mesh points in Step 2 has total work requirement of
order O(Tb2). Since the work in Step 1 is an asymptotically negligible fraction of total
work as b increases, we implemented parallel processing only for Step 2 (clearly, the
generation of paths in Step 1 could also be parallelized). The For loops labeled “% IN
PARALLEL” are executed in parallel, as the computations for each loop iteration are
independent of each other. This analysis shows that the O(Tb2) work of mesh-type
algorithms can be parallelized up to b processors with almost perfect efficiency, in which
case the execution time will be approximately O(Tb), an impressive speedup.

We implemented all three estimators in the C++ programming language, which is
convenient for dealing with dynamical data structures. The implementation was done in
the object-oriented framework and the following classes/templates were created:

• template class Vector – used to store the information on the underlying securities and

estimators for each node in the mesh, used to create a class for mesh points at a
particular stage and also used as a base class for a whole mesh

• class TSeed – represents a single point of a mesh
• class TPSeedVector – container class for all the mesh points at stage t
• class TMesh – contains a mesh data structure itself and is able to resample mesh,

compute the estimators etc

Here is a diagram showing how these objects are interrelated:

Template <class T> class Vector

Class TSeed
- Vector<float> underly ing securities
- Vector<float> estimators
- Vector<int> forward links

Class TPSeedVector – Vector<TSeed*>

Class TMesh: public Vector<TPSeedVector>

3.1 Parallel Implementation

For parallel implementation, we used the OpenMP libraries on the SGI’s Origin 2000
machine. The pragma directives were used for the automatic parallelization of the C++
code. No changes to the original code were necessary. We simply identified the parallel
portions and added the pragma calls before each parallel-execution loop as shown below.

#define _MAKE_PARALLEL_ % initialize

 7

…
…

#ifdef _MAKE_PARALLEL_ % typical parallel For loop
#pragma omp parallel for
#endif
For j = 1, 2, …, b % IN PARALLEL
…
End For

4. Computational Results

Experiments were run for two option types (max and geometric average payoff function)
for different mesh sizes and varying dimensionality of the option (for the case of the
geometric average option) and number of exercise opportunities (for the case of the max
option). The machine used was an SGI Origin 2000 cc-NUMA multiprocessor server.
Timing results were obtained with up to 32 processors. Since all three estimators have
similar computational complexity, we report execution times only for Aq̂ in Table 1. As
expected, given a fixed number of processors engaged, the execution time grows
approximately linearly with the number of exercise opportunities T and the number of
underlying securities n, and grows quadratically with the number of mesh points per stage
b. For large mesh sizes (b =2048) we achieved almost perfect parallel efficiency, with
an approximate speedup by a factor of 28 on 32 processors. The speedup improves with
the mesh size.

Table 1. Execution time (seconds) on SGI Origin 2000.

Option
Type

 # processors -> 1 2 4 8 16 32

Geometric
Average

assets d Mesh size b

 5 b = 512 93.67 47.26 23.94 12.47 7.57 6.37
 b = 1024 380.71 191.53 96.72 48.75 25.37 16.15
 b = 2048 1547.7 772.39 388.8 195.6 100.1 54.15
 7 b = 512 128.1 64.33 32.58 16.77 9.87 8.03
 b = 1024 518.02 261.81 130.8 66.36 34.72 20.89
 b = 2048 2090.8 1046.6 527.2 264.8 134.9 72.07
Max # stages T
 3 b = 512 20.63 10.43 5.39 2.90 1.87 1.78
 b = 1024 82.18 41.20 20.77 10.64 5.80 3.77
 b = 2048 328.88 164.52 88.96 42.53 21.77 12.05
 6 b = 512 52.14 26.01 13.26 7.01 4.24 3.79
 b = 1024 209.4 104.9 58.82 26.88 14.19 9.08
 b = 2048 847.7 425.0 216.1 108.3 55.16 30.28
 9 b = 512 82.82 41.90 21.11 11.45 6.73 5.74
 b = 1024 333.2 167.6 84.15 43.26 22.19 13.98
 b = 2048 1338.1 671.7 336.7 171.6 86.59 46.69

 8

4.1 Parallel Efficiency Results

We define:

• Speedup = serial time/parallel time.
• Parallel efficiency = Speedup/P, where P is the number of processors.

Speedup Chart for variable mesh sizes (Geo - 7 case)

0

5

10

15

20

25

30

35

1 2 4 8 16 32

Number of processors

S
P

E
E

D
U

P

512

1024

2048

4.2 Empirical study of serial and parallel components via regression

To separate the serial and parallel components of the code execution time, we used the
following formulas to represent parallel and serial execution times:

serial = c*(s1+s2*N+s3*N^2)
parallel = c*(p1+p2*N+p3*N^2).

Here c is a constant, N = b/512 measures the normalized mesh size, and s1, s2, s3 and p1,
p2, p3 are the coefficients to be determined. The regression model we estimated is

Totaltime = serial + parallel/P + error,

where P is the number of processors.

The estimated coefficients were: s1= 0.2101, s2 = 0.1150, s3 = 0.0044, p1 = 0.0439, p2 =
0.1240, p3 = 19.1197. This confirms our expectation that the quadratic component of
execution time is dominant. The chart below compares the actual and regression-fitted
execution times; note that regression results very accurately match the data.

 9

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

DATA POINTS

T
IM

E
 (

in
 s

ec
on

ds
)

regression data
real data(times)

5. Conclusion

In this paper, we describe a parallel implementation of Monte Carlo simulation
algorithms for the estimation of American-style option prices. We focus on the stochastic
mesh method developed in [3] and [1] as a general-purpose Monte Carlo algorithm for
addressing the estimation problem. Three important mesh-type estimators were
implemented using C++ on SGI Origin 2000 cc-NUMA multiprocessor server.

A direct algorithm analysis and an empirical study demonstrate that almost perfect
parallel efficiency can be achieved. For moderately large mesh sizes we achieved almost
perfect parallel efficiency, i.e., execution time declines almost linearly with the number
of processors used, and almost perfect processor utilization is achieved. The resulting
benefits are: much faster estimation is feasible for computationally-intensive and/or
critical applications; as American option pricing in dimension greater than 3-4 is still a
hard problem computationally, fast estimation by parallel processing may facilitate
further advances in research.

 10

References

1. Avramidis, A. N. 2000. Efficiency improvements for pricing American Options with

a stochastic mesh. Working paper, School of ORIE, Cornell University, Ithaca, NY
14853.

2. Avramidis, A. N., and P. Hyden. 1999. Efficiency improvements for pricing
American options with a stochastic mesh. Proceedings of the 1999 Winter Simulation
Conference, 344-350.

3. Broadie, M., and P. Glasserman. 1997a. A stochastic mesh method for pricing high-
dimensional American options. Unpublished manuscript.

4. Broadie, M., and P. Glasserman. 1997b. Pricing American-style securities using
simulation. Journal of Economic Dynamics and Control, 21, 1323-1352.

5. Hull, J. 1997. Options, Futures, and other derivatives, 3rd Edition, Prentice-Hall.

